BUREAU INTERNATIONAL DES POIDS ET MESURES

Annual Report of the BIPM Time Section Rapport annuel de la Section du temps du BIPM

Volume 15

2002

Pavillon de Breteuil F-92312 SÈVRES Cedex, France

ISBN 92-822-2199-7 ISSN 1016-6114

<u>Contents</u>

Practical information about the BIPM Time Section	p. 4				
Electronic access to the BIPM Time Section, data and publications	p. 5				
Leap seconds	p. 7				
Establishment of International Atomic Time and of					
Coordinated Universal Time	p. 8				
Relative frequency offsets and step adjustments of UTC - Table 1 [1]	p. 13				
Relationship between TAI and UTC - Table 2	p. 14				
Acronyms and locations of the timing centres which maintain					
a UTC(k) or/and a TA(k) - Table 3	p. 15				
Equipment and source of UTC(k) of the laboratories	. –				
contributing to TAI in 2002 - Table 4	p. 17				
Differences between the normalized frequencies of EAL					
and TAI - Table 5 [1]	p. 23 p. 25				
Measurements of the duration of the TAI scale interval - Table 6 [1]					
Annexes to Table 6	p. 28				
Mean fractional deviation of the TAI scale interval	- 00				
from that of TT - Table 7 [1]	p. 33				
Independent local atomic time scales [2]	p. 34				
Local representations of UTC [2]	p. 34				
International GPS and GLONASS Tracking Schedules	p. 35				
[TAI - GPS time] and [UTC - GPS time] [2]	p. 36				
[UTC - GLONASS time] and [TAI - GLONASS time] [2]	p. 37				
Clocks contributing to TAI in 2002	- 20				
Rates relative to TAI - Table 8A [1]	p. 38				
 Corrections for an homogeneous use of 					
the clock rates published in the current	~ 52				
and previous Annual Reports – Table 8B [1]	p. 53				
Clocks contributing to TAI in 2002	p. 54				
Relative weights – Table 9A [1] Statistical data on the weights – Table 0B [1]	p. 54 p. 68				
Statistical data on the weights – Table 9B [1] Time Signals [1]	p. 69				
Time Signals [1]	p. 89 p. 81				
Time Dissemination Services [1] Report on the scientific work of the BIPM Time Section	p. 81 p. 93				
	p. 00				

- [1] : Tables also available through the internet network ftp 62.161.69.5 or http://www.bipm.org
- [2] : Tables only available through the internet network ftp 62.161.69.5 or http://www.bipm.org

The Time Section of the BIPM issues two periodic publications. These are the monthly *Circular T* and the *Annual Report of the BIPM Time Section*. In addition, BIPM TWSTFT Reports give technical details about the TWSTFT links computed at the BIPM. The complete texts of *Circular T*, the TWSTFT Reports and most tables of the present Annual Report are available from BIPM website, www.bipm.org.

La Section du temps du BIPM produit deux publications périodiques : la Circulaire T, mensuelle, et le Rapport annuel de la Section du temps du BIPM. De plus, des rapports techniques sur les liens TWSTFT calculés par le BIPM sont publiés régulièrement. Les circulaires, les rapports du TWSTFT et la plupart des tableaux de ce rapport annuel sont disponibles par utilisation du site internet du BIPM, www.bipm.org.

<u>Address</u> :	Time Section Bureau Internation Pavillon de Breteu F-92312 Sèvres C	uil		S
Telephone:	BIPM Switchboard	d:	+ 33 1 45 07 70	70
<u>Telefax</u> :	BIPM Time Sectic BIPM General:	on:	+ 33 1 45 07 70 + 33 1 45 34 20	
Internet:	http://www.bipm.o or anonymous ftp	-	161.69.5 (subdire	ctory TAI)
<u>E-mail</u> :	tai@bipm.org			
Staff as of January 2	003 :			
Dr Elisa Felicitas AR	AS, Head,			
Principal Phy		+ 33	1 45 07 70 76	farias@bipm.org
Mr Jacques AZOUBI	В			
Principal Ph	ysicist	+ 33	1 45 07 70 62	jazoubib@bipm.org
Dr Włodzimierz LEW				
Principal Phy	/sicist	+ 33	1 45 07 70 63	wlewandowski@bipm.org
Dr Gérard PETIT,	and along		4 45 07 70 07	
Principal Phy			1 45 07 70 67	gpetit@bipm.org
Dr Peter WOLF, Phy			1 45 07 70 75 1 45 07 70 56	pwolf@bipm.org zjiang@bipm.org
Dr Zhiheng JIANG, F Miss Hawaï KONATI			1 45 07 70 50	hkonate@bipm.org
Mr Philippe MOUSS			1 45 07 70 66	pmoussay@bipm.org
Mrs Michèle THOMA			1 45 07 70 74	mthomas@bipm.org

Electronic access to the BIPM Time Section, data and publications

A large number of publications and data files from the BIPM Time Section are available from the website (http://www.bipm.org) or by anonymous ftp (62.161.69.5 or ftp2.bipm.org, user anonymous, e-mail address as password). If using ftp, cd pub/tai to access the tai directory and the subdirectories listed below.

The Time Section ftp server

The files are found in the three subdirectories **data**, **publication**, and **scale**; further details are given below.

In the following directories XY represents the last two digits of the year number (19XY or 20XY) ZT equals to 01 for Jan., 02 for Feb.12 for Dec. And XX, XXX are ordinal numbers.

Data- all data used for the computation of TAI, arranged in yearly directories, starting May 1999. See readme.txt for details.

Publication- the latest issues of the Time Section

publications	filonomo
publications	filename
Leap seconds	leaptab.txt
Acronyms of laboratories	acronyms.txt
Circular T	cirt.XXX
Fractional frequency of EAL from primary frequency standards	etXY.ZT
Weights of clocks participating in the computation of TAI	wXY.ZT
Rates relative to TAI of clocks participating in the computation of TAI	rXY.ZT
Values of the differences between TAI and the local atomic scale of the given laboratory, including relevant notes	TAI - lab
Values of the differences between UTC and its local representation by the given laboratory, including relevant notes	UTC - lab
Values of the differences between TAI and UTC and the respective local scales, evaluated for two-month periods until the end of 1997	TAI - XYZ
[UTC(lab1) - UTC(lab2)] obtained by the TWSTFT link, as published in the BIPM TWSTFT reports	lab1 - lab2.tw
BIPM Two-Way Satellite Time and Frequency Transfer Reports	twstftXX.pdf
Most recent schedules for common-view observations of GPS and	schgps.XX
GLONASS satellites	schglo.XX

Older files can be accessed directly from the ftp site (62.161.69.5 or ftp2.bipm.org).

Scale- time scales data

Content	filename
TT(BIPMXY) computed in the year 19XY or 20XY	TTBIPM.XY
Starting 1993: Difference between the normalized frequencies of EAL and TAI	EALTAIXY.ar
TAI frequency	FTAIXY.ar (for 1993,1994)
Measurements of the duration of the TAI scale interval	UTAIXY.ar (starting 1995)
Mean duration of TAI scale interval	SITAIXY.ar
[TAI - GPS time] and [UTC - GPS time]	UTCGPSXY.ar
[TAI - GLONASS time] and [UTC - GLONASS time]	UTCGLOXY.ar
Time Dissemination Services	TIMESERVICES.DOC
Time Signals	TIMESIGNALS.DOC
Rates of clocks contributing to TAI	RTAIXY.ar
Weights of clocks contributing to TAI	WTAIXY ar
Until 1992: Local representations of UTC: Values of [<i>UTC - UTC</i> (<i>lab</i>)] Local values of [<i>TAI - TA</i> (<i>lab</i>)]	UTC.XY TA.XY

For the period 1993-1998, these files are issued from tables in the BIPM Time Section Annual Report. The Annual Reports published up to 1998 additionally include the following tables:

Frequency offsets and step adjustments of UTC Relationship between TAI and UTC Acronyms and locations of the timing centres which maintain a UTC(k) and/or TA(k) Equipment and source of UTC(k) of the laboratories contributing to TAI International GPS tracking schedules (until the Annual Report for 1997) International GLONASS tracking schedules (until the Annual Report for 1997) Corrections for homogeneous use of the clock rates published in the current and previous annual reports Statistical data on the weights of the clocks contributing to TAI

Starting with the BIPM Time Section Annual Report for 1999, some tables traditionally included in the printed version are only available in electronic form. At present, the Annual Report includes the following tables:

Frequency offsets and step adjustments of UTC Relationship between TAI and UTC Acronyms and locations of the timing centres which maintain a UTC(k) and/or TA(k) Equipment and source of UTC(k) of the laboratories contributing to TAI Corrections for homogeneous use of the clock rates published in the current and previous annual reports Statistical data on the weights of the clocks contributing to TAI Information compiled about worldwide time signals and time dissemination services Report on the scientific work of the BIPM Time Section.

For any comment or query send a message to: tai@bipm.org

Leap seconds

Secondes intercalaires

Since 1 January 1988, the maintenance of International Atomic Time, TAI, and of Coordinated Universal Time, UTC (with the exception of decisions and announcements concerning leap seconds of UTC) has been the responsibility of the International Bureau of Weights and Measures (BIPM) under the authority of the International Committee for Weights and Measures (CIPM). The dates of leap seconds of UTC are decided and announced by the International Earth Rotation Service (IERS), which is responsible for the determination of Earth rotation parameters and the maintenance of the related celestial and terrestrial reference systems. The adjustments of UTC and the relationship between TAI and UTC are given in Tables 1 and 2 of this volume.

Depuis le 1^{er} janvier 1988, l'établissement du Temps atomique international, TAI, et du Temps universel coordonné, UTC, (à l'exception de l'annonce des secondes intercalaires de l'UTC) est placé sous la responsabilité du Bureau international des poids et mesures (BIPM) et du Comité international des poids et mesures (CIPM). Le choix des dates et l'annonce des secondes intercalaires de l'UTC constituent quelques-unes des missions du Service international de la rotation terrestre (IERS), qui est responsable de la détermination des paramètres de la rotation terrestre et de la conservation des systèmes de référence terrestre et céleste associés. Les ajustements de l'UTC et la relation entre le TAI et l'UTC sont donnés dans les tableaux 1 et 2 de ce volume.

Further information about leap seconds can be obtained from the IERS:

Des renseignements sur les secondes intercalaires peuvent être obtenus auprès de l'IERS à l'adresse suivante :

IERS Earth Orientation Product Center Dr Daniel GAMBIS Observatoire de Paris 61, avenue de l'Observatoire 75014 Paris, France

Telephone: + 33 1 40 51 22 26 Telefax: + 33 1 40 51 22 91 iers@obspm.fr http://hpiers.obspm.fr/ Anonymous ftp: hpiers.obspm.fr or 145.238.100.28

Establishment of International Atomic Time and of Coordinated Universal Time

1. Data and computation

International Atomic Time (TAI) and Coordinated Universal Time (UTC) are obtained from a combination of data from some 230 atomic clocks kept by about 65 laboratories spread worldwide. The data are regularly reported to the BIPM by about 50 timing centres which maintain a local UTC, UTC(k) (see Table 3).

The data are in the form of time differences [UTC(k) - Clock] taken at 5 day intervals at 0h UTC for Modified Julian Dates (MJD) ending in 4 and 9, at 0h UTC ; these dates are referred here as 'standard dates'. The equipment maintained by the timing centres is detailed in Table 4.

An iterative algorithm produces a free atomic time scale, EAL (Echelle Atomique Libre), defined as a weighted average of clock readings. The processing is carried out and subsequently treats one month blocks of data [1], [2] (two-month blocks were used before 1998). The weighting procedure and clock frequency prediction are chosen so that EAL is optimized for long-term stability. No attempt is made to ensure the conformity of the EAL scale interval with the second of the International System of Units.

2. Accuracy

The duration of the scale interval of EAL is evaluated by comparison with the data of primary caesium standards, correcting their proper frequency as needed to account for known effects (e.g. general relativity, blackbody radiation). TAI is then derived from EAL by adding a linear function of time with a convenient slope to ensure the accuracy of the TAI scale interval. The frequency offset between TAI and EAL is changed when necessary to maintain accuracy, the magnitude of the changes being of the same order as the frequency fluctuations resulting from the instability of EAL. This operation is referred to as the 'steering of TAI'. Table 5 gives the normalized frequency offsets between EAL and TAI. Measurements of the duration of the TAI scale interval and estimates of its mean duration are reported in Tables 6 and 7.

3. Availability

TAI and UTC are made available in the form of time differences with respect to the local time scales UTC(k), which approximate UTC, and TA(k), the independent local atomic time scales. These differences, [TAI - TA(k)] and [UTC - UTC(k)], are computed for the standard dates and are available from the BIPM website (see p. 5 of this volume).

The computation of TAI is carried out every month and the results are published monthly in *Circular T*. When preparing the Annual Report, the results shown in *Circular T* may be revised taking into account any subsequent improvements made to the data.

4. Time links

The BIPM organizes the international network of time links, which takes the form of local stars within a continent, joined by long-distance links (see Figure).

In 2002, the network of time links used by the BIPM was non-redundant and relied on observation of GPS satellites in common views and on two-way satellite time and frequency transfer (TWSTFT). Most

time links are based on GPS satellite common views. Nine TWSTFT links have been progressively introduced in the computation of TAI since July 1999; two TWSTFT European links (ROA/PTB and IEN/PTB) and three Asia-Pacific links (NMIJ/CRL; NTSC/CRL and TL/CRL) have been introduced in the computation of TAI during 2002. In all cases, the respective GPS links are calculated as a backup. All GPS links in TAI are corrected using the ionospheric maps and precise operational satellite ephemerides produced by the International GPS Service (IGS). The ultimate precision of one single measurement of [$UTC(k_1) - UTC(k_2)$], obtained at the BIPM with these procedures, is about 2 ns for short distances and 4 ns for long distances. The BIPM also publishes an evaluation of [UTC - GPS time] which is accessible via the BIPM website.

The BIPM regularly publishes an evaluation of [*UTC - GLONASS time*], also available from the BIPM website, using current observations of the GLONASS system at the NMi Van Swinden Laboratorium, the Netherlands.

International GPS tracking schedules are published by the BIPM about every six months, and tracking schedules for GLONASS are also established. The list of the schedules is reported in this volume and their content is available from the website (see p. 5 of this volume).

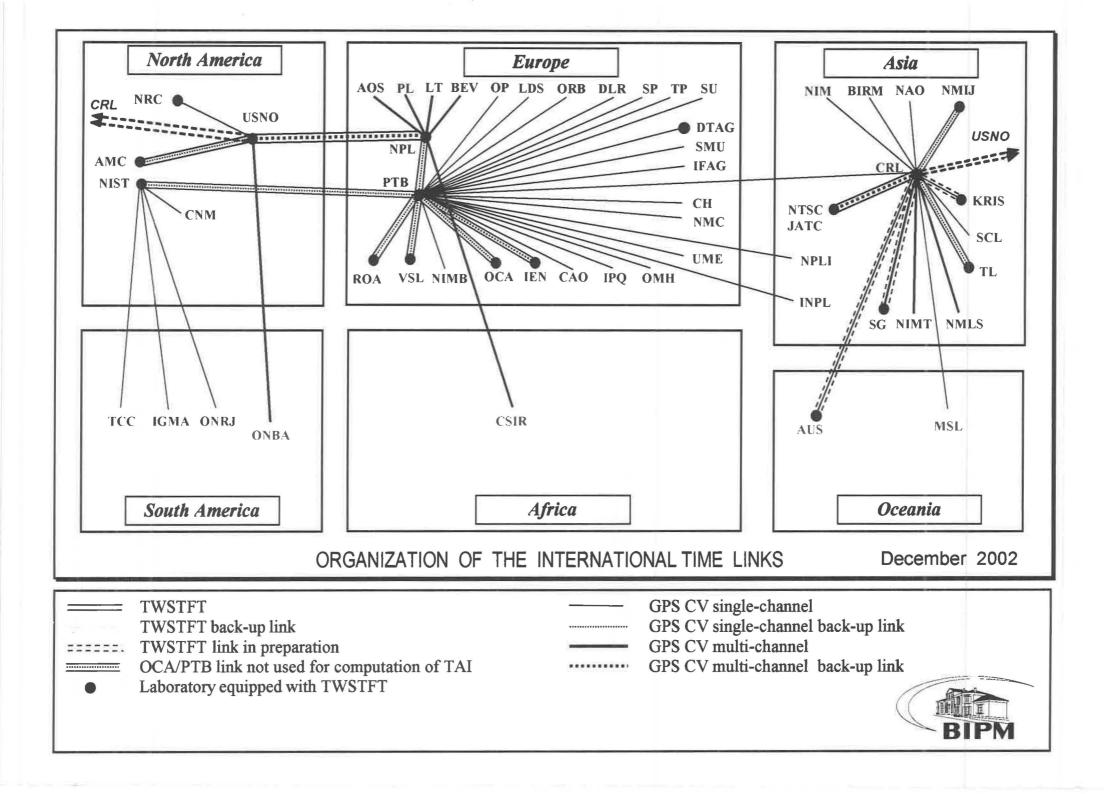
5. Time scales established in retrospect

For the most demanding applications, such as millisecond pulsar timing, the BIPM issues atomic time scales in retrospect. These are designated TT(BIPMxx) where 19xx or 20xx is the year of computation [3]. The successive versions of TT(BIPMxx) are both updates and revisions: they may differ for common dates. These time scales are available on request from the BIPM or via website (see p.5 of this volume).

Notes

Tables 8 and 9 of this report give the rates relative to TAI and the weights of the clocks contributing to TAI in 2002.

The yellow pages, at the end of this volume, give indications about time signal emissions and time dissemination services.


The report of the BIPM Time Section for the period July 2001- June 2002, published in the *Director's Report on the Activity and Management of the BIPM*, 2002, Tome 3 is reproduced after the yellow pages. All the publications mentioned in this report are available on request from the BIPM.

References

[1] C. Thomas and J. Azoubib, TAI computation : study of an alternative choice for implementing an upper limit of clock weights, *Metrologia*, 1996, **33**, 227-240.

[2] J. Azoubib, A revised way of fixing an upper limit to clock weights in TAI computation, *Report to the* 15th meeting of the CCTF, available on request.

[3] B. Guinot, Atomic time scales for pulsar studies and other demanding applications, *Astron. Astrophys.*, 1988, **192**, 370-373.

Etablissement du Temps atomique international et du Temps universel coordonné

1. Données et mode de calcul

Le Temps atomique international (TAI) et le Temps universel coordonné (UTC) sont obtenus par une combinaison de données provenant de quelque 230 horloges atomiques conservées par environ 65 laboratoires répartis dans le monde entier, et fournies régulièrement au BIPM par environ 50 laboratoires de temps qui maintiennent un UTC local, UTC(k) (liste donnée dans le tableau 3). Ces données prennent la forme de différences de temps [UTC(k) - Horloge] enregistrées de 5 jours en 5 jours pour les dates juliennes modifiées (MJD) se terminant par 4 et 9, à 0h UTC, 'dates normales'. L'équipement maintenu par ces laboratoires de temps est décrit dans le tableau 4.

Un algorithme itératif qui traite en temps différé des blocs de 1 mois de données [1], [2] produit une échelle atomique libre, EAL, définie comme étant une moyenne pondérée de lectures d'horloges (jusqu'en 1997 des blocs de deux mois étaient utilisés). Le choix de la pondération et du mode de prédiction de fréquence optimise la stabilité de l'EAL à long terme. Il n'est pas tenté d'assurer la conformité de l'intervalle unitaire de l'EAL avec la seconde du Système international d'unités.

2. Exactitude

La durée de l'intervalle unitaire de l'EAL est évaluée par comparaison aux données d'étalons de fréquence à césium primaires, après correction de leur propre fréquence pour tenir compte des effets connus (par exemple relativité générale, rayonnement du corps noir). Ensuite le TAI se déduit de l'EAL par l'addition d'une fonction linéaire du temps dont la pente est convenablement choisie pour assurer l'exactitude de l'intervalle unitaire du TAI. Le décalage de fréquence entre le TAI et l'EAL est changé quand c'est nécessaire pour maintenir l'exactitude, les changements ayant le même ordre de grandeur que les fluctuations de fréquence qui résultent de l'instabilité de l'EAL. Cette opération est désignée par l'expression 'pilotage du TAI'. Le tableau 5 donne les différences de fréquences normalisées entre l'EAL et le TAI. Des mesures de la durée de l'intervalle unitaire du TAI et des estimations de sa durée moyenne sont données dans les tableaux 6 et 7.

3. Disponibilité

Le TAI et l'UTC sont disponibles sous forme de différences de temps avec les échelles locales de temps UTC(k), approximation de l'UTC, et TA(k), temps atomique local indépendant. Ces différences, [TAI - TA(k)] et [UTC - UTC(k)], calculées pour les dates normales sont disponibles sur le site Internet du BIPM.

Le calcul du TAI est fait tous les mois et les résultats sont publiés mensuellement dans la Circulaire T du BIPM. Quand le Rapport annuel est préparé, les résultats de la Circulaire T peuvent être révisés, en tenant compte des améliorations de données connues après la publication de la Circulaire T.

4. Liaisons horaires

Le BIPM organise le réseau international de comparaisons horaires selon un schéma en étoile au niveau des continents, et en liaisons à longue distance. En 2002, le système des liaisons horaires utilisé par le BIPM était non-redondant et reposait sur l'observation des satellites du GPS en vues simultanées et sur la technique d'aller et retour sur satellite de télécommunications (TWSTFT). La plupart des liaisons se font par vues simultanées des satellites du GPS. Depuis Juillet 1999 neuf liaisons TWSTFT ont été progressivement introduites dans le calcul du TAI ; deux liaisons TWSTFT Européennes (ROA/PTB et IEN/PTB) et trois autres dans la région Asie-Pacifique (NMIJ/CRL, NTSC/CRL et TL/CRL) ont été introduites dans le calcul du TAI en 2002. Dans tous les cas, les respectives liaisons par le GPS sont calculées et sauvegardées. Toutes les liaisons GPS sont corrigées à l'aide des cartes ionosphériques et des éphémerides précises et opérationnelles des satellites produites par l'IGS . La précision ultime d'une mesure unique [UTC(k₁) - UTC(k₂)] est alors d'environ 2 ns pour les liaisons à courte distance et d'environ 4 ns pour les liaisons à longue distance. Le BIPM publie aussi une évaluation de [UTC - temps du GPS] dont les valeurs sont disponibles sur le réseau internet.

Le BIPM publie régulièrement une évaluation de [UTC - temps du GLONASS], accessible par anonymous ftp and sur le site web du BIPM et déduite des observations habituelles du système GLONASS, réalisées au NMi Van Swinden Laboratorium, Pays-Bas.

Le BIPM publie tous les six mois des programmes de poursuite des satellites du GPS, ainsi que des programmes pour les satellites du GLONASS. La liste de ces programmes est reproduite dans ce rapport et leur contenu est disponible sur le réseau internet.

5. Echelles de temps établies rétrospectivement

Pour les applications les plus exigeantes, comme le chronométrage des pulsars milliseconde, le BIPM produit des échelles de temps rétrospectivement, désignées par TT(BIPMxx), 19xx ou 20xx étant l'année du calcul [3]. Les versions successives de TT(BIPMxx) ne sont pas seulement des mises à jour, mais aussi des révisions, de sorte qu'elles peuvent différer pour les dates communes. Ces échelles de temps sont disponibles sur demande faite au BIPM ou par utilisation du réseau internet.

Notes

Les tableaux 8 et 9 de ce rapport donnent les fréquences relatives au TAI et les poids des horloges qui ont contribué au calcul en 2002.

Les pages jaunes, à la fin de ce volume, concernent les émissions de signaux horaires.

Le rapport (juillet 2001 - juin 2002) de la section du temps du BIPM publié dans le Rapport du directeur sur l'activité et la gestion du Bureau international des poids et mesures (BIPM), 2002,Tome 3, est reproduit après les pages jaunes. Toutes les publications qui y sont mentionnées sont disponibles sur demande au BIPM.

Les références sont données dans le texte anglais, page 9.

Da (at Ol	ate h UTC:)	Offsets	Step	s/s	
1961	Jan.		-150×10 ⁻¹⁰	0.050		
1961	Aug.	1		+0.050		
1962	Jan.	1	-130x10 ⁻¹⁰			
1963	Nov.	1	**	-0.100		
1964	Jan.	1	-150x10 ⁻¹⁰			
1964	Apr.	1	28	-0.100		
1964	Sep.	1		-0.100		
1965	Jan.	1		-0.100		
1965	Mar.	1		-0.100		
1965	Jul.	1	.0	-0.100		
1965	Sep.	1	**	-0.100		
1966	Jan.	1	-300x10 ⁻¹⁰			
1968	Feb.		"	+0.100		
1908	Jan.		0	-0.107	7580	
1972	Jul.			-1	7500	
1972	Jan.	1	п	-1		
1974	Jan.	1		-1		
1975	Jan.	1		-1		
1976	Jan.	1		-1		
1977	Jan.	1		-1		
1978	Jan,			-1		
1979	Jan.	1		-1		
1980	Jan.	1		-1		
1981	Jul.	1	1	-1		
1982	Jul.	1		-1		
1983	Jul.	1	.00	-1		
1985	Jul.			-1		
1988	Jan.	1		-1		
1990	Jan.	1		-1		
1991	Jan.	1		-1		
1992	Jul.	1		-1		
1993	Jul.	1		-1		
1994	Jul.	1		-1		
1996	Jan.	1		-1		
1997	Jul.	1		-1		
1999	Jan.	1		-1		

Table 1. Relative frequency offsets and step adjustments of UTC, up to 31 December 2003

Table 2. Relationship between TAI and UTC, up to December 2003

Limits of validity (at 0h UTC) [TAI - UTC] / s

1961	Jan. 1 - 1961	Aug. 1	1.422	8180	+	(MJD - 37300) x 0.001 296
1961	Aug. 1 - 1962	Jan. 1	1.372	8180	+	и и
1962	Jan. 1 - 1963	Nov. 1	1.845	8580	+	(MJD - 37665) x 0.001 1232
1963	Nov. 1 - 1964	Jan. 1	1.945	8580	+	11 TT
1964	Jan. 1 - 1964	Apr. 1	3.240	1300	+	(MJD - 38761) x 0.001 296
1964	Apr. 1 - 1964	Sep. 1	3.340	1300	+	
1964	Sep. 1 - 1965	Jan. 1	3.440	1300	+	
1965	Jan. 1 - 1965	Mar. 1	3.540	1300	+	
1965	Mar. 1 - 1965	Jul. 1	3.640	1300	+	.0
1965	Jul. 1 - 1965	Sep. 1	3.740			
1965	Sep. 1 - 1966	Jan. 1	3.840	1300	+	и и
1966	Jan. 1 - 1968	Feb. 1	4.313	1700	+	(MJD - 39126) x 0.002 592
1968	Feb. 1 - 1972					
1972	Jan. 1 - 1972					
1972	Jul. 1 - 1973		11			
1973	Jan. 1 - 1974		12			
1974	Jan. 1 - 1975		13			
1975	Jan. 1 - 1976		14			
1976	Jan. 1 - 1977		15			
1977	Jan. 1 - 1978		16			
1978	Jan. 1 - 1979		17			
1979	Jan. 1 - 1980		18			
1980	Jan. 1 - 1981		19			
1981	Jul. 1 - 1982		20			
1982	Jul. 1 - 1983		21			
1983	Jul. 1 - 1985		22			
1985	Jul. 1 - 1988		23			
1988	Jan. 1 - 1990		24			
1990	Jan. 1 - 1991		25			
1991						
1991 1992	Jan. 1 - 1992	Jul. 1	26			
1992	Jan. 1 - 1992 Jul. 1 - 1993	Jul. 1 Jul. 1	26 27			
1992 1993	Jan. 1 - 1992 Jul. 1 - 1993 Jul. 1 - 1994	Jul. 1 Jul. 1 Jul. 1	26 27 28			
1992 1993 1994	Jan. 1 - 1992 Jul. 1 - 1993 Jul. 1 - 1994 Jul. 1 - 1996	Jul. 1 Jul. 1 Jul. 1 Jan. 1	26 27 28 29			
1992 1993 1994 1996	Jan. 1 - 1992 Jul. 1 - 1993 Jul. 1 - 1994 Jul. 1 - 1996 Jan. 1 - 1997	Jul. 1 Jul. 1 Jul. 1 Jan. 1 Jul. 1	26 27 28 29 30			
1992 1993 1994	Jan. 1 - 1992 Jul. 1 - 1993 Jul. 1 - 1994 Jul. 1 - 1996	Jul. 1 Jul. 1 Jul. 1 Jan. 1 Jul. 1	26 27 28 29			

TABLE 3. ACRONYMS AND LOCATIONS OF THE TIMING CENTRES WHICH MAINTAIN A LOCAL APPROXIMATION OF UTC, UTC(K), AND/OR AN INDEPENDENT LOCAL TIME SCALE, TA(K)

1

AMC	Alternate Master Clock station, Colorado Springs, Colo., USA
AOS	Astrogeodynamical Observatory, Space Research Centre P.A.S.
APL	Borowiec, Poland Applied Physics Laboratory, Laurel, Mass., USA
AUS	Consortium of laboratories in Australia
BEV	Bundesamt für Eich- und Vermessungswesen, Vienna, Austria
BIRM	Beijing Institute of Radio Metrology and Measurement,
	Beijing, P. R. China
CAO	Stazione Astronomica di Cagliari (Cagliari Astronomical Observatory) Cagliari, Italy
СН	METrology and Accreditation Switzerland (METAS)
CNM	Centro Nacional de Metrología, Querétaro, Mexico
CRL	Communications Research Laboratory, Tokyo, Japan
CSIR	Council for Scientific and Industrial Research, Pretoria, South Africa
DLR	Deutsche Zentrum für Luft- und Raumfahrt (German Aerospace Centre)
	Oberpfaffenhofen, Germany
DTAG	Deutsche Telekom AG, Darmstadt, Germany
F	Commission Nationale de l'Heure, Paris, France
GUM	Główny Urząd Miar (Central Office of Measures), Warsaw, Poland
IEN	Istituto Elettrotecnico Nazionale Galileo Ferraris, Turin, Italy
IFAG	Bundesamt für Kartographie und Geodäsie (Federal Agency for Cartography and Geodesy),
	Fundamental station, Wettzell, Kötzting, Germany
IGMA	Instituto Geográfico Militar, Buenos Aires, Argentina
INPL	National Physical Laboratory, Jerusalem, Israel
IPQ	Institute Português da Qualidade, Monte de Caparica, Portugal.
JATC	Joint Atomic Time Commission, Lintong, P.R. China
JV	Justervesenet, Norwegian Metrology and Accreditation Service, Kjeller, Norway
KRIS	Korea Research Institute of Standards and Science, Daejeon, Rep. of Korea
LDS	University of Leeds, Leeds, United Kingdom
LT	Lithuanian National Metrology Institute, Vilnius, Lithuania
MSL	Measurement Standards Laboratory, Lower Hutt, New Zealand
NAO	National Astronomical Observatory, Misuzawa, Japan
NIM	National Institute of Metrology, Beijing, P.R. China
NIMB	National Institute of Metrology, Bucharest, Romania
NIMT	National Institute of Metrology, Bangkok, Thailand
NIST	National Institute of Standards and Technology, Boulder, Colo., USA
NMC	National Centre of Metrology, Sofiya, Bulgary
NMIJ	National Metrology Institute of Japan, Tsukuba, Japan
NML NMLS	National Measurement Laboratory, Sydney, Australia
UNIVIL'O	National Metrology Laboratory of SIRIM Berhad, Shah Alam, Malaysia

TABLE 3. ACRONYMS AND LOCATIONS OF THE TIMING CENTRES WHICH MAINTAIN A LOCAL APPROXIMATION OF UTC, UTC(K), AND/OR AN INDEPENDENT LOCAL TIME SCALE, TA(K) (CONT.)

NPL	National Physical Laboratory, Teddington, United Kingdom
NPLI	National Physical Laboratory, New Delhi, India
NRC	National Research Council of Canada, Ottawa, Canada
NTSC	National Time Service Center of China, Lintong, P.R. China
OMH	Országos Mérésügyi Hivatal (National Office of Measures)
	Budapest, Hungary
ONBA	Observatorio Naval, Buenos Aires, Argentina
ONRJ	Observatório Nacional, Rio de Janeiro, Brazil
OP	Observatoire de Paris (Paris Observatory), Paris, France
ORB	Observatoire Royal de Belgique (Royal Observatory of Belgium)
	Brussels, Belgium
PL	Consortium of laboratories in Poland
PTB	Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
ROA	Real Instituto y Observatorio de la Armada, San Fernando, Spain
SCL	Standards and Calibration Laboratory, Hong Kong
SG	Standards, Productivity and Innovation Board, Singapore
SMU	Slovenský metrologičký ústav (Slovak Institute of Metrology)
	Bratislava, Slovakia
SP	Sveriges Provnings- och Forskningsinstitut (Swedish National Testing
	and Research Institute), Borås, Sweden
SU	Institute of Metrology for Time and Space (IMVP), NPO "VNIIFTRI"
	Mendeleevo, Moscow Region, Russia
TCC	TIGO Concepción Chile
TL	Telecommunication Laboratories, Chung-Li, Taiwan
TP	Institute of Radio Engineering and Electronics, Academy of Sciences
	of the Czech Republic, Prague, Czech Republic
UME	Ulusai Metroloji Enstitüsü, Marmara Research Center,
	(National Metrology Institute), Gebze Kocaeli, Turkey
110110	
USNO	U.S. Naval Observatory, Washington D.C., USA

Note: Most of the timing centres in the table can be accessed through the BIPM web site, at "Useful links".

TABLE 4. EQUIPMENT AND SOURCE OF UTC(K) OF THE LABORATORIES CONTRIBUTING TO TAI IN 2002.

Ind. Cs : Industrial Cs standard

Lab. Cs : Laboratory Cs standard

H-maser : Hydrogen maser

* means 'yes'

Lab k	Equipment	Source of	TA(k)	Time Links			
		UTC(k) (1)		GPS	GLONASS	Two-Way	
AOS	1 Ind. Cs	1 Cs + micro- phase-stepper		*	*		
AUS	13 Ind. Cs 4 H-masers 1 Linear Ion Trap Standard (2)	1 Cs	*	*		*	
BEV	3 Ind. Cs 2 Ind. Rb	1 Cs		*			
BIRM (b)	2 Ind. Cs 2 H-masers	1 H-maser		*	*		
CAO	2 Ind. Cs	1 Cs		*			
СН	6 Ind. Cs (3)	all the Cs	*	*			
CNM	2 Ind. Cs	1 Cs		*			
CRL	18 Ind. Cs 1 Lab. Cs 3 H-masers	12 Cs	*	*	*	*	
DTAG	3 Ind. Cs	1 Cs		*			
IEN	5 Ind. Cs	1 Cs + micro- phase-stepper	*	*	*	*	
IFAG	5 Ind. Cs 3 H-masers	1 Cs + micro- phase-stepper		*			
IGMA	3 Ind. Cs	1 Cs + micro- phase-stepper		* (a)			

TABLE 4. EQUIPMENT AND SOURCE OF UTC(K)... (CONT.)

Ind. Cs : Industrial Cs standard

Lab. Cs : Laboratory Cs standard

H-maser : Hydrogen maser

* means 'yes'

Lab k	Equipment	Source of	TA(k)		Time Links	
		UTC(k) (1)		GPS	GLONASS	Two-Way
INPL	3 Ind. Cs	1 Cs		*		
JATC	6 Ind. Cs (4)	1 Cs + micro- phase-stepper	*	*	*	*
KRIS	4 Ind. Cs 1 H-maser	1 Cs + micro- phase-stepper	*	*	*	
LDS	1 Ind. Cs	1 Cs		*	*	
LT	1 Ind. Cs	1 Cs		*		_
MSL	3 Ind. Cs	1 Cs		*	*	
NAO	4 Ind. Cs 1 H-maser	1 Cs + micro- phase-stepper		*		
NIM (b)	3 Ind. Cs	1 Cs + micro- phase-stepper		*		
NIMB (5)	Ind. Cs	1 Cs		* (a)		
NIMT	1 Ind. Cs	1 Cs		*		
NIST	20 Ind. Cs 2 Lab. Cs 5 H-masers	11 Cs 5 H-maser	*	*	*	*
NMC	1 Ind. Cs	1 Cs		* (a)		
NMIJ	4 Ind. Cs 1 Lab. Cs 2 H-masers	1 Cs		*	*	*

TABLE 4. EQUIPMENT AND SOURCE OF UTC(K)... (CONT.)

Ind. Cs : Industrial Cs standard

Lab. Cs : Laboratory Cs standard

H-maser : Hydrogen maser

* means 'yes'

.

Lab k	Equipment	Source of	TA(k)	Time Links			
		UTC(k) (1)		GPS	GLONASS	Two-Way	
NMLS (6)	5 Ind. Cs	1 Cs		*	*		
NPL	3 Ind. Cs 2 H-masers	1 H-maser		*		*	
NPLI (b)	3 Ind. Cs	1 Cs		*	*		
NRC	2 Ind. Cs 3 Lab. Cs 2 H-masers	1 Lab. Cs + micro-phase- stepper (7)	*	*		*	
NTSC (8)	6 Ind. Cs	all the Cs	*	*	*	*	
омн	1 Ind. Cs	1 Cs		*			
ONBA	2 Ind. Cs	1 Cs + micro- phase-stepper		*			
ONRJ	3 Ind. Cs	1 Cs		*			
OP	6 Ind. Cs 3 Lab. Cs 2 H-masers	1 Cs + micro- phase-stepper	* (9)	*			
ORB	3 Ind. Cs 2 H-masers	1 H-maser		*			
PL (10)	6 Ind. Cs	1 Cs	*	*			
РТВ	3 Ind. Cs 3 Lab. Cs (11) 3 H-masers	1 Lab. Cs	* (12)	*		*	
ROA	5 Ind. Cs	all the Cs		*		*	

TABLE 4. EQUIPMENT AND SOURCE OF UTC(K)... (CONT.)

Ind. Cs : Industrial Cs standard

Lab. Cs : Laboratory Cs standard

H-maser : Hydrogen maser

* means 'yes'

Lab k	Equipment	Source of	TA(k)	Time Links			
		UTC(k) (1)		GPS	GLONASS	Two-Way	
SCL	2 Ind. Cs	1 Cs + micro- phase-stepper		*			
SG (13)	3 Ind. Cs	1 Cs + micro- phase-stepper		*			
SMU	1 Ind. Cs	1 Cs		*			
SP	6 Ind. Cs 1 H-maser (14)	1 Cs + micro- phase-stepper		*			
SU	1 Lab. Cs 10 H-masers	6 H-masers	* (15)	*	*		
TCC (16)	2 Ind. Cs 2 H-masers	1 Cs		*			
TL (b)	5 Ind. Cs 2 H-masers	1 Cs + micro- phase-stepper		*	*	*	
ТР	4 Ind. Cs	1 Cs + output frequency steering		*			
UME	3 Ind. Cs	1 Cs		*			
USNO	71 Ind. Cs 16 H-masers	UTC(USNO,MC) is an H-maser + frequency synthesizer steered to UTC(USNO) (17)	* (17)	*	*	*	
VSL	4 Ind. Cs	1 Cs + micro- phase-stepper		*	*	*	

NOTES

(1) When several clocks are indicated as source of UTC(k), laboratory k computes a software clock, steered to UTC. Often a physical realization of UTC(k) is obtained using a Cs clock and a micro-phasestepper.

(2) AUS	Some of the standards are located as follows (at the end of 2002) * National Measurement Laboratory (NML, Sydney) Australian laboratories intercompared by GPS are: * National Measurement Laboratory Melbourne branch (NMLMEL, Melbourne) * Canberra Deep Space Communication Complex (CDSCC, Canberra) * Telstra Corporation Ltd (TELSTRA, Melbourne) * Australian Defence Force Calibration Laboratory (ADF, Sydney) * Australian Land Information Group, Yarragadee Observatory (Yarragadee, Western Australia) Australian laboratories intercompared by TV are: * VMS International (Sydney)	 4 Cs, 2 H-masers. 1 Cs, 1 Cs, 2 H-masers, 1 Linear Ion Trap Standard (LITS) 4 Cs,
	The standards are leasted as follows (at the and of 2002).	
(3) CH	The standards are located as follows (at the end of 2002): * METrology and Accreditation Switzerland (METAS, Bern) * Observatoire de Neuchâtel (ON, Neuchâtel) They are intercompared by GPS (METAS) and linked to the foreig METrology and Accreditation Switzerland.	5 Cs, 1 Cs, gn laboratories through the
(4) JATC	The standards are located at National Time Service Center, (NTS UTC(JATC) and UTC(NTSC) is obtained by internal connection.	C). The link between
(5) NIMB	National Institute of Metrology, Bucharest, Romania	
(6) NMLS	National Metrology Laboratory of SIRIM, Berhard, Malaysia.	
(7) NRC	In 2002, UTC(NRC) was derived from NRC Cs VI A	
(8) NTSC	National Time Service Center, NTSC formerly CSAO.	
(9) OP	The French atomic time scale TA(F) is computed by the BNM-SY industrial caesium clocks located as follows (at the end of 2002) : * Centre Electronique de l'Armement (CELAR, Rennes) * Centre National d'Etudes Spatiales (CNES, Toulouse) * France Telecom Recherche et Developpement (Lannion) * Agilent (Massy) * Observatoire de la Côte d'Azur (OCA, Grasse) * Observatoire de Paris (BNM-SYRTE, Paris) * Observatoire de Besançon (OB, Besançon) * Tekelec Technologies (TKL, Les Ulis, Paris) * Direction des Constructions Navales (DCN, Brest) All laboratories are linked via GPS receivers	

NOTES (CONT.)

(10) PL	 Stands for a consortium of Polish time laboratories: * Główny Urząd Miar (Central Office of Measures) (GUM, Warsaw) * Astrogeodynamical Observatory, Space Research Centre P.A.S (AOS, Borowiec) * Instytut Łączności (Institute of Telecommunications) (IŁ, Warsaw) * Centrum Badawczo-Rozwojowe TPSA (Research & Development Centre of the Polish Telecom) (CBR, Warsaw) 	3 Cs 1 Cs 1 Cs 1 Cs
	An independent atomic time scale TA(PL) has been computed by GUM, w caesium clocks: the six above and additionally: * Time and Frequency Standard Laboratory of the Semiconductor	ith data from Industrial
	Physics Institute (LT, Vilnius, Lithuania)	1 Cs
(11) PTB.	The laboratory Cs, PTB CS1, PTB CS2 and PTB CS3, are operated contin PTB CS3 is no longer evaluated as a primary clock and contributes to EAL commercial clock . PTB CS4 is practically no longer useful and will not be	only like any maintained.
	PTB CSF1 is a fountain frequency standard using laser cooled caesium a intermittently operated as a frequency standard. Contributions to TAI are m	
	comparisons with one of PTB's hydrogen masers. Until further notice, TA(PTB) and UTC(PTB) are derived from PTB CS2, TAUTC(PTB) including steering.	
(12) PTB.	TA(PTB)-UTC(PTB) is published in PTB Time Service Bulletin.	
(13) SG.	Standards, Productivity and Innovation Board (Singapore) formerly PSB	
(14) SP.	The standards are located as follows (at the end of 2002): * Swedish National Testing and Research Institute (SP, Boras) * STUPI AB (Stockholm) * Pendulum Instruments AB (Stockholm)	4 Cs, 1 Cs, 1 Cs,
	* Onsala Space Observatory (Onsala)	1 H-maser.
(15) SU.	<i>TA</i> (<i>SU</i>)- <i>UTC</i> (<i>SU</i>) = 29.172 759 000 s from 52275 to 52639	
(16) TCC.	TIGO Concepción Chile	

- (17) USNO. The time scales A.1(MEAN) and UTC(USNO) are computed by USNO. They are determined by a weighted average of Cs clocks and H-masers located at the USNO. A.1(MEAN) is a free atomic time scale, while UTC(USNO) is steered to UTC. Included in the total number of USNO atomic standards are the clocks located at the USNO Alternate Master Clock in Colorado Springs, CO.
- (a) GPS link via local restitution of GPS time.
- (b) Information based on the Annual Report for 2001, not confirmed by the laboratory.

Table 5. Differences between the normalized frequencies of EAL and TAI, up to May 2003

(File available on http://www.bipm.org under the name EALTAI02.AR, which contains values since the beginning of the steering)

Date	MJD	$[f(EAL) - f(TAI)] \times 10^{-13}$
1989Jun221989Dec291989Dec291990Feb271990Feb271990Apr281990Apr281990Jun271990Jun271990Jun271990Jun271990Aug261990Aug261991Feb221991Feb221991Apr231991Apr231991Aug311991Aug311991Oct301991Apr231992Apr271992Apr271992Apr271992Apr271992Jun261992Jun261993Apr221993Apr221995Feb211995Feb211995Apr221995Apr221995Jun21	47699-4788947889-4794947949-4800948009-4806948069-4812948129-4830948309-4836948369-4836948369-4855948559-4873948739-4879948799-4909948799-4909949099-4976949829-49889	7.95 7.90 7.85 7.80 7.75 7.70 7.625 7.55 7.50 7.45 7.40 7.35 7.40 7.39 7.38
1995 Jun 21 - 1995 Aug 30 1995 Aug 30 - 1995 Oct 29	49889 - 49959	7.37
Date1989Jun 221989Dec 291989Dec 291990Feb 271990Feb 271990Apr 281990Apr 281990Jun 271990Jun 271990Aug 261991Feb 221991Feb 221991Feb 221991Apr 231991Apr 231991Aug 311991Aug 311991Oct 301991Aug 311991Oct 301992Apr 271992Apr 221993Apr 221995Feb 211995Feb 211995Apr 221995Apr 201995Apr 2619961995Apr 2619961996Apr 2619961996Aug 2919971996Act 2819961997Apr 2619971996Act 2819971997Apr 2619971997Apr 2719981997Apr 2619971997Apr 2719981997Apr 2819971997Apr 2719981997Apr 271998Apr 271999Feb 251999 <td< td=""><td>52029 - 52119 52119 - 52179 52179 - 52239 52239 - 52304 52304 - 52364 52364 - 52424</td><td>7.080 7.070 7.060 7.050 7.040 7.030</td></td<>	52029 - 52119 52119 - 52179 52179 - 52239 52239 - 52304 52304 - 52364 52364 - 52424	7.080 7.070 7.060 7.050 7.040 7.030
2002 Jun 30 - 2002 Jul 29 2002 Jul 29 - 2002 Sep 27 2002 Sep 27 - 2002 Nov 26 2002 Nov 26 - 2003 Jan 30 2003 Jan 30 - 2003 Mar 31 2003 Mar 31 - 2003 May 30	52424 - 52484 52484 - 52544 52544 - 52604 52604 - 52669 52669 - 52729 52729 - 52789	7.020 7.010 7.000 6.990 6.980 6.970

As the time scales UTC and TAI differ by an integral number of seconds (see Tables 1 and 2), UTC is necessarily subjected to the same intentional frequency adjustment as TAI.

Table 6. Measurements of the duration of the TAI scale interval

(File available on http://www.bipm.org under the name UTAI02.AR)

TAI is a realization of coordinate time TT. The following tables give the fractional deviation d of the scale interval of TAI from that of TT (in practice the SI second on the geoid), i.e. the fractional frequency deviation of TAI with the opposite sign: $d = -y_{TAI}$.

In this table, *d* is obtained on the given periods of estimation by comparison of the TAI frequency with that of the individual primary frequency standards (PFS) CRL-O1, NIST-F1, PTB CS1, PTB CS2, PTB CSF1, SYRTE-FO2, SYRTE-FOM, and SYRTE-JPO for the year 2002.

Previous calibrations are available in the successive annual reports of the BIPM Time Section volumes 1 to 14.

Each comparison is provided with the following information:

 $u_{\rm B}$ is the combined uncertainty from systematic effects,

 $\tilde{Ref}(u_{\rm B})$ is a reference giving information on the stated value of $u_{\rm B}$,

u_A is the uncertainty originating in the instability of the PFS,

 $u_{\rm link/lab}$ is the uncertainty in the link between the PFS and the clock participating to TAI, including the uncertainty due to dead-time,

 $u_{\text{link/TAI}}$ is the uncertainty in the link to TAI,

u is the quadratic sum of all four uncertainty values.

In this table, a frequency over a time interval is defined as the ratio of the endpoint phase difference to the duration of the interval.

The typical characteristics of the calibrations of the TAI frequency provided by the different primary standards over 2002 are indicated below.

Primary	Туре	Typical type B	Operation	Comparison	Typical duration
Standard	/selection	std. uncertainty		with	of comparison
CRL-01	Beam /Opt.	4x10 ^{.15}	Discontinuous	UTC(CRL)	10 d
NIST-F1	Fountain	1x10 ⁻¹⁵	Discontinuous	H maser	30 d
PTB CS1	Beam /Mag.	8x10 ⁻¹⁵	Continuous	TAI	30 d
PTB CS2	Beam /Mag.	12x10 ⁻¹⁵	Continuous	TAI	30 d
PTB CSF1	Fountain	1x10 ⁻¹⁵	Discontinuous	H maser	15 to 30 d
SYRTE-F02	Fountain	1x10 ⁻¹⁵	Discontinuous	H maser	5 to 15 d
SYRTE - FOM	Fountain	1x10 ⁻¹⁵	Discontinuous	H maser	30 d
SYRTE - JPO	Beam /Opt.	8x10 ^{·15}	Discontinuous	H maser	30 d

More detailed information on the characteristics and operation of individual PFS may be found in the annexes supplied by the individual laboratories.

Standard	Period of estimation	d (10 ^{.15})	U _B (10 ⁻¹⁵)	Ref(<i>u</i> _B)			U _{link/TAI} (10 ⁻¹⁵)		u (10 ^{.15})
CRL-01 CRL-01	52469-52479 52569-52579		3.9 3.9	[1]	8.4 5.0	0.8 0.8	3. 3.		9.8 7.1
NIST-F1 NIST-F1	52304-52329 52514-52544		0.6 0.9	[2]	$\begin{array}{c} 1.1\\ 1.1\end{array}$	0.3 0.5	1.2 1.0		1.8 1.8
PTB CS1 PTB CS1	52274-52304 52304-52329 52329-52364 52364-52394 52394-52424 52424-52454 52454-52484 52484-52514 52514-52544 52544-52574 52574-52604 52604 52630	+2.2 +3.7 +2.0 +3.3 -1.7 +5.8 -0.4 -1.6 4.7 -1.8	8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	[3]	5. 5. 5. 5. 5. 5. 5. 5. 5.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(1)	9. 9. 9. 9. 9. 9. 9. 9. 9.
PTB CS1 PTB CS2 PTB CS2	52604-52639 52274-52304 52304-52329 52329-52364 52364-52394 52394-52424 52454-52424 52454-52484 52454-52514 52514-52544 52544-52574 52574-52604 52604-52639	+2.6 +7.8 +10.0 +4.3 +9.1 +1.4 +1.6 +6.9 +9.9 +7.8	 8. 12. 	[4]	5. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	(1)	9. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12
PTB CSF1 PTB CSF1	52329 - 52354 52384 - 52409 52454 - 52474 52604 - 52619	+10.7 +13.6	1.0 0.9	[5]	1.0 1.0 1.0 1.0	0. 0.	1.2 1.2 1.5 2.0		1.9 1.9 2.0 2.4
	52579-52584 52604-52619		0.8 0.8	[6]	0.6 0.4		6.0 2.0	(2)	6.5 2.6
	52564-52594 52609-52639		0.8 8.0	[6] [7]	0.2	1.6 0.3		(2) (3)	2.1 8.2
JINIE-JFU	32003-32033	·14.J	0.0	L / J	1.7	0.5	1.0	(0)	0.1

Notes:

- (1) Continuously operating as a clock participating to TAL
- (2) BNM-SYRTE atomic Caesium fountain.
- (3) Previously reported as LPTF-JPO.

References:

- [1] The evaluation procedure the type B uncertainty of CRL-O1 is based on that of NIST-7: Lee W.D. et al., *IEEE Trans. IM*-44, 120, 1995.
- [2] Jefferts S.R. et al., Metrologia 39-, 321, 2002.
- [3] Bauch A. et al., Metrologia 35, 829, 1998.
- [4] Bauch A. et al., IEEE Trans. IM-36, 613, 1987.
- [5] Weyers S. et al., Metrologia 38-4, 343, 2001.
- [6] Marion H. et al. Phys. Rev. Lett., 90, 150801, 2003.
- [7] Makdissi A. and de Clercq E., Metrologia 38-5, 409 2001.

Operation of the BNM-SYRTE primary clocks in 2002

Uncertainty budget for uB

In 2002 the fountains clocks FO2 and FOM and caesium beam clock JPO were operated intermittently. New evaluations of relative frequency uncertainties u_B were measured. Systematic effects shifting the frequency of the fountains are listed in Table I for FO2 with Cs and Table II for FOM and see ref[4] for JPO.

Physical origin	Bias 10 ⁻¹⁶	Uncertainty 10 ⁻¹⁶	
2 nd order Zeeman	1773.0	+/- 5.2	
Blackbody Radiation	-173.0	+/- 2.3	
Cold Collisions + cavity pulling	-95.0	+/- 4.6	
others	0.0	+/- 3.0	
Totale (1 σ) uncertainty u_{R}		8	

Table I : Accuracy budget of the FO2-CS fountain involved in the 2002 measurements.

Physical origin	Bias 10 ⁻¹⁶	Uncertainty 10 ⁻¹⁶	
2 nd order Zeeman Blackbody Radiation	351.9 -191.0	+/- 2.4 +/- 2.5	
Cold Collisions + cavity pulling	-34.0	+/- 5.8	
others Totale (1 σ) uncertainty $u_{\scriptscriptstyle B}$	0.0	+/- 3.7	

Table II : Accuracy budget of the FOM fountain involved in the 2002 measurements.

Evaluation of uA

The short-term frequency instability of the fountain clocks were evaluated throughout 2002 by comparison with an active H maser. Experimentally, the relative frequency stability for FO2 and FOM was measured to $\sigma_v(\tau) = 1,1 \ 10^{-13} \tau^{-1/2}$ and $\sigma_v(\tau) = 1,7 \ 10^{-13} \tau^{-1/2}$ respectively.

Evaluation of ul/lab

The uncertainty due to the H maser link lab for FO2 or FOM was evaluated to $0,1 \ 10^{-15}$ and dead times uncertainties were included in ul/lab for each fountain clocks measurements.

References

- H. Marion, F. Pereira Dos Santos, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic, D. Calonico, J. Grünert, C. Mandache, P. Lemonde. G. Santarelli, Ph. Laurent and A.Clairon BNM-SYRTE, C. Salomon, LKB, Search for Variations of Fundamental Constants using Atomic Fountains Clocks, Phys. Rev. Lett. Vol. 90 number 15, 2003.
- 2 F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, and A. Clairon BNM-SYRTE, Observatoire de Paris, C. Salomon LKB, Controlling the Cold Collision Shift in High Precision Atomic Interferometry, Phys. Rev. Letter, Vol. 89 number 23, 2002.
- S. Bize, Y. Sortais, M. Abgrall, S. Zhang, D. Calonico, C. Mandache, P. Lemonde, P. Laurent, G. Santarelli, C. Salomon, A. Clairon BNM-SYRTE, Observatoire de Paris, A. Luiten, M. Tobar Phys. Dep. University of Western Australia, Needlands, Cs and Rb Fountains : Recent Results, Proceedings of the 6th Symposium Frequency Standards and Metrology (2001).
- 4 A. Makdissi and E. de Clercq BNM-SYRTE observatoire de Paris, Evaluation of the accuracy of the optically pumped caesium beam primary frequency standard of BNM-LPTF, Metrologia 2001.

Status of CRL-O1 in 2002

CRL-O1 is an optically pumped primary frequency standard. It has been developed under the cooperation between CRL Japan and NIST US. Its design is based on NIST 7 [1, 2]. It has been operational since April 2000. Now we are preparing a paper on the accuracy evaluation of this standard [3].

Physical Effect	Bias (10 ⁻¹⁵)	Uncertainty (10 ⁻¹⁵)
Second-order Doppler	δv _D ~-300	2
Second-order Zeeman	$\delta v_{QZ} \sim +1.5 \times 10^5$	0.2
Cavity pulling	δν _C ~0	0.6
Cavity phase (end-to-end)	δν _E ~±150	0.2
Blackbody	δν _B ~-19.5	0.5
Gravitation	δv _G ~8.2	0.1
Uncorrected biases	0	3.4
Combined type B U	≤4.0	

Table 1: Uncertainty budget for uB

Effect	Uncertainty (10 ⁻¹⁵)
Magnetic Field Inhomogenei	ty 0.03
Rabi Pulling	0.02
Ramsey Pulling	0.002
Bloch-Siegert Shift	0.3
Fluorescent Light Shift	0.5
Majorana Transitions	1.3
Collisions	1.6
Beam Flux Variation	0.1
Microwave Leakage	1.0
DC Stark Shift	0.01
Spectral Purity	0.1
Modulation Synchronous Effects	
Detector/Demodulator	
AM on Laser	1.0
Switching Transients	2.0
Combined Type B Uncert	tainty 3.4

Table 2: Details on the uncertainty of uncorrected biases

References

[1] Lee W. D., Shirley J. H., Lowe J. P., Drullinger R. E., IEEE Trans. Instrum. Meas., Vol.44, No.2, pp.120-123 Apr. 1995.

[2] Shirley J. H., Lee W. D., Drullinger R. E., Metrologia, 2001, 38, 427-458.

[3] A. Hasegawa et al., to be submitted to Metrologia.

Operation of NIST-F1 in 2002

NIST-F1, the Cs fountain primary frequency standard at the National Institute of Standards and Technology (NIST), has been in operation since November 1998 [1], and the first formal report to the BIPM was made in November 1999 [2]. During a formal evaluation the frequency of one of the hydrogen masers at NIST is measured by NIST-F1 and the results, along with all relevant uncertainties, are reported to the BIPM. NIST-F1 is not operated as a clock and is run only intermittently. The standard is constantly evolving, and both hardware and software improvements are continually being made. In some formal evaluations we have used a range of atom densities along with a least squares fit to determine the frequency at zero density. However, if no major changes have been made to the fountain since the previous evaluation, we may make mainly low density measurements and use the previous slope, along with any new high density data, to perform an extrapolation to zero density. The typical frequency shift from the lowest measured density to zero density is on the order of 1x10⁻¹⁵. Each formal evaluation also includes a magnetic field map, and a check of such things as microwave leakage and light leaks.

NIST operates an ensemble of five active, cavity tuned hydrogen masers. This provides a very stable frequency reference, which allows us to accurately characterize the performance of the reference maser. With this information, and the fact that the masers are quite stable, we can tolerate a relatively large amount of fountain dead time [3, 4]. This allows us to use longer evaluation intervals in order to reduce the frequency uncertainty introduced by the noise in transferring the result to TAI. Frequency noise in the NIST internal measurement system has an uncertainty well under 1×10^{-16} , and therefore the uncertainty introduced by the dead time dominates the value of $u_{tink/lab}$, which ranged from 3×10^{-16} to 5×10^{-16} in 2002.

The year 2002 was a difficult year for the fountain. Four formal evaluations were attempted, but only two (February and August) were successful. Among the problems that had to be addressed were an intermittent failure in the microwave synthesizer that required the addition of a monitoring system, the repump laser had to be replaced twice, the cesium oven and a vacuum pump had to be replaced, and the optical power amplifier failed and was replaced with a Ti-Sapphire laser. However, a number of improvements were also made. These include the microwave monitoring system, new software, a detection system light level servo, new detection windows, and improvements to the vacuum system. Improvements in run time continued, with the February run reaching 90%. The August run was hampered because the fountain was running out of Cs. The combined uncertainty was 1.29×10^{-15} for the February run, with the statistical uncertainty, u_A, being equal to 1.11×10^{-15} , and the systematic uncertainty, u_B, being equal to 0.65×10^{-15} . The significant contributors to the systematic uncertainty in the February evaluation were; spin exchange at 4.8×10^{-16} , blackbody shift at 3×10^{-16} , fluorescent light shift and microwave leakage at 2×10^{-16} , and Zeeman and gravitation shift at 1×10^{-16} .

REFERENCES

- 1 S.R. Jefferts, D.M. Meekhof, J.H. Shirley, T. E. Parker and F. Levi, "Preliminary Accuracy Evaluation of a Cesium Fountain Primary Frequency Standard at NIST," *in Proc.* 1999 Joint Meeting of European Freq. and Time Forum and IEEE International Freq. Control Symp., pp 12-15, 1999.
- 2 S.R. Jefferts, D.M. Meekhof, J.H. Shirley, T.E. Parker, C. Nelson, F. Levi, T.P. Heavner, G. Costanzo, A. DeMarchi, R.E Drullinger, L.W. Hollberg, W.D. Lee, and F.L. Walls, "Accuracy Evaluation of NIST-F1," *Metrologia*, vol. 39, pp 321-336, 2002.
- 3 T.E. Parker, D.A. Howe and M. Weiss, "Accurate Frequency Comparisons at the 1x10⁻¹⁵ Level," in Proc. 1998 IEEE International Freq. Control Symp., pp 265-272, 1998.
- 4 R.J. Douglas and J.S. Boulanger, "Standard Uncertainty for Average Frequency Traceability," in Proc. 11th European Freq. and Time Forum., pp 345-349, 1997.

Operation of the PTB primary clocks in 2002

PTB's primary clocks with a thermal beam

In 2002, the PTB CS1 and CS2 were in continuous clock operation without any modification or disturbance. Their operation parameters were checked regularly, beam reversals were performed. No indications were found calling for a modification of the previously stated relative frequency uncertainties, $u_{\rm B}$, which are $8 \cdot 10^{-15}$ and $12 \cdot 10^{-15}$ for CS1 and CS2, respectively [1]. The short-term frequency instability of the clocks was evaluated throughout 2002 by comparison with an active hydrogen maser. The average instability, $\sigma_y(\tau=1h)$, of $78 \cdot 10^{-15}$ and of $66 \cdot 10^{-15}$, of CS1 and CS2, respectively, was in good agreement with the expectations which are based on signal strength, linewidth, and detector noise. A slight deviation from purely white frequency noise at long averaging times is observed in CS1, explaining the uncertainty $u_{\rm A}(\tau=30d, \text{CS1})$ of $5 \cdot 10^{-15}$, whereas $u_{\rm A}(\tau=30d, \text{CS2}) = 3 \cdot 10^{-15}$ is assumed. CS1 and CS2 are operated continuously, and time differences UTC(PTB)-clock in the standard ALGOS format are reported so that $u_{\rm Hab}$ is zero.

PTB's caesium fountain clock CSF1

The CSF1, was operated intermittently, but on more than 340 days in 2002. The u_B contributions given in the table [3] reflect standard operation conditions which are fulfilled when the TAI scale unit is compared to the CSF1 second. They use to be slightly larger when the CSF1 is operated in an experimental mode, e. g. when a larger than the standard atom number is used.

Physical origin	Correction [10 ⁻¹⁵]	Uncertainty [10 ⁻¹⁵]
C-field	-46.2	< 0.1
Collisional shift	5.8	< 0.7
Blackbody shift	16.6	0.2
First-order Doppler effect		0.5
Majorana transition		< 0.1
Rabi-pulling	2 ×	< 0.1
Ramsey-pulling		< 0.1
Microwave leakage	9	0.2
Microwave spectral impurities,	9	0.2
Electronics	÷	0.2
Light shift	÷	0.1
Other collisions		
Total 1 σ uncertainty $u_{\rm B}$		1.0

The CSF1 frequency instability was typically $\sigma_y(\tau=1h) = 3,5\cdot10^{-15}$ during the four periods of routine operation in 2002. Frequency differences of the kind y(CSF1 - HM) for averaging times of 15 or 20 days in between standard dates were reported, in parallel with time differences UTC(PTB) - HM in ALGOS format. HM is one of the hydrogen masers available at PTB. $u_A(\tau=15d, CSF1)$ is conservatively estimated as $1\cdot10^{-15}$, $u_{I/lab}$ is negligible.

References

 Heindorff T., Bauch A., Hetzel P., Petit G., Weyers S., Metrologia, 2001, 38, 497-502
 Weyers S., Hübner U., Schröder R., Tamm Chr., Bauch A., Metrologia, 2001, 38, 343-352
 Weyers S., Bauch A., Schröder R., Tamm Chr., Proc. of Symp. Frequ. Stand. and Metrol., St. Andrews, Sept. 2001, World Scientific (2002), 64-71.

Table 7. Mean fractional deviation of the TAI scale interval from that of TT

(File available on http://www.bipm.org under the name SITAI02.AR)

The fractional deviation d of the scale interval of TAI from that of TT (in practice the SI second on the geoid), and its relative uncertainty, are computed by the BIPM for all the intervals of computation of TAI, according to the method described in 'Azoubib J., Granveaud M., Guinot B., Metrologia 13, 1977, pp. 87-93', using all available measurements from the most accurate primary frequency standards CRL-O1, NIST-7, NIST-F1, NRLM-4, PTB CS1, PTB CS2, PTB CS3, PTB CSF1, SYRTE-FO2, SYRTE-FOM and SYRTE-JPO consistently corrected for the black-body radiation shift.

In this computation, a model for the instability of EAL is needed. Starting in 1998, it has been expressed as the quadratic sum of three components: a white frequency noise $6.0 \times 10^{-15} / \sqrt{(\tau)}$, a flicker frequency noise 0.6×10^{-15} and a random walk frequency noise $1.6 \times 10^{-16} \times \sqrt{(\tau)}$, with τ in days. The relation between EAL and TAI is given in Table 5.

Month	Interval	d/10 ⁻¹⁵	uncertainty/10 ^{.15}
Jan. 2000	51539-51574	+4.5	2.1
	51574-51599		1.7
	51599-51634		1.9
Apr. 2000	51634-51664		
	51664-51694		
Jun. 2000	51694-51724	+6.2	2.1
Jul. 2000	51724-51754	+6.6	2.0
Aug. 2000	51754-51784	+7.4	1.4
Sep. 2000	51784-51814	+7.1	1.5
Oct. 2000	51814-51844		
Nov. 2000	51844-51874	+7.4	1.7
Dec. 2000	51874-51909	+5.4	1.8
Jan. 2001	51909-51939	+5.5	2.0
Feb. 2001	51939-51964	+4.8	1.5
Mar. 2001	51964-51999	+5.7	1.8
Apr. 2001	51999-52029	+6.6	1.6
	52029-52059		
Jun. 2001	52059-52089		
Jul. 2001	52089-52119	+8.9	1.2
Aug. 2001	52119-52149	+8.4	1.6
Sep. 2001	52149-52179	+9.2	1.4
	52179-52209		1.7
Nov. 2001	52209-52239	+10.2	1.1
Dec. 2001	52239-52274	+9.3	1.7
	52274-52304		
Feb. 2002	52304-52329	+10.2	1.5
	52329-52364		
	52364-52394		1.7
	52394-52424		1.7
	52424 - 52454		1.9
	52454-52484		1.5
-	52484-52514	+8.9	1.9
	52514-52544		1.4
	52544-52574		1.7
	52574-52604		1.6
Dec. 2002	52604-52639	+10.5	1.5

Independent local atomic time scales

Local atomic time scales are established by the time laboratories which contribute with the appropriate clock data to the BIPM. The differences between TAI and the atomic scale maintained by each laboratory are available on http://www.bipm.org or via anonymous ftp 62.161.69.5. For each time laboratory 'lab' a separate file TAI-lab is provided ; it contains the respective values of the differences [*TAI-TA(lab*)] in nanoseconds, for the standard dates, starting on 1 January 1998.

The file NOTES.TAI provides information concerning the time laboratories contributing to the calculation of TAI since 1 January 1998. This file should be considered as complementary to the individual files TAI-lab.

For dates between April 1996 and December 1997, the values of [*TAI-TA(lab*)] are given in yearly files, each one giving also values of [*UTC-UTC(lab*)].

Local representations of UTC

The time laboratories which submit data to the BIPM keep local representations of UTC. The computed differences between UTC and each local representation are available on http://www.bipm.org or via anonymous ftp 62.161.69.5. For each time laboratory 'lab' a separate file UTC-lab is provided; it contains the values of the differences [*UTC-UTC(lab*)] in nanoseconds, for the standard dates, starting on 1 January 1998.

The file NOTES.UTC provides information concerning the time laboratories since 1 January 1998. This file should be considered as complementary to the individual files UTC-lab.

For dates between April 1996 and December 1997, the values of [*UTC-UTC*(*lab*)] are given in yearly files, each one giving also values of [*TAI-TA*(*lab*)].

International GPS and GLONASS Tracking Schedules

(Files available on http://www.bipm.org)

GPS Schedule no 38	implemented on MJD = 52366	Reference date MJD = 50722
File SCHGPS.38	(2002 April 2) at 0h UTC	(1997 October 1)
GPS Schedule no 39	implemented on MJD = 52576	Reference date MJD = 50722
File SCHGPS.39	(2002 October 29) at 0h UTC	(1997 October 1)
GLONASS Schedule no 13	implemented on MJD = 52366	Reference date MJD = 50722
File SCHGLO.13	(2002 April 2) at 0h UTC	(1997 October 1)
GLONASS Schedule no 14	implemented on MJD = 52576	Reference date MJD = 50722
File SCHGLO.14	(2002 October 29) at 0h UTC	(1997 October 1)

[TAI - GPS time] and [UTC - GPS time]

The GPS satellites disseminate a common time scale designated 'GPS time'. The relation between GPS time and TAI is

 $[TAI - GPS time] = 19 s + C_0,$

where the time difference of 19 seconds is kept constant and C_0 is a quantity of the order of tens of nanoseconds, varying with time.

The relation between GPS time and UTC involves a variable number of seconds as a consequence of the leap seconds of the UTC system and is as follows:

from 1999 January 1, 0h UTC until further notice:

 $[UTC - GPS time] = -13 s + C_0.$

Here C_0 is given at 0h UTC every day.

 C_0 is computed as follows. The GPS data recorded at the Paris Observatory for highest-elevation satellites are first corrected for precise satellite ephemerides and for ionospheric delays derived from IGS maps, and then smoothed to obtain daily values of [*UTC*(*OP*) - *GPS time*] at 0h UTC. Daily values of C_0 are then derived by linear interpolation of [*UTC* - *UTC*(*OP*)]. The combined standard uncertainty of the daily C_0 values is of the order of 10 ns.

A table giving daily values of C_0 at 0h UTC and the parameters used in its characterization (σ : standard deviation charcterizing the dispersion of individual measurements; *N*: the number of measurements) is available from the BIPM website (see page 6) under the name UTCGPS02.AR.

[UTC - GLONASS time] and [TAI - GLONASS time]

The GLONASS satellites disseminate a common time scale designated 'GLONASS time'. The relation between GLONASS time and UTC is

 $[UTC - GLONASS time] = 0 s + C_1,$

where the time difference 0 s is kept constant by the application of leap seconds so that GLONASS time follows the UTC system, and C_1 is a quantity of the order of several hundred nanoseconds (tens of microseconds until 1997 July 1), which varies with time.

The relation between GLONASS time and TAI involves a variable number of seconds and is as follows:

from 1999 January 1, 0h UTC, until further notice:

 $[TAI - GLONASS time] = 32 s + C_1$.

Here C_1 is given at 0h UTC every day.

 C_1 is computed as follows. The GLONASS data recorded at the NMi Van Swinden Laboratorium, Delft, The Netherlands for the highest-elevation satellites are smoothed to obtain daily values of [*UTC*(*VSL*) - *GLONASS time*] at 0h UTC. Daily values of C_1 are then derived by linear interpolation of [*UTC* - *UTC*(*VSL*)] provided on the BIPM internet network.

To ensure the continuity of C_1 estimates, the following corrections are applied:

+1285 ns from 1997 January 1 (MJD 50449) to 1999 March 22 (MJD 51259)

+107 ns for 1999 March 23 and March 24 (MJD 51260 and MJD 51261) 0 ns since 1999, March 25 (MJD 51262).

The combined standard uncertainty of the daily C_1 values is of the order of several hundred nanoseconds.

A table giving daily values of C_1 at 0h UTC and the parameters used in its characterization (σ : standard deviation charcterizing the dispersion of individual measurements; *N*: the number of measurements) is available from the BIPM website (see page 6) under the name UTCGL002.AR

Table 8A. Rates relative to TAI of contributing clocks in 2002

(File available on http://www.bipm.org under the name RTAI02.AR)

Mean clock rates relative to TAI are computed for one-month intervals ending at the dates given in the table. When an intentional frequency adjustment has been applied to a clock,

the data prior to this adjustment are corrected, so that Table 8A gives homogeneous rates for the whole year 2002. For studies including the clock rates of previous years, corrections must be brought to the data published in the Annual Report for 1988 to 2001, and in the BIH Annual Reports for the previous years. These corrections are given in Table 8B. Unit is ns/day, *** denotes that the clock was not used.

lab.	clock	52304	52329	52364	52394	52424	52454
AUS	36 249	***	***	***	-2.30	-5.80	-6.80
AUS	36 299	20.44	19.97	19.80	20.07	19.49	19.88
AUS	36 340	0.11	-0.43	0.42		-1.97	
AUS	36 654	-27.77	-28.58		-25.93		
AUS	36 1035	5.27	6.28		7.50	6.85	***
AUS	36 1141	2.21	1.50	1.50	2.92	-0.39	1.08
AUS	40 5401	16.48	14.76	15.41	17.47	18.19	18.88
AUS	40 5402	-18.88	***	***	-19.49	-18.91	-21.57
AUS	40 5403	***	***	***	3.77	8.29	9.83
AUS	99 1	***	***	***	***	***	18.69
BEV	16 71	17.72	-18.33	-6.46	-3.77	-40.68	-63.40
BEV	35 1065	0.14	-0.09	1.53	1.37	1.27	1.74
BEV	35 1793	***	***	***	***	***	24.08
CAO	35 939	0.05	-0.96	0.50	-2.67	-8.31	-5.52
CAO	35 1270	1.05	0.54	-0.33	0.45	-5.98	-4.37
СН	17 206		-3.09	-6.02	-5.12	9.18	9.05
СН	21 194	-44.87	-38.22	-36.12	-37.98	-37.46	
СН	21 217	145.08	163.66	165.39	170.00	165.89	
СН	31 403	-57.22	-50.31	-50.58	-49.54		
СН	35 413	-10.62	-10.55	-11.15	-14.87	-15.98	-16.26
СН	35 771	7.81	7.95	7.79	8.05	9.04	9.89
СН	36 354	45.29	45.83	45.80	47.02	47.19	
CNM	35 1705	4J.29 ***	45.03 ***	+5.00 ***	3.27	2.61	2.60
CNM	36 1537	-18.07	***	***	-19.02	-21.25	
CRL	35 112	-0.47	-0.12	0.10	-0.10	-0.52	0.04
UNL	55 112	-0.47	-0.12	0.10	-0.10	-0.52	0.04
CRL	35 144	14.56	15.47	15.84	15.48	15.93	16.72
CRL	35 332	13.26	12.83	13.20	12.67	13.04	12.41
CRL	35 342	7.23	7.77	7.18	7.78	7.77	7.79
CRL	35 343	13.73	13.53	14.52	12.57	13.42	14.17
CRL	35 715	-4.07	***	***	***	***	***
CRL	35 732	-1.36	-0.72	-1.05	-0.55	-0.94	-0.01
CRL	35 907	13.33	13.49	13.87	13.49	13.91	13.46
CRL	35 908	7.46	9.07	9.16	8.77	8.37	8.09
CRL	35 1778	***	***	***	***	***	***
CRL	35 1789	***	***	***	***	***	6.31

lab.	clock	52484	52514	52544	52574	52604	52639
AUS	36 249	-2.53	***	***	-2.92	-3.57	-4.61
AUS	36 299	19.78	21.00	18.86	20.33	18.90	18.91
AUS	36 340	1.46	0.21	0.83	0.91	0.02	-0.30
AUS	36 654	-26.40	-25.57	-25.15	-24.85	-24.04	-24.67
AUS	36 1035	***	8.11	5.14	3.24	4.83	6.36
AUS	36 1141	-0.21	1.84	1.73	2.35	0.90	3.58
AUS	40 5401	***	***	25.09	***	***	28.43
AUS	40 5402	-19.70	-22.94	-14.25	-13.07	-15.71	-17.95
AUS	40 5403	13.14	***	***	7.69	4.68	-1.43
AUS	99 1	17.97	***	***	-25.15	-26.20	***
BEV	16 71	***		1.65	-12.56	25.39	15.37
BEV	35 1065	1.46	0.69	-0.37	0.10	0.38	1.14
BEV	35 1793	***	-0.47	-1.39	-0.80	-1.16	-0.55
CAO	35 939	-8.37	***	***	-0.19	-0.64	***
CA0	35 1270	***	***	***	-5.83	-6.10	***
СН	17 206	***	***	***	***	***	***
СН	21 194	-39.15	-34.81	-39.37	-34.55		
СН	21 217	169.32	166.61	163.13	165.23		
СН	31 403	-52.50	-52.19	-53.10	-54.40	-55.61	
СН	35 413	-15.46	-16.94	-17.63	-17.70	-18.13	-18.18
СН	35 771	10.00	10.06	9.46	8.90	9.09	8.09
СН	36 354	46.95	47.11	46.38	46.84	46.51	
CNM	35 1705	2.36	2.32	2.28	2.35	0.81	-0.51
CNM	36 1537	-20.95	-18.70	-19.17	-19.01	-19.63	-18.30
CRL	35 112	-0.82	-0.11	-1.01	-0.18	-0.64	-0.43
CRL	35 144	16.77	14.89	15.45	15.13	15.82	15.94
CRL	35 332	12.95	12.61	12.85	12.63	13.52	13.27
CRL	35 342	6.94	7.56	7.75	7.12	7.60	7.38
CRL	35 343	14.40	14.23	14.98	13.79	14.12	13.92
CRL	35 715	6.49	5.21	7.47	6.73	6.58	6.78
CRL	35 732	-0.07	-0.01	0.29	0.32	0.68	1.17
CRL	35 907	12.36	12.49	12.48	13.71	13.80	12.93
CRL	35 908	9.35	9.03	6.70	7.14	7.77	7.36
CRL	35 1778	8.45	8.44	8.70	8.42	7.89	8.25
CRL	35 1789	6.78	6.75	6.77	6.28	6.90	7.50

lab.	clock	52304	52329	52364	52394	52424	52454
CRL	35 1790	***	***	***	***	***	-6.46
DTAG	36 136	1.33	1.59	1.39	1.88	1.45	0.32
DTAG	36 345		-0.38	1.39	-0.83	-1.28	-0.07
DTAG				2.52			
		1.87 ***	2.76	۲.22 ***	2.45 ***	2.50 ***	1.67 ***
F	16 106	***	***	***	***	***	XXX
F	35 122	9.78	10.20	10.46	11.34	12.68	12.46
F	35 124	2.28	2.88	2.34	1.42	2.24	2.47
F	35 131	2.22	1.02	0.87	0.60	-0.40	***
F	35 158	16.85	15.97	16.06	16.17	16.25	***
F	35 172	7.49	8.17	7.67	8.02	8.90	8.36
F	35 198	8.19	7.71	7.17	7.60	8.32	8.27
F	35 355	1.02	***	***	0.85	0.33	1.03
F	35 385	12.20	13.07	13.38	14.80	14.09	13.79
F	35 396	5.91	7.44	6.74	7.48	6.92	6.79
F	35 469	***	***	***	0.01	-0.10	0.61
F	35 489			***		16.87	
F	35 536	***	***	***		3.79	3.44
F	35 609	-4.04	-5.14	-4.83	-6.06	-5.92	
F	35 774	-23.57	-22.55	-22.69	-22.13	-21.54	-21.81
F	35 781	***	***	***	***	***	***
F	35 819	23.30	21.32	21.91	21.45	21.45	20.23
F	35 859	-2.47	-1.56		-1.43	-0.95	-2.08
F	35 1177	-10.01	-9.77		-10.67	-10.74	-10.95
F		7.53	7.07	6.13	5.28	5.27	4.74
F	35 1178	6.70		7.07	7.15	5.27	4.74 ***
r	35 1222	0.70	6.35	7.07	7.15		
F	35 1321	10.02	10.16	10.74	10.55	10.31	10.12
F	35 1556	-15.69		-15.91	-15.57	-15.12	-14.67
F	40 805	-57.48	-56.82	-56.68	***	***	***
F	40 816	-26.05	-27.90	-26.85	-27.11	-26.80	***
IEN	35 219	12.33	11.46	11.69	***	13.53	12.75
	55 219	12.00	11,40	11.05		10.00	12.75
IEN	35 505	***	***	-8,91	***	-9.82	-8.54
IEN	35 1115	-9.65	-8.66	-7.92	***	-9.15	-8.34
IEN	35 1373	-0.03	0.31	0.85	***	0.88	0.86
IFAG	36 1034	-13.88	-11.06	-9.49	-12.32	-17.99	-17.58
IFAG	36 1167	-7.11	-8.61	-9.66	-9.48	-7.53	-6.06
117/G	00 110/		0.01	5100			
IFAG	36 1173	1.19	1.78	0.72	0.62	2.07	-0.54
IFAG	36 1629	2.56	3.59	3.00	3.69	6.47	5.28
IFAG	36 1732	***	***	***	***	***	***
IFAG	36 1798	***	***	***	***	***	***
IFAG	40 4401	60.45	28.15	20.80	46.30	55.78	73.87
TEAC	10 1100	07 EA	10 00	0 10	33 00	54.16	88.81
IFAG	40 4403	27.50	13.83	8.42	33.80		
IFAG	40 4413	99.56	126.79	49.41	61.35	80.97	101.41
IGMA	14 2403	-3.91	-2.53	6.63	-13.17	-14.10	
IGMA	16 112	40.20	42.91	39.38	50.95 ***	36.88	47.32
IGMA	35 631	14.75	14.80	12.54	***	~~~	~ ~ ~

ł

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
CRL DTAG DTAG DTAG F	35 1790 36 136 36 345 36 465 16 106	-6.84 -1.55 -0.89 1.87 ***	-6.28 0.40 -0.43 0.74 ***	- 7 . 35 *** *** ***	-7.08 5.30 -0.07 2.13 -9.20	-6.86 14.05 -2.58 3.13 -8.30	-6.95 14.22 -0.35 0.34 -6.58
F F F F	3512235124351313515835172	12.40 2.71 *** 8.70	2.75 *** ***	12.98 2.64 11.10 12.73 8.75	13.20 2.78 9.92 13.05 8.92	13.38 2.68 9.62 13.19 8.54	12.83 2.77 9.81 12.95 9.10
F F F F	35 198 35 355 35 385 35 396 35 469	9.29 *** 14.40 7.07 0.14	8.54 *** 14.60 7.89 1.04	7.95 1.00 15.20 7.40 2.89	9.03 1.08 14.45 7.24 3.68	9.52 0.74 15.12 7.39	9.08 4.82 14.34 7.34 ***
F F F F	3548935536356093577435781	17.57 4.06 *** -21.30 23.04	3.20 *** -20.31	19.35 3.98 *** -20.96 21.57	4.05 *** -22.20	4.42 ***	21.79 4.56 *** -23.07 21.10
F F F F	35 819 35 859 35 1177 35 1178 35 1222	20.96 -1.65 -11.94 5.68 ***	*** -1.72 -12.09 5.35 4.36	*** -0.78 -13.86 4.85 6.18	*** *** *** 3.94	*** *** *** 5.47	*** 0.61 -14.12 4.89 5.39
F F F IEN	35 1321 35 1556 40 805 40 816 35 219	- 14 . 18 *** ***	10.28 -13.99 *** *** 14.53	10.10 -15.23 *** *** 14.44	10.09 *** *** 14.60	10.17 *** *** 14.86	10.00 *** -25.72 14.36
IEN IEN IEN IFAG IFAG	35505351115351373361034361167	2.81 -8.02 0.33 -13.21 -7.07	0.01 -6.94 -0.68 -17.29 -4.80	0.17 -7.81 -0.04 *** -2.21	*** -9.27 -2.10 *** -6.78	*** -8.42 -0.61 *** -8.42	*** -8.57 0.74 *** -7.65
IFAG IFAG IFAG IFAG IFAG	36 1173 36 1629 36 1732 36 1798 40 4401	-3.85 3.93 *** *** 104.35	-4.10 5.34 *** 125.65	-3.80 4.82 -2.47 -2.19 131.03	1.33 6.09 -2.81 -2.07 155.03	2.19 5.47 -3.17 -2.60 167.39	-0.11 4.48 -2.91 -3.26 185.58
IFAG IFAG IGMA IGMA IGMA	40 4403 40 4413 14 2403 16 112 35 631	112.84 21.52 *** 46.33 ***	100.16 38.05 *** 41.94 ***	68.61 66.78 *** 42.17 ***	75.83 94.70 *** 30.25 ***	84.87 *** 35.44 ***	112.31 *** 42.30 ***

lab.	clock	52304	52329	52364	52394	52424	52454
IGMA	35 645	12.20	16.60	14.86	16.36	17.06	16.24
IGMA	35 674	***	***	***	***	***	***
IGMA	35 676	***	***	***	***	-4.02	-4.94
INPL	35 1652	-12.53	-8.15	-8.78	-10.23	-10.04	-10.56
KRIS	36 321	7.53	6.12	7.07	5.43	4.32	4.88
KRIS	36 739	-11.54	-12.61	-10.38	-12.45	-11.45	-12.72
KRIS	36 1135	20.15	23.15	23.16	21.98	25.04	26.99
KRIS	40 5623	30.30	30.51	30.91	31.03	30.23	30.49
LDS	35 289	6.94	6.37	6.42	5.48	4.77	4.43
LT	35 1362	1.75	-1.27	-0.95	0.98	0.77	0.52
MSL MSL NAO NAO	12 933 35 1025 36 274 35 779 35 1206	48.64 -0.01 10.13 17.62 12.01	51.65 -0.34 6.15 *** 12.48	52.03 -0.11 5.34 *** 12.67	1.72 5.71 ***	42.95 2.94 6.08 0.82 13.33	50.25 4.14 7.69 ***
NAO NAO NIM NIM NIM	35 1214 35 1689 35 479 35 1238 35 1239	9.57 -1.75 4.64 2.06 5.24	8.61 -1.44 4.68 2.51 5.82	9.30 -1.69 4.05 2.54 4.73	9.40 -2.20 2.23 0.64 2.55	9.89 -2.03 3.76 2.16 3.77	*** 3.52 2.69 3.74
NIMB	35 600	***	***	***	***	***	
NIST	35 132	0.05	0.35	0.47	-0.29	-0.42	
NIST	35 182	-11.15	-11.18	-11.04	-11.07	-11.38	
NIST	35 408	-1.43	-0.51	-0.86	-0.62	-1.60	
NIST	35 1074	-7.26	-7.14	-7.53	-7.36	-6.79	
NIST	40 201	30.98	29.66	28.29	26.96	25.60	24.39
NIST	40 203	23.53	24.29	25.35	26.56	27.33	28.43
NIST	40 204	5.22	5.56	5.74	6.22	6.53	6.87
NIST	40 205	-21.97	-22.14	-22.39	-22.38	-22.63	-22.75
NIST	40 222	***	-12.86	-12.82	-12.55	-12.58	-12.43
NMC	35 1501	-1.62	-1.76	-3.13	-3.18	-2.33	-5.87
NMIJ	35 224	-9.73	-10.33	-10.58	-10.52	-10.44	-10.29
NMIJ	35 459	***	***	***	***	***	***
NMIJ	35 523	-0.55	-0.45	-0.86	0.10	-0.33	-1.54
NMIJ	35 1273	-7.85	-8.12	-8.27	-7.76	-8.06	-8.02
NMLS	35 1659	***	***	-1.11	-0.26	-0.75	0.04
NPL	35 784	5.39	6.67	6.02	5.02	5.67	5.78
NPL	35 1275	2.18	3.05	2.17	2.82	3.09	1.69
NPL	36 404	12.03	12.37	12.68	12.36	12.69	14.29
NPL	40 1701	-1.31	-1.07	-0.93	-0.60	-0.54	-0.41
NPL	40 1708	1.40	1.01	1.26	1.86	1.97	2.24
NPLI	35 725	9.86	10.52	10.82	9.75	10.60	10.39
NRC	35 234	16.03	15.33	15.55	16.74	16.92	16.08
NRC	35 372	***	***	***	***	***	***
NRC	40 304	-3.12	-0.93	-1.01	-0.03	0.13	-0.34

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
IGMA IGMA IGMA INPL KRIS	35 645 35 674 35 676 35 1652 36 321	*** -3.50 -11.15 6.04	*** 1.82 -5.31 -11.09 4.64	*** 1.38 -4.89 -10.96 ***	*** 1.10 -5.31 -11.15 5.77	*** 0.93 -5.34 -11.36 5.38	*** 0.05 -5.24 -9.99 5.46
KRIS KRIS KRIS LDS LT	36 739 36 1135 40 5623 35 289 35 1362	-11.79 29.08 31.17 5.13 0.31	-11.81 26.05 31.57 4.10 -0.51	*** *** 4.63 -0.32	-11.05 26.55 32.23 4.58 1.35	-12.43 30.23 32.47 3.53 -0.19	-12.39 30.09 32.76 5.61 0.05
MSL MSL MSL NAO NAO	12 933 35 1025 36 274 35 779 35 1206	43.99 3.40 9.95 ***	38.86 3.44 8.49 -0.46 13.29	43.62 -0.85 6.00 -0.81 13.25	43.51 -7.51 5.30 1.03 14.03	45.62 -7.90 6.58 0.74 13.61	52.44 -7.24 5.44 1.31 14.56
NAO NAO NIM NIM NIM	35 1214 35 1689 35 479 35 1238 35 1239	*** 4.08 3.59 3.89	11.35 -1.04 4.21 3.59 3.82	10.08 -2.22 4.23 4.18 4.27	11.23 -2.10 4.06 3.84 3.70	9.78 -1.44 *** ***	10.44 -1.36 *** ***
NIMB NIST NIST NIST NIST	35600351323518235408351074	*** 0.04 -10.52 -2.17 -7.15	*** -0.58 -10.80 -1.93 -6.61	*** -0.31 *** -0.06 -6.91	*** 0.00 *** -0.74 -5.49	-13.56 -0.68 *** -1.33 -9.35	60.79 0.18 -11.62 -1.15 -8.98
NIST NIST NIST NIST NIST	 40 201 40 203 40 204 40 205 40 222 	22.98 27.39 6.88 -23.06 -12.45	22.12 30.01 6.97 -23.02 -12.19	20.88 30.88 6.98 -23.34 -12.18	19.76 32.03 7.53 -23.34 -12.00	18.39 32.83 7.59 -23.66 -12.08	17.31 34.00 8.17 -23.71 -11.79
NMC NMIJ NMIJ NMIJ NMIJ	35 1501 35 224 35 459 35 523 35 1273	-5.70 -10.43 *** -0.06 -8.12	-5.51 -8.79 *** -3.62 -6.78	- 3 . 90 *** *** ***	-3.40 1.83 0.36 *** -9.98	-2.65 1.81 1.42 *** -10.07	-1.77 1.79 1.25 *** -9.39
NMLS NPL NPL NPL NPL	35 1659 35 784 35 1275 36 404 40 1701	-0.60 5.24 1.58 13.72 -0.46	3.25 5.11 1.41 13.02 0.33	1.25 5.65 1.18 14.73 -0.25	-0.54 5.13 1.72 9.32 0.21	-1.35 5.06 2.03 9.33 0.34	-1.25 4.91 0.85 8.58 0.52
NPL NPLI NRC NRC NRC	40170835725352343537240304	2.26 9.01 16.69 *** -0.60	2.54 9.15 16.65 *** -0.03	2.49 8.49 15.92 *** 0.77	2.31 10.85 16.53 23.45 ***	0.82 *** 16.24 23.04 ***	1.78 *** 15.96 22.19 ***

Table 8A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
NRC NTSC NTSC NTSC NTSC	90 61 35 1007 35 1008 35 1011 35 1016	-0.17 -10.45 16.73 -7.36 0.95	0.74 -9.17 17.63 -5.90 2.46	0.01 -9.89 17.05 -6.25 1.47	0.51 -9.10 16.92 -6.41 2.84	-0.45 -9.74 18.36 -6.56 2.28	-0.69 -9.16 18.71 -6.47 2.10
NTSC NTSC OMH ONRJ ORB	35 1017 35 1018 36 849 35 903 35 201	-0.09 13.55 2.38 3.05 4.95	0.23 14.18 2.71 3.33 2.07	-0.09 13.47 2.01 2.53 ***	0.57 12.22 2.74 4.66 -0.80	-0.31 13.25 2.42 2.84 2.10	-0.01 13.04 4.39 2.46 2.06
ORB ORB ORB PL PL	35 202 35 593 40 2601 18 746 35 441	65.10	5.58 64.90 -3.61 -15.41 0.04	4.70 62.34 -3.39 95.66 -1.21	61.42	6.87 61.64 -6.72 *** 0.22	5.00 63.85 -6.91 *** 0.51
PL PL PL PL PL	3550235761351120351660351746		-2.66 -4.87 -0.31 -3.97 ***	-4.63 -1.23	-4.12 -4.65 -0.99 -3.50 ***	-4.58 -2.66 -0.79 -3.42 -3.35	-5.12 -0.20
PL PTB PTB PTB PTB	36 1395 35 128 35 415 35 1072 40 502	*** -0.97 4.53 12.95 ***	*** -0.54 5.58 12.03 ***	-8.71 -1.33 4.37 13.37 ***		-10.07 -1.96 4.74 12.62 ***	-8,32 -2,56 2,75 12.80 ***
PTB PTB PTB PTB PTB	40 505 40 510 40 537 92 1 92 2	-6.14 *** 4.01 1.80 1.29	-5.83 -0.53 5.99 1.32 0.79	-5.30 0.50 7.75 0.99 0.65	-5.32 1.62 *** 1.22 1.10	-4.65 2.15 *** 1.21 0.72	3.91 *** 1.52
PTB ROA ROA ROA ROA	92 3 14 1569 35 583 35 718 36 1488	0.38 34.85 *** 0.95	0.10 36.82 *** *** -0.70	- 0 . 39 *** *** ***	0.88 *** *** ***	-0.38 36.65 -1.02 *** 8.08	0.28 50.63 -1.67 *** 7.92
ROA SCL SCL SG SG	36 1490 35 621 35 745 35 1035 35 1127	8.57 -1.16 *** 3.73 0.03	5.91 -1.09 -0.89 3.41 -0.17	*** -1.28 -6.92 3.97 -0.58	*** 0.46 -6.39 3.84 -1.04	5.18 -0.08 -6.85 4.94 0.14	5.74 -0.04 -7.40 4.89 0.17
SG SMU SP SP SP	36 522 36 1063 16 137 19 197 35 641	-8.84 -4.56 16.59 *** -17.15	-8.97 -6.05 16.29 *** -17.12	-10.43 -6.02 -1.77 *** -26.88	-9.04 -5.81 85.87 ***	-8.57 -6.43 108.46 *** ***	- 10.35 - 6.06 82.47 ***

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
NRC NTSC NTSC NTSC NTSC	90 61 35 1007 35 1008 35 1011 35 1016	-0.95 -8.85 18.50 -6.66 3.25	-0.25 -9.29 18.01 -6.69 2.94	0.48 -9.00 19.26 -6.18 2.44		-0.87 -8.61 19.22 -5.79 2.94	-8.85 17.63
NTSC NTSC OMH ONRJ ORB	35 1017 35 1018 36 849 35 903 35 201	12.33	12.74		12.58 4.10	-1.05 12.83 4.57 2.43 3.39	-0.62 12.79 1.96 2.43 3.77
ORB ORB ORB PL	35 202 35 593 40 2601 18 746	***	63.25 -4.81 ***	7.98 63.99 -2.31 ***	64.00 -0.05 ***	65.31 -0.42 ***	-0.66 ***
PL	35 441	0.42	0.85	1.00	1.18	1.55	1.71
PL PL PL PL PL	35 502 35 761 35 1120 35 1660 35 1746	- 5.50 -4.12 -0.96 -1.49 -3.73	-6.48 -0.59 -0.95 -0.44 -3.24	-2.86 -0.52	-3.25 -1.20	*** -2.73 -2.00 -1.48 -5.01	-1.51
PL PTB PTB PTB PTB	36 1395 35 128 35 415 35 1072 40 502	-8.98 -2.47 2.73 12.76 44.07	-9.15 -1.42 4.24 12.80 45.91	-8.86 -1.36 2.53 12.60 47.73	*** -2.86 1.48 12.98 49.38	*** -2.43 1.15 13.62 50.87	*** -2.28 3.02 12.89 52.01
PTB PTB PTB PTB PTB	40 505 40 510 40 537 92 1 92 2	-3.87 3.53 *** 0.89 1.27	-3.00 4.76 *** 1.51 0.78	-2.38 6.09 *** 1.65 0.55	-2.14 7.13 *** 1.05 0.82	-2.06 11.99 *** 1.56 0.85	10.17 *** 1.71
PTB ROA ROA ROA ROA	92 3 14 1569 35 583 35 718 36 1488	-0.21 53.68 -0.31 -8.00 10.06	0.05 60.01 -0.84 -9.39 6.56	0.13 69.54 -0.15 -10.66 5.33	0.45 74.39 0.09 -10.14 6.14	1.04 66.57 -0.06 -10.16 5.96	0.73 63.63 0.24 -11.11 6.68
ROA SCL SCL SG SG	36 1490 35 621 35 745 35 1035 35 1127	8.02 0.05 -6.77 4.38 0.18	7.43 0.03 -6.59 4.36 0.37	8.08 -0.12 -6.77 4.66 0.37	6.83 0.33 -7.95 4.53 0.74	8.69 0.22 -7.16 5.49 1.49	9.32 -0.26 -8.01 4.55 0.62
SG SMU SP SP SP	36 522 36 1063 16 137 19 197 35 641	-9.15 -5.35 44.03 *** 19.84	-8.58 -5.05 39.76 81.61 17.11	-10.20 -6.78 54.55 90.04 14.98	-8.69 -5.59 82.04 85.70 14.88	-9.45 -6.08 111.65 89.41 11.84	-9.84 -5.14 123.03 89.73 11.89

Table 8A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
SP	35 1188	17.91	17.44	16.23	19.92	20.22	19.63
SP	35 1642	14.76	14.30	14.74	15.90	14.85	15.19
SP	36 1175	-1.42	0.41	-0.39	-0.65	-0.66	0.41
SP	40 7218	***	***	***	***	***	***
SP	40 7299	***	***	***	***	***	***
SU	40 3802	2.25	2.94	3.12	3.86	4.32	4.84
SU	40 3803	-18.60	-20.28	***	***	***	***
SU	40 3805	44.50	45.60	46.82	47.70	48.62	49.85
SU	40 3807	39.52	39.94	40.01	40.87	***	***
SU	40 3810	35.82	37.59	37.47	39.23	40.65	41.93
SU SU SU SU TCC	40 3825 40 3827 40 3831 40 3837 35 1028	50.81 *** 30.38 ***	*** *** 30.90 ***	*** *** 31.48 ***	*** *** 32.14 ***	*** *** 32.57 ***	*** *** 33.01 ***
TCC TCC TL TL TL TL	40 8620 40 8624 35 160 35 300 35 474	*** *** -13.79 11.89 ***	*** *** -14.45 10.78 ***	*** - 12 . 92 12 . 24 ***	*** *** -12.02 12.11 ***	*** - 12 . 76 12 . 77 ***	*** *** -12.46 11.91 ***
TL	35 809	-3.37	-2.98	-3.38	-4.02	-3.90	-3.55
TL	35 1012	-18.04	-18.38	-14.83	-12.56	-12.66	-11.76
TL	35 1498	15.61	15.22	14.98	16.36	15.34	16.20
TL	35 1500	9.55	11.68	10.14	9.66	9.76	10.44
TL	35 1712	***	***	***	***	***	***
TL	40 3052	***	***	***	***	***	54.50
TL	40 3053	37.10	37.27	39.28	40.04	40.62	42.08
TP	35 163	16.12	16.29	16.86	18.25	19.62	19.88
TP	35 1227	3.02	1.73	2.34	2.76	1.87	3.02
TP	36 154	10.53	12.16	11.98	11.75	14.27	12.95
TP	36 326	-4.90	-5.27	-5.44	-5.83	-5.36	-4.89
UME	35 251	-0.63	-0.68	-0.75	-1.02	-0.48	-1.15
UME	35 252	-1.02	-0.86	-0.63	-1.06	-0.91	-0.09
UME	35 872	-0.07	1.39	-0.28	-0.27	1.39	0.41
USNO	35 101	-5.09	-5.15	-4.84	-4.85	-4.98	-4.82
USNO	3510435106351083511435120	17.82	18.36	18.25	18.60	18.62	18.83
USNO		-13.66	-13.40	-13.58	-12.94	-12.83	-13.60
USNO		7.97	7.04	8.71	7.42	7.60	7.38
USNO		22.79	23.14	23.72	22.38	20.80	19.68
USNO		1.23	0.59	0.42	0.87	0.92	0.15
USNO	3514235146351483515035152	4.45	4.88	4.91	4.80	6.38	5.55
USNO		-3.42	-4.17	-3.64	-3.24	-3.43	-3.39
USNO		6.93	7.67	7.48	7.93	8.22	8.80
USNO		3.03	2.67	3.97	3.93	3.37	3.10
USNO		12.38	12.20	12.19	12.63	11.19	11.74

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
SP	35 1188	19.32	19.61	19.48	18.84	16.09	15.48
SP	35 1642	14.05	12.84	14.88	15.33	13.98	14.17
SP	36 1175	-0.07	1.55	1.25	-0.30	-1.61	-1.04
SP	40 7218	***	***	***	-12.39	***	***
SP	40 7299	***	41.47	***	***	***	***
SU	 40 3802 40 3803 40 3805 40 3807 40 3810 	5.33	5.87	6.29	6.81	6.67	7.68
SU		***	***	***	***	***	-21.93
SU		50.71	51.82	52.50	53.75	54.57	55.94
SU		***	***	***	***	***	***
SU		43.10	44.86	45.05	47.74	49.64	51.82
SU SU SU SU TCC	40 3825 40 3827 40 3831 40 3837 35 1028	59.37 *** 33.55 ***	60.54 67.87 10.42 34.02	61.33 67.70 10.93 34.39	62.48 67.73 11.92 35.13	63.69 67.13 12.62 35.32	67.15 67.61 13.98 36.30 -8.17
TCC TCC TL TL TL TL	40 8620 40 8624 35 160 35 300 35 474	*** +13.45 11.90 ***	*** *** -12.94 11.65 ***	*** +** -13.00 11.96 ***	*** *** -11.81 12.18 ***	*** *** -10.01 11.49 ***	6.20 -12.62 -9.44 11.36 23.73
TL	35809351012351498351500351712	-5.85	-6.20	-5.69	-6.00	***	***
TL		-12.20	-11.96	-12.39	-11.72	-11.63	-12.69
TL		14.10	14.04	15.44	14.35	15.62	14.67
TL		10.08	9.11	9.84	8.65	10.12	9.44
TL		0.23	0.16	0.81	0.57	0.14	0.26
TL	40 3052	52.99	55.74	57.96	58.98	60.74	62.46
TL	40 3053	42.14	43.17	45.04	46.18	47.39	***
TP	35 163	20.81	20.74	20.90	21.10	21.95	21.98
TP	35 1227	2.78	3.37	3.10	2.78	3.24	2.76
TP	36 154	12.73	12.67	13.54	11.90	11.89	12.78
TP UME UME UME USNO	36 326 35 251 35 252 35 872 35 101	-3.68 -0.52 -1.17 0.88 -5.34	-5.95 -1.87 0.09 -0.44 -4.77	-5.83 -1.97 -0.08 -1.02 -5.80	-5.43 *** 0.21 -0.88 -4.55	*** - 0.38 - 1.83 - 4.38	*** 0.48 -0.81 -4.63
USNO	3510435106351083511435120	18.26	17.83	17.93	18.14	18.94	17.67
USNO		-13.39	-12.64	-13.94	-14.01	-13.79	-14.71
USNO		7.82	8.04	8.04	7.00	8.34	8.38
USNO		17.46	16.47	15.50	13.99	***	***
USNO		0.22	0.47	-0.80	0.82	0.73	0.83
USNO	3514235146351483515035152	5.90	5.66	4.93	5.51	5.69	5.35
USNO		-3.18	-3.27	-4.14	-3.70	-3.56	-3.60
USNO		9.50	8.71	9.47	9.75	9.39	9.48
USNO		3.15	4.14	4.23	3.50	3.94	3.15
USNO		11.83	11.82	11.41	11.06	11.98	11.71

lab.	clock	52304	52329	52364	52394	52424	52454
USNO USNO USNO USNO USNO	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.94 16.91 -18.61 -3.73 2.92	-3.41	14.99 17.29 -18.72 -3.87 2.96	16.30 -18.23	14.06 15.86 -18.33 -3.62 2.92	13.71 16.69 -18.88 -3.96 1.82
USNO USNO USNO USNO USNO	35166351673517135173	14.88	4.21 15.39	-1.20 3.34 15.15 0.76 -13.59	4.12 14.55	-1.20 3.87 14.27 0.13 -12.82	3.31
USNO USNO USNO USNO USNO	35 213 35 217 35 225 35 226 35 227	12.83 -2.18 0.74 20.80 6.08	-2.46 1.10 20.96	-1.92 1.49 20.50	12.05 -2.07 0.32 21.15 5.45	11.95 -2.00 -1.42 21.85 5.19	-1.52 -1.17
USNO USNO USNO USNO USNO	3522935231352333524235244	4.38 -12.07 -0.25 17.60 16.53		-13.24 0.13	0.44	4.88 -14.14 0.02 18.56 15.99	-0.71 18.76
USNO USNO USNO USNO USNO	3524935253352543525535256	4.98 4.35 9.50 7.11 15.62	4.13 4.89 10.17 7.53 15.30	5.58 4.28 8.95 6.62 15.48		4.84 5.66 9.42 7.68 15.27	9.15 7.09
USNO USNO USNO USNO USNO	3526035268352703527935389	12.73 2.53 -11.15 2.53 -26.00	1.99	2.24 -10.64 1.58	1.85 -10.63 2.07	12.09 2.40 -10.73 1.12 -23.71	1.44 -10.33 1.46
USNO USNO USNO USNO USNO	3539235394354163541735703	6.06 10.29 -24.29 8.65 -1.96	7.25 11.23 -24.07 8:39 -3.42	6.72 11.42 -24.51 8.44 ***	6.62 11.73 -24.28 7.87 ***	6.96 10.25 -23.96 7.84 ***	6.77 10.76 -24.34 7.74 -1.91
USNO USNO USNO USNO USNO	35 717 35 762 35 763 35 765 35 1096	-8.39 -4.74 -15.95 -11.95 25.01	-8.69 -5.01 -16.83 -11.49 22.83	-8.65 -5.28 -15.95 -11.62 24.52	-9.22 -5.54 -15.23 -11.66 25.26	-9.35 -5.83 -15.76 -11.53 24.77	-9.14 -5.53 -15.94 -11.72 25.71
USNO USNO USNO USNO USNO	35 1097 35 1125 35 1327 35 1328 35 1331	9.43 22.52 5.95 5.61 -5.90	9.19 22.69 6.02 5.54 -5.28	10.13 22.75 6.86 4.57 -5.09	10.31 22.27 5.89 5.15 -5.28	10.96 22.78 6.49 4.84 -4.81	10.16 22.53 6.57 5.16 -4.79

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
USNO USNO USNO USNO USNO	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.33 15.78 -18.50 -3.90 2.70	13.98 16.11 -19.17 -4.19 2.41	14.43 16.90 -18.62 -3.51 1.98	13.93 15.93 -18.89 -4.87 1.98	14.12 16.32 -18.46 -4.71 2.32	13.75 16.15 -18.35 -5.01 2.44
USNO USNO USNO USNO USNO	35166351673517135173		15.49 ***	3.08 13.85	14.83 0.06	14.78	-2.97 3.55 14.53 0.53 -12.53
USNO USNO USNO USNO USNO	35 213 35 217 35 225 35 226 35 227	11.47 -2.07 -1.29 21.42 5.23	-2.19 -1.34 21.88	11.08 -0.92 -0.66 21.85 4.93	10.45 -1.57 -1.07 21.15 5.28	10.51 -1.48 -0.72 21.74 5.22	-1.32 -0.68
USNO USNO USNO USNO USNO	3522935231352333524235244	-13.73	-13.34	-13.60	6.74 -12.77 0.04 18.99 18.13	-12.38	
USNO USNO USNO USNO USNO	35 249 35 253 35 254 35 255 35 256	5.04 5.50 9.62 7.23 14.74	4.65 6.06 9.19 7.09 13.84	3.20 8.89 8.02 7.03 14.59	2.34 10.10 8.33 7.21 14.20	4.07 6.59 8.70 6.87 13.22	7.33 9.29
USNO USNO USNO USNO USNO	3526035268352703527935389	12.26 2.11 -10.17 1.85 -24.39	0.97 -10.14 1.34	12.67 2.65 -10.30 0.79 -24.32	0.98 -10.83 1.34	12.62 1.72 -11.74 1.28 -23.83	1.94 -11.02 1.37
USNO USNO USNO USNO USNO	35 392 35 394 35 416 35 417 35 703	7.15 10.88 -24.15 8.30 -2.62	6.73 11.51 -24.36 9.16 -3.94	6.53 11.31 -23.87 8.80 -4.90	7.47 10.50 -23.65 8.50 -5.87	7.00 10.56 -24.28 8.96 -6.78	7.53 10.88 -24.20 8.83 -6.97
USNO USNO USNO USNO USNO	35 717 35 762 35 763 35 765 35 1096	-8.61 -5.80 -15.57 -11.98 26.30	-8.90 -5.99 -15.23 -10.47 24.87	*** -6.02 -15.75 -10.17 24.53	*** -4.41 -15.90 -10.10 25.03	*** -4.65 -15.59 -10.11 24.87	-15.54 -5.00 -14.95 -9.68 26.07
USNO USNO USNO USNO USNO	35 1097 35 1125 35 1327 35 1328 35 1331	9.75 22.73 6.99 4.71 -5.05	8.99 22.14 6.77 3.99 -5.22	10.50 22.98 7.43 4.80 -4.98	11.53 23.08 7.13 4.85 -5.94	10.69 22.87 7.64 4.74 -5.70	10.25 22.62 7.83 4.81 -5.68

lab.	clock	52304	52329	52364	52394	52424	52454
USNO USNO USNO USNO USNO	35 1438 35 1459 35 1462 35 1463 35 1468	1.53 -1.42 8.72 6.89 ***	1.65 -1.09 9.43 6.84 ***	1.60 -0.92 9.22 7.55 ***	1.50 -1.65 9.29 7.35 ***	1.52 -1.41 10.53 6.06 -0.44	9.89 6.96
USNO USNO USNO USNO USNO	35 1481 35 1543 35 1573 35 1575 35 1655	9.75 ***	1.77 10.45 *** -5.60 -14.69	10.24		2.11 10.92 4.62 -5.11 -15.18	4.79
USNO USNO USNO USNO USNO	35 1692 35 1694 35 1696 35 1697 35 1698	9.05 -0.87 5.85 -0.60 11.82	8.82 0.48 5.35 -0.88 12.01			7.53 0.84 4.54 -0.43 13.34	1.02 4.54 -0.42
USNO USNO USNO USNO USNO	4070140702407034070440705		-27.52 -9.96 1.08 4.18 -40.97	1.14	-27.33 -10.05 0.69 4.58 -41.51	-9.92	-9.92 0.75
USNO USNO USNO USNO USNO	4070840709407104071140712	11.98 -30.90 33.67 114.56 -7.77	12.43 -31.26 34.11 116.03 -7.66	12.85 -30.55 31.41 117.72 -7.50	13.13 -30.88 34.87 119.37 -7.46	13.66 -30.56 35.32 120.92 -7.54	14.06 -29.90 35.94 122.76 -7.36
USNO USNO USNO USNO USNO	40 713 40 714 40 715 40 716 40 718	-8.52 -44.30 -16.42 209.83 129.90	-8.26 -43.62 -16.22 209.60 128.83	-8.28 -43.73 -15.99 208.50 127.73	-7.95 -43.45 -15.87 207.72 126.55		-7.56 -43.10 -15.36 204.96 124.86
USNO VSL VSL VSL VSL	40 719 35 179 35 456 35 548 35 731	*** 6.86 19.36 10.25 17.53	*** 6.42 19.76 10.71 16.60	*** 7.23 19.59 9.42 16.65	*** 6.26 19.20 10.02 ***	*** 6.07 18.98 10.24 ***	*** 6.28 18.05 9.60 ***

Table 8A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
USNO USNO USNO USNO USNO	35 1438 35 1459 35 1462 35 1463 35 1468	2.29 -1.54 10.25 6.48 0.05	2.49 -1.79 9.69 7.29 0.04		2.70 -2.48 9.85 5.12 -0.23	2.45 -2.71 9.34 5.80 -0.68	2.43 -2.10 11.04 5.72 0.03
USNO USNO USNO USNO USNO	35 1481 35 1543 35 1573 35 1575 35 1655	9.53 4.38	10.49 4.76	10.32		3.30 10.11 4.87 -2.87 -14.83	5.13
USNO USNO USNO USNO	35 1692 35 1694 35 1696 35 1697 25 1698	-0.29	1.29 4.26 -0.46	1.04 4.39 -0.66	0.97 3.55 ***	6.15 1.15 4.47 -0.31	1.88 4.31 -0.49
USNO USNO USNO USNO USNO USNO	35 1698 40 701 40 702 40 703 40 704 40 705	12.87 -27.56 -10.04 0.71 5.06 -42.00	13.58 -27.60 -10.03 0.73 5.31 -42.15	12.78 -27.29 -10.16 0.74 5.36 -42.48		12.87 -27.61 -10.19 0.89 5.85 -42.88	12.96 -27.70 -10.21 0.97 6.12 -42.91
USNO USNO USNO USNO USNO	40 708 40 709 40 710 40 711 40 712		14.63 -29.46 36.76 126.19 -7.16			15.59 -29.18 38.08 131.09 -6.91	15.97 -27.20 38.68 132.97 -6.68
USNO USNO USNO USNO USNO	40 713 40 714 40 715 40 716 40 718	-7.33 -42.95 -15.40 205.63 123.83	-7.12 -42.77 -15.21 205.63 123.14	-6.83 -42.73 -15.10 205.31 122.34		-6.56 -42.41 -14.78 205.22 121.26	-42.13 -14.49 205.22
USNO VSL VSL VSL VSL	40 719 35 179 35 456 35 548 35 731	*** 6.47 17.77 10.05 16.40	*** 7.01 17.12 9.71 18.09	*** 7.18 18.49 9.93 17.59	*** 7.88 *** 10.50 17.54	-62.21 6.72 *** 9.97 17.32	-60.87 7.90 *** 9.86 17.54

The clocks are designated by their type (2 digits) and serial number in the type. The codes for the types are:

12 HEWLETT-PACKARD 5061A 13 EBAUCHES, OSCILLATOM B5000 14 HEWLETT-PACKARD 5061A OPT. 4 16 OSCILLOQUARTZ 3200 17 OSCILLOQUARTZ 3000 15 DATUM/SYMMETRICOM Cs III 4x HYDROGEN MASERS 9x PRIMARY CLOCKS AND PROTOTYPES 21 OSCILLOQUARTZ 3210 23 OSCILLOQUARTZ EUDICS 3020 30 HEWLETT-PACKARD 5061B 31 HEWLETT-PACKARD 5061B OPT. 4 34 H-P 5061A/B with 5071A tube 35 AGILENT 5071A High perf. 36 AGILENT 5071A Low perf. 50 FREQ. AND TIME SYSTEMS INC. 4065A

Each	line refer	s to the same cl	ock workin	ng without interr	uption.
	2002	2001		2000	1999
	clock nø	clock nø cor (ns/		ck nø corr. (ns/d)	clock nø corr. (ns/d)
AUS	36 340	36 340	36	340	36 340 3.28
СН	17 206	17 206	17	206	17 206(1)
IGMA	16 112	16 112 -0.5	0 16	112 -0.50	16 112(2) -0.50
IEN	35 1373	35 1373	35 3	-9.30	35 1373 -9.30
LT	35 1362	35 1362 +3.2	8(3)		
NPL	40 1701	40 1701 -1.0	0 40 2	1701 -1.80	40 1701(4) -3.60
NRC	40 304	40 304 -19.0	1 40	304 -19.01	40 304(5)
ORB	40 2601	40 2601 -4.3	0(6)		
PL	35 502	35 502 +11.4		502 +11.49	35 502(7) +4.92
	35 761 35 1120	35 761 35 1120	35 1	761 -4.32(8) 1120 +7.61	35 1120 +7.61
	35 1660	35 1660 -1.0			
ROA	14 1569 36 1488	14 1569 36 1488		1569 1488 -7.66	14 1569(10)
SU	40 3802 40 3803 40 3810 40 3825	403802-26.0403803+2.0403810+2.0403825+2.0	0(12)		
(2) A	correctio		has to be		, 1993 and in 1992. last 5 two-month
(3) A				applied for the	last 5 months of
(4) A	correctio -8.00 has applied in	to be applied in 1996, a correct	1997, a d ion of -5.	correction of -9. .55 ns/d has to b	A correction of 2 ns/d has to be be applied in 1995, 1 has to be applied
(5) A	correctio 1999.	n of -19.01 ns/d	has to be	e applied for the	e last four months of
(6) A		n of -4.30 ns/d	has to be	applied for the	last four months of
	correctio correctio			applied in 1998 applied for the	and 1997. last two months of
(9) A		n of -1.02 ns/d	has to be	applied for the	last four months of
	correctio			e applied in 1994 e applied for the	4. e last four months of
(12) A		n of +2.00 ns/d 1	has to be	applied for the	last four months of
(13) A	2001. correctio	n of +2 ns/d has	to be app	olied for the las	t two months of 2001.

Table 8B. Corrections for an homogeneous use of the clock rates publishedin the current and previous Annual Reports.

Table 9A. Relative weights (in percent) of contributing clocks in 2002

(File available on http://www.bipm.org under the name WTAI02.AR)

Clocks weights are computed for one-month intervals ending at the dates given in the table.

***** denotes that the clock was not used

lab.	clock	52304	52329	52364	52394	52424	52454
AUS	36 249	*****	*****	*****	0.000	0.000	0.000
AUS	36 299	0.271	0.337	0.371	0.462	0.467	0.475
AUS	36 340	0.233	0.230	0.237	0.249	0.183	0.200
AUS	36 654	0.533	0.479	0.349	0.300	0.297	0.289
AUS	36 1035	0.663	0.372	0.252	0.185	0.173	*****
AUS AUS AUS AUS AUS	36 1141 40 5401 40 5402 40 5403 99 1	0.515 0.325 0.000 ***** ****	0.523 0.200 ***** *****	0.473 0.212 ***** *****	0.704 0.226 0.000 0.000 *****	0.000 0.192 0.000 0.000 *****	0.351 0.158 0.000 0.000 0.000
BEV	16 71	0.000	0.000	0.000	0.000	0.000	0.000
BEV	35 1065	0.562	0.544	0.415	0.409	0.522	0.627
BEV	35 1793	*****	*****	*****	*****	*****	0.000
CAO	35 939	0.235	0.120	0.150	0.071	0.000	0.017
CAO	35 1270	0.173	0.173	0.120	0.151	0.000	0.024
СН	17 206	0.001	0.001	0.001	0.001	0.001	0.001
СН	21 194	0.029	0.000	0.009	0.008	0.007	0.006
СН	21 217	0.009	0.000	0.001	0.001	0.001	0.001
СН	31 403	0.034	0.031	0.033	0.028	0.027	0.025
СН	35 413	0.005	0.007	0.015	0.035	0.043	0.051
CH	35 771	0.605	0.668	0.654	0.699	0.571	0.599
CH	36 354	0.016	0.020	0.035	0.609	0.462	0.363
CNM	35 1705	*****	*****	*****	0.000	0.000	0.000
CNM	36 1537	0.083	*****	*****	0.000	0.000	0.000
CRL	35 112	0.666	0.808	0.870	0.893	0.877	0.901
CRL CRL CRL CRL CRL	3514435332353423534335715	0.877 0.481 0.000 0.534 0.000	0.870 0.529 0.000 0.752 *****	0.870 0.620 0.000 0.677 *****	0.893 0.670 0.000 0.563	0.877 0.739 0.877 0.564 *****	0.784 0.831 0.901 0.545 *****
CRL CRL CRL CRL CRL	35 732 35 907 35 908 35 1778 35 1789	0.877 0.391 0.228 *****	0.870 0.346 0.237 *****	0.870 0.333 0.257 *****	0.893 0.423 0.312 *****	0.877 0.419 0.301 *****	0.901 0.401 0.294 ***** 0.000

lab.	clock	52484	52514	52544	52574	52604	52639
AUS	36 249	0.000	*****	*****	0.000	0.000	0.000
AUS	36 299	0.770	0.631	0.562	0.699	0.468	0.346
AUS	36 340	0.248	0.274	0.291	0.270	0.314	0.274
AUS	36 654	0.270	0.237	0.203	0.164	0.150	0.140
AUS	36 1035	*****	0.000	0.000	0.000	0.000	0.023
AUS AUS AUS AUS AUS	36 1141 40 5401 40 5402 40 5403 99 1	0.204 ***** 0.000 0.000 0.000	0.214 **** 0.029 **** ****	0.243 0.000 0.013 *****	0.229 ***** 0.010 0.000 0.000	0.217 ***** 0.012 0.000 0.000	0.149 0.000 0.014 0.000 *****
BEV BEV BEV CAO CAO	16 71 35 1065 35 1793 35 939 35 1270	***** 0.627 ***** 0.012 ****	0.000 0.586 0.000 *****	0.000 0.404 0.000 *****	0.000 0.340 0.000 0.000 0.000	0.000 0.372 0.000 0.000 0.000	0.000 0.333 0.559 *****
СН	17 206	*****	*****	*****	*****	*****	*****
СН	21 194	0.007	0.007	0.009	0.011	0.019	0.020
СН	21 217	0.001	0.001	0.001	0.001	0.002	0.005
СН	31 403	0.022	0.022	0.025	0.027	0.028	0.029
СН	35 413	0.045	0.040	0.034	0.029	0.025	0.020
CH	35 771	0.358	0.284	0.285	0.314	0.312	0.278
CH	36 354	0.354	0.340	0.425	0.474	0.597	0.543
CNM	35 1705	0.000	0.458	0.592	0.713	0.000	0.000
CNM	36 1537	0.000	0.033	0.052	0.071	0.092	0.100
CRL	35 112	1.027	1.121	1.126	1.163	1.163	1.054
CRL	3514435332353423534335715	0.556	0.439	0.448	0.422	0.487	0.451
CRL		1.142	1.121	1.126	1.163	1.163	1.106
CRL		0.904	1.121	1.126	1.163	1.163	1.106
CRL		0.461	0.660	0.574	0.577	0.596	0.540
CRL		0.000	0.000	0.000	0.000	0.135	0.180
CRL	35 732	0.710	0.835	0.725	0.785	0.866	0.526
CRL	35 907	0.232	0.185	0.182	0.180	0.316	0.473
CRL	35 908	0.271	0.279	0.187	0.242	0.241	0.197
CRL	35 1778	0.000	0.000	0.000	0.000	0.754	0.886
CRL	35 1789	0.000	0.000	0.000	1.098	1.163	0.841

Table 9A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
CRL DTAG DTAG DTAG F	35 1790 36 136 36 345 36 465 16 106	***** 0.073 0.052 0.008 ****	***** 0.075 0.073 0.012 ****	***** 0.081 0.087 0.014 *****	***** 0.094 0.102 0.019 *****	***** 0.114 0.107 0.024 *****	0.000 0.141 0.132 0.030
F F F F	3512235124351313515835172	0.197 0.877 0.073 0.877 0.476	0.183 0.870 0.068 0.870 0.335	0.146 0.870 0.068 0.870 0.389	0.131 0.849 0.070 0.893 0.469	0.090 0.811 0.086 0.877 0.344	0.083 0.839 ***** ***** 0.395
F F F F	35 198 35 355 35 385 35 396 35 469	0.117 0.877 0.081 0.773	0.140 ***** 0.108 0.493 *****	0.167 ***** 0.109 0.420 *****	0.275 0.000 0.153 0.426 0.000	0.281 0.000 0.310 0.443 0.000	0.385 0.000 0.437 0.558 0.000
, F F F F	35 489 35 536 35 609 35 774 35 781	***** ***** 0.000 0.233 ****	***** 0.095 0.317 ****	***** ***** 0.101 0.378 ****	0.000 ***** 0.082 0.458 ****	0.000 0.000 0.085 0.420	0.000 0.000 0.082 0.469
F F F F	3581935859351177351178351222	0.187 0.057 0.153 0.200 0.723	0.137 0.052 0.194 0.201 0.540	0.174 0.049 0.219 0.238 0.530	0.184 0.048 0.344 0.260 0.542	0.161 0.046 0.342 0.252 *****	0.137 0.045 0.350 0.225 *****
F F F IEN	35 1321 35 1556 40 805 40 816 35 219	0.877 0.503 0.006 0.015 0.000	0.870 0.339 0.008 0.018 0.504	0.870 0.364 0.009 0.024 0.601	0.893 0.471 ***** 0.046 *****	0.877 0.567 ***** 0.090 0.000	0.901 0.632 ***** ***** 0.000
IEN IEN IEN IFAG IFAG	35 505 35 1115 35 1373 36 1034 36 1167	***** 0.877 0.417 0.038 0.005	***** 0.831 0.514 0.038 0.005	0.000 0.495 0.361 0.032 0.005	***** ***** 0.056 0.005	0.000 0.000 0.000 0.041 0.005	0.000 0.000 0.000 0.036 0.005
IFAG IFAG IFAG IFAG IFAG	36 1173 36 1629 36 1732 36 1798 40 4401	0.021 0.096 ***** ***** 0.000	0.020 0.107 ***** ***** 0.000	0.018 0.091 ***** ***** 0.000	0.019 0.091 ***** ***** 0.000	0.019 0.094 ***** ***** 0.000	0.020 0.114 ***** ***** 0.000
IFAG IFAG IGMA IGMA IGMA	40 4403 40 4413 14 2403 16 112 35 631	0.000 0.000 0.002 0.007 0.111	0.000 0.000 0.002 0.007 0.151	0.000 0.000 0.001 0.006 0.107	0.000 0.000 0.001 0.006 *****	0.000 0.000 0.001 0.009 *****	0.000 0.000 ***** 0.008 *****

lab.	clock	52484	52514	52544	52574	52604	52639
CRL	35 1790	0.000	0.000	0.000	0.406	0.583	0.671
DTAG	36 136	0.109	0.131	*****	0.000	0.000	0.000
DTAG	36 345	0.126	0.148	*****	0.000	0.000	0.000
DTAG	36 465	0.032	0.038	*****	0.000	0.000	0.000
F	16 106	*****	*****	*****	0.000	0.000	0.000
F	35 122	0.073	0.090	0.119	0.113	0.130	0.155
F	35 124	0.849	1.059	1.126	1.163	1.163	1.106
F	35 131	****	****	0.000	0.000	0.000	0.000
F	35 158	****	****	0.000	0.000	0.000	0.000
F	35 172	0.354	0.385	0.522	0.644	1.163	1.106
F	35 198	0.381	0.606	0.604	0.676	0.565	0.491
F	35 355	****	*****	0.000	0.000	0.000	0.000
F	35 385	0.443	0.413	0.332	0.330	0.285	0.322
F	35 396	0.538	0.746	0.852	0.972	1.134	1.021
F	35 469	0.000	0.514	0.000	0.062	****	*****
F	35 489	0.000	0.039	0.039	0.037	0.032	0.027
F	35 536	0.000	0.000	0.605	0.851	0.843	0.793
F	35 609	****	*****	*****	*****	*****	*****
F	35 774	0.389	0.256	0.281	0.277	0.272	0.249
F	35 781	0.000	0.000	0.000	0.000	0.157	0.152
F	35 819	0.125	****	****	****	*****	*****
F	35 819	0.125	0.072	0.148	*****	*****	0.000
F	35 1177	0.259	0.314	0.000	*****	*****	0.000
F	35 1178	0.200	0.195	0.196	*****	*****	0.000
F	35 1222	*****	0.000	0.000	0.000	0.000	0.095
F	35 1321	1.142	1.121	1.126	1.163	1.098	0.930
F	35 1556	0.444	0.453	0.480	****	*****	*****
F	40 805	****	*****	*****	*****	*****	*****
F	40 816	****	****	****	****	****	0.000
IEN	35 219	0.000	0.000	0.121	0.171	0.215	0.256
IEN	35 505	0.000	0.000	0.003	*****	*****	****
IEN	35 1115	0.000	0.000	0.167	0.144	0.193	0.219
IEN	35 1373	0.000	0.000	0.179	0.073	0.096	0.108
IFAG	36 1034	0.032	0.029	*****	*****	*****	*****
IFAG	36 1167	0.064	0,065	0.045	0.054	0.052	0.046
IFAG	36 1173	0.018	0.017	0.019	0.024	0.035	0.032
IFAG	36 1629	0.013 0.111	0.109	0.122	0.024	0.139	0.148
IFAG	36 1732	*****	*****	0.000	0.000	0.000	0.000
IFAG	36 1798	*****	*****	0.000	0.000	0.000	0.000
IFAG	40 4401	0.000	0.000	0.000	0.000	0.000	0.000
	10 110-		0.00-	0.000			0 000
IFAG	40 4403	0.000	0.000	0.000	0.000	0.000	0.000
IFAG	40 4413	0.000 *****	0.000 *****	0.000 ****	0.000 ****	***** *****	*****
IGMA	14 2403						
IGMA IGMA	16 112 35 631	0.007 ****	0.007 *****	0.008 *****	0.006 ****	0.007 ****	0.006 ****
TOMA	22 021						

Table 9A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
IGMA IGMA IGMA INPL KRIS	35 645 35 674 35 676 35 1652 36 321	0.058 ***** 0.050 0.247	0.060 ***** 0.057 0.248	0.061 ***** ***** 0.061 0.196	0.074 ***** ***** 0.090 0.203	0.074 ***** 0.000 0.103 0.205	0.074 ***** 0.000 0.103 0.225
KRIS	36 739	0.185	0.139	0.145	0.139	0.134	0.111
KRIS	36 1135	0.041	0.049	0.054	0.065	0.054	0.035
KRIS	40 5623	0.361	0.422	0.322	0.300	0.404	0.856
LDS	35 289	0.250	0.339	0.389	0.468	0.380	0.303
LT	35 1362	0.086	0.103	0.117	0.140	0.165	0.198
MSL MSL MSL NAO NAO	12 933 35 1025 36 274 35 779 35 1206	0.000 0.000 0.581 0.539	0.000 0.000 ***** 0.492	0.000 0.000 ***** 0.486	0.000 0.000 ***** 0.764	0.000 0.054 0.025 0.000 0.686	0.010 0.039 0.036 *****
NAO NAO NIM NIM NIM	35 1214 35 1689 35 479 35 1238 35 1239	0.825 0.877 0.042 0.157 0.044	0.643 0.870 0.035 0.173 0.041	0.737 0.870 0.028 0.173 0.037	0.738 0.893 0.024 0.124 0.030	0.743 0.877 0.024 0.137 0.031	***** 0.025 0.137 0.030
NIMB	35 600	*****	*****	*****	*****	*****	*****
NIST	35 132	0.395	0.435	0.419	0.549	0.657	0.786
NIST	35 182	0.877	0.870	0.870	0.893	0.877	0.901
NIST	35 408	0.557	0.451	0.465	0.533	0.630	0.753
NIST	35 1074	0.877	0.870	0.870	0.893	0.877	0.901
NIST	4020140203402044020540222	0.062	0.066	0.052	0.041	0.029	0.020
NIST		0.027	0.027	0.025	0.025	0.024	0.023
NIST		0.182	0.185	0.173	0.177	0.174	0.181
NIST		0.289	0.292	0.258	0.362	0.407	0.425
NIST		*****	0.000	0.000	0.000	0.000	0.901
NMC	35 1501	0.194	0.223	0.188	0.183	0.206	0.000
NMIJ	35 224	0.877	0.870	0.870	0.893	0.877	0.901
NMIJ	35 459	*****	*****	*****	*****	*****	*****
NMIJ	35 523	0.877	0.870	0.870	0.893	0.877	0.856
NMIJ	35 1273	0.447	0.637	0.870	0.893	0.877	0.852
NMLS	3516593578435127536404401701	*****	*****	0.000	0.000	0.000	0.000
NPL		0.877	0.870	0.870	0.841	0.877	0.901
NPL		0.250	0.276	0.212	0.215	0.213	0.319
NPL		0.156	0.221	0.260	0.351	0.433	0.326
NPL		0.877	0.870	0.852	0.659	0.531	0.471
NPL	40 1708	0.877	0.870	0.870	0.893	0.877	0.901
NPLI	35 725	0.000	0.000	0.000	0.437	0.594	0.833
NRC	35 234	0.877	0.000	0.435	0.544	0.613	0.566
NRC	35 372	*****	*****	*****	*****	*****	*****
NRC	40 304	0.679	0.000	0.146	0.102	0.082	0.078

Table 9A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
IGMA IGMA IGMA INPL KRIS	35 645 35 674 35 676 35 1652 36 321	***** 0.000 0.084 0.199	***** 0.000 0.000 0.086 0.184	***** 0.000 0.146 0.116 *****	***** 0.000 0.167 0.106 0.000	***** 0.000 0.195 0.102 0.000	***** 0.150 0.210 0.126 0.000
KRIS KRIS KRIS LDS LT	36 739 36 1135 40 5623 35 289 35 1362	0.143 0.023 0.622 0.294 0.202	0.154 0.024 0.483 0.248 0.218	***** ***** 0.236 0.248	0.000 0.000 0.214 0.220	0.000 0.000 0.000 0.160 0.210	0.000 0.000 0.000 0.144 0.217
MSL MSL MSL NAO NAO	12 933 35 1025 36 274 35 779 35 1206	0.008 0.039 0.030 *****	0.005 0.046 0.039 0.000 0.000	0.007 0.046 0.048 0.000 0.000	0.008 0.000 0.051 0.000 0.000	0.009 0.011 0.060 0.000 0.000	0.009 0.009 0.059 0.104 0.342
NAO NAO NIM NIM NIM	35 1214 35 1689 35 479 35 1238 35 1239	***** ***** 0.025 0.130 0.029	0.000 0.000 0.036 0.154 0.041	0.000 0.000 0.092 0.231 0.087	0.000 0.000 0.227 0.233 0.145	0.000 0.000 ***** ****	0.156 0.316 ***** ****
NIMB	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	*****	*****	*****	*****	0.000	0.000
NIST		0.697	0.914	0.923	1.163	1.064	0.958
NIST		1.117	1.094	*****	*****	*****	0.000
NIST		0.562	0.647	0.556	0.545	0.518	0.468
NIST		1.142	1.121	1.126	0.000	0.000	0.164
NIST	4020140203402044020540222	0.012	0.010	0.010	0.010	0.010	0.009
NIST		0.022	0.022	0.022	0.021	0.021	0.018
NIST		0.168	0.203	0.278	0.304	0.356	0.363
NIST		0.369	0.387	0.408	0.428	0.403	0.349
NIST		1.142	1.121	1.126	1.163	1.163	1.106
NMC	35 1501	0.063	0.055	0.057	0.060	0.081	0.075
NMIJ	35 224	1.142	0.000	****	0.000	0.000	0.000
NMIJ	35 459	*****	*****	****	0.000	0.000	0.000
NMIJ	35 523	0.968	0.000	****	*****	*****	*****
NMIJ	35 1273	0.822	0.992	****	0.000	0.000	0.000
NMLS	35 1659	0.562	0.000	0.061	0.075	0.080	0.080
NPL	35 784	0.819	0.670	0.766	0.641	0.646	0.486
NPL	35 1275	0.409	0.361.	0.322	0.341	0.359	0.269
NPL	36 404	0.295	0.296	0.303	0.000	0.073	0.044
NPL	40 1701	0.389	0.360	0.476	0.546	0.749	0.970
NPL	40170835725352343537240304	1.142	1.121	1.117	1.110	0.709	0.627
NPLI		0.358	0.320	0.255	0.284	****	*****
NRC		0.495	0.582	0.614	0.795	0.805	0.814
NRC		*****	****	****	0.000	0.000	0.000
NRC		0.078	0.085	0.096	*****	****	*****

lab.	clock	52304	52329	52364	52394	52424	52454
NRC	90 61	0.595	0.683	0.573	0.590	0.449	0.356
NTSC	35 1007	0.279	0.335	0.400	0.456	0.664	0.892
NTSC	35 1008	0.463	0.870	0.870	0.893	0.877	0.631
NTSC	35 1011	0.151	0.229	0.220	0.252	0.252	0.317
NTSC	35 1016	0.481	0.675	0.577	0.563	0.589	0.587
NTSC	35 1017	0.632	0.566	0.507	0.682	0.546	0.503
NTSC	35 1018	0.877	0.870	0.870	0.000	0.673	0.665
OMH	36 849	0.315	0.485	0.368	0.381	0.375	0.370
ONRJ	35 903	0.607	0.870	0.870	0.000	0.629	0.575
ORB	35 201	0.293	0.266	*****	0.000	0.000	0.000
ORB	35 202	0.087	0.081	0.063	0.058	0.060	0.055
ORB	35 593	0.318	0.372	0.223	0.143	0.110	0.110
ORB	40 2601	0.016	0.019	0.020	0.027	0.033	0.040
PL	18 746	*****	0.000	0.000	0.000	*****	*****
PL	35 441	0.000	0.000	0.000	0.000	0.212	0.221
PL PL PL PL PL	35 502 35 761 35 1120 35 1660 35 1746	0.086 0.065 0.877 0.087 *****	0.071 0.050 0.870 0.101 *****	0.052 0.038 0.870 0.122 *****	0.043 0.056 0.829 0.162	0.037 0.064 0.858 0.202 0.000	0.034 0.088 0.901 0.251 0.000
PL	36 1395	*****	*****	0.000	0.000	0.000	0.000
PTB	35 128	0.734	0.870	0.870	0.000	0.331	0.233
PTB	35 415	0.672	0.400	0.434	0.456	0.439	0.314
PTB	35 1072	0.267	0.329	0.302	0.355	0.446	0.524
PTB	40 502	****	****	*****	****	*****	*****
PTB	405054051040537921922	0.000	0.000	0.000	0.000	0.388	0.483
PTB		*****	0.000	0.000	0.000	0.000	0.039
PTB		0.000	0.000	0.000	*****	*****	*****
PTB		0.877	0.870	0.870	0.893	0.877	0.901
PTB		0.877	0.870	0.870	0.893	0.877	0.901
PTB ROA ROA ROA ROA	92 3 14 1569 35 583 35 718 36 1488	0.254 0.003 ***** ***** 0.296	0.342 0.003 ***** ***** 0.277	0.363 **** **** ****	0.435 ***** ***** ****	0.482 0.000 0.000 ***** 0.000	0.577 0.000 0.000 ***** 0.000
ROA	36 1490	0.104	0.117	*****	*****	0.000	0.000
SCL	35 621	0.877	0.829	0.870	0.000	0.376	0.360
SCL	35 745	*****	0.000	0.000	0.000	0.000	0.013
SG	35 1035	0.097	0.102	0.135	0.262	0.877	0.664
SG	35 1127	0.389	0.522	0.584	0.613	0.706	0.817
SG SMU SP SP SP	36 522 36 1063 16 137 19 197 35 641	0.031 0.000 0.000 ***** 0.877	0.040 0.000 0.000 ***** 0.870	0.038 0.133 0.000 ***** 0.000	0.048 0.178 0.000 *****	0.059 0.177 0.000 ***** ****	0.062 0.210 0.000 *****

lab.	clock	52484	52514	52544	52574	52604	52639
NRC	90 61	0.341	0.322	0.478	0.525	0.402	0.474
NTSC	35 1007	0.692	0.753	0.906	0.655	0.636	0.768
NTSC	35 1008	0.429	0.441	0.324	0.392	0.330	0.322
NTSC	35 1011	0.373	0.865	1.120	0.985	1.100	1.044
NTSC	35 1016	0.421	0.430	0.454	0.395	0.396	0.415
NTSC	35 1017	0.501	0.674	0.959	0.829	0.000	0.298
NTSC	35 1018	0.419	0.475	0.437	0.389	0.466	0.405
OMH	36 849	0.000	0.127	0.136	0.134	0.136	0.101
ONRJ	35 903	0.302	0.274	0.235	0.222	0.214	0.199
ORB	35 201	0.000	0.042	0.067	0.090	0.097	0.093
ORB	35 202	0.047	0.043	0.045	0.043	0.052	0.064
ORB	35 593	0.095	0.094	0.099	0.104	0.104	0.115
ORB	40 2601	0.040	0.047	0.101	0.000	0.050	0.040
PL	18 746	****	****	*****	*****	*****	****
PL	35 441	0.226	0.239	0.264	0.277	0.265	0.240
PL	35 502	0.026	0.026	0.031	****	*****	****
PL	35 761	0.078	0.098	0.104	0.136	0.135	0.125
PL	35 1120	0.730	1.121	1.126	1.163	0.000	0.523
PL	35 1660	0.210	0.168	0.131	0.118	0.117	0.113
PL	35 1746	0.000	0.000	0.350	0.234	0.167	0.190
PL	36 1395	0.118	0.177	0.257	****	****	****
PTB	35 128	0.164	0.180	0.248	0.242	0.274	0.269
PTB PTB	35 415 35 1072	0.212	0.225	0.204 0.562	0.123	0.086	0.076
PTB	40 502	0.000	0.000	0.000	0.000	0.013	0.011
РТВ	40 505	0.261	0.161	0.122	0.107	0.102	0.078
РТВ	40 510	0.039	0.037	0.033	0.028	0.000	0.012
PTB PTB	40 537 92 1	***** 1.002	***** 0.993	*****	***** 1.163	***** 1.163	*****
PTB	92 2	1.142	1.121	1.126	1.163	1.163	1.106
PTB	92 3	0.556	0.562	0.628	0.837	1.163	1.076
ROA	14 1569	0.000	0.000	0.001	0.001	0.001	0.001
ROA	35 583	0.000	0.000	0.270	0.301	0.375	0.384
ROA ROA	35 583 35 718 36 1488	0.000	0.000 0.000 0.000	0.000	0.000	0.074 0.043	0.069
ROA	36 1490	0.000	0.000	0.055	0.081	0.081	0.070
SCL	35 621	0.331	0.349	0.444	0.606	0.750	0.747
SCL	35 745	0.016	0.023	0.031	0.035	0.042	0.042
SG	35 1035	0.663	0.717	0.890	1.163	0.787	0.787
SG	35 1127	1.095	1.072	1.126	1.121	0.736	0.660
SG	36 522	0.205	0.206	0.290	0.365	0.346	0.355
SMU	36 1063	0.231	0.288	0.266	0.311	0.393	0.442
SP SP SP	16 137 19 197	0.231 0.000 *****	0.288 0.000 0.000	0.000	0.000	0.000 0.000	0.442 0.000 0.006
SP	35 641	0.000	0.000	0.000	0.000	0.000	0.008

Table 9A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
SP SP SP SP SP	35 1188 35 1642 36 1175 40 7218 40 7299	0.314 0.877 0.383 *****	0.265 0.870 0.356 *****	0.136 0.870 0.322 ***** ****	0.143 0.880 0.387 *****	0.141 0.877 0.393 *****	0.164 0.901 0.430 *****
รบ	40 3802	0.202	0.159	0.139	0.127	0.113	0.103
รบ	40 3803	0.416	0.135	*****	*****	*****	*****
รบ	40 3805	0.025	0.023	0.019	0.019	0.018	0.017
รบ	40 3807	0.539	0.477	0.443	0.318	*****	*****
รบ	40 3810	0.008	0.007	0.007	0.008	0.008	0.008
SU SU SU SU TCC	40 3825 40 3827 40 3831 40 3837 35 1028	0.000 ***** ***** 0.000 *****	***** ***** 0.000 *****	***** ***** 0.140 ****	***** ***** 0.122 ****	***** ***** 0.110 ****	***** ***** 0.104 *****
TCC TCC TL TL TL TL	40 8620 40 8624 35 160 35 300 35 474	***** ***** 0.256 0.077 ****	***** 0.186 0.113 ****	***** ***** 0.229 0.121 *****	***** ***** 0.251 0.159 *****	***** ***** 0.319 0.168 *****	***** ***** 0.388 0.209 *****
TL TL TL TL TL	35809351012351498351500351712	0.877 0.112 0.676 0.003 *****	0.822 0.085 0.690 0.003 *****	0.870 0.079 0.657 0.002	0.893 0.074 0.893 0.003	0.877 0.066 0.877 0.003	0.901 0.055 0.833 0.003
TL	40 3052	*****	*****	*****	*****	*****	0.000
TL	40 3053	0.004	0.006	0.006	0.007	0.008	0.009
TP	35 163	0.000	0.370	0.440	0.230	0.108	0.088
TP	35 1227	0.554	0.745	0.667	0.782	0.745	0.859
TP	36 154	0.142	0.139	0.128	0.134	0.151	0.158
TP	36 326	0.403	0.387	0.327	0.301	0.307	0.377
UME	35 251	0.581	0.549	0.517	0.486	0.604	0.546
UME	35 252	0.353	0.529	0.618	0.838	0.877	0.901
UME	35 872	0.507	0.278	0.315	0.399	0.357	0.447
USNO	35 101	0.240	0.286	0.317	0.397	0.458	0.901
USNO	3510435106351083511435120	0.877	0.870	0.870	0.893	0.877	0.901
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO		0.667	0.706	0.492	0.520	0.877	0.889
USNO		0.554	0.637	0.633	0.469	0.000	0.000
USNO		0.877	0.870	0.870	0.884	0.877	0.901
USNO	3514235146351483515035152	0.877	0.870	0.870	0.803	0.653	0.804
USNO		0.737	0.870	0.870	0.893	0.877	0.901
USNO		0.877	0.870	0.870	0.893	0.877	0.635
USNO		0.153	0.193	0.220	0.320	0.313	0.307
USNO		0.277	0.870	0.822	0.796	0.736	0.901

Table 9A. (Cont.)

lab.	clock	52484	52514	52544	52574	52604	52639
SP SP SP SP SP	35 1188 35 1642 36 1175 40 7218 40 7299	0.166 0.866 0.455 *****	0.172 0.000 0.296 ***** 0.000	0.182 0.338 0.262 ***** ****	0.183 0.327 0.269 0.000 *****	0.110 0.303 0.218 ***** *****	0.066 0.267 0.196 *****
SU	40 3802	0.080	0.074	0.080	0.076	0.084	0.077
SU	40 3803	*****	*****	*****	*****	*****	0.000
SU	40 3805	0.014	0.013	0.015	0.016	0.017	0.016
SU	40 3807	*****	*****	*****	*****	*****	*****
SU	40 3810	0.007	0.007	0.008	0.009	0.009	0.008
SU SU SU SU TCC	40 3825 40 3827 40 3831 40 3837 35 1028	0.000 **** **** 0.082 ****	0.000 0.000 0.000 0.078	0.000 0.000 0.000 0.079	0.000 0.000 0.000 0.071	0.034 0.000 0.000 0.074	0.013 0.779 0.044 0.066 0.000
TCC TCC TL TL TL	40 8620 40 8624 35 160 35 300 35 474	***** 0.374 0.218 ****	***** ***** 0.449 0.262 ****	***** 0.552 0.411 ****	***** ***** 0.452 0.979 *****	***** ***** 0.000 0.844 ****	0.000 0.000 0.107 0.633 0.000
TL	35809351012351498351500351712	0.000	0.000	0.154	0.122	*****	*****
TL		0.040	0.038	0.039	0.035	0.035	0.036
TL		0.435	0.326	0.346	0.329	0.328	0.275
TL		0.003	0.003	0.416	0.278	0.278	0.272
TL		0.000	0.000	0.000	0.000	0.989	1.106
TL	40 3052	0.000	0.000	0.000	0.016	0.013	0.010
TL	40 3053	0.008	0.009	0.009	0.021	0.018	*****
TP	35 163	0.059	0.058	0.061	0.053	0.049	0.048
TP	35 1227	0.759	0.914	0.993	1.053	0.992	0.910
TP	36 154	0.188	0.188	0.200	0.219	0.248	0.225
TP UME UME UME USNO	36 326 35 251 35 252 35 872 35 101	0.328 0.557 0.959 0.446 1.142	0.289 0.381 0.918 0.445 1.121	0.262 0.369 0.878 0.357 1.126	0.253 ***** 0.799 0.279 1.163	***** ***** 0.797 0.190 1.163	***** 0.948 0.158 1.106
USNO	3510435106351083511435120	1.142	1.121	1.126	1.163	1.163	0.895
USNO		1.142	1.121	1.126	1.057	0.896	0.434
USNO		0.878	1.100	1.126	0.792	0.742	0.650
USNO		0.000	0.030	0.023	0.017	*****	*****
USNO		0.785	0.996	0.000	0.641	0.631	0.570
USNO	3514235146351483515035152	0.678	0.803	0.768	0.756	0.832	0.754
USNO		1.142	1.121	1.126	1.163	1.163	1.106
USNO		0.371	0.500	0.415	0.321	0.315	0.296
USNO		0.271	0.272	0.318	0.328	0.503	0.789
USNO		0.773	0.746	0.662	0.493	0.674	0.574

Table 9A. (Cont.)

lab.	clock	52304	52329	52364	52394	52424	52454
USNO	35 153 35 156 35 161 35 164 35 165	0.861	0.605	0.694	0.820	0.658	0.500
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO		0.488	0.524	0.382	0.478	0.515	0.564
USNO		0.467	0.573	0.515	0.401	0.479	0.391
USNO	3516635167351693517135173	0.850	0.669	0.675	0.893	0.877	0.840
USNO		0.836	0.804	0.694	0.718	0.773	0.729
USNO		0.651	0.769	0.694	0.637	0.875	0.762
USNO		0.499	0.541	0.770	0.893	0.877	*****
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO	35 213 35 217 35 225 35 226 35 227	0.489	0.515	0.367	0.313	0.253	0.270
USNO		0.475	0.587	0.634	0.800	0.877	0.901
USNO		0.877	0.870	0.870	0.893	0.000	0.229
USNO		0.877	0.870	0.870	0.893	0.708	0.714
USNO		0.636	0.742	0.767	0.697	0.600	0.712
USNO	35 229 35 231 35 233 35 242 35 244	0.120	0.133	0.140	0.184	0.204	0.164
USNO		0.000	0.000	0.130	0.127	0.118	0.136
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO		0.248	0.267	0.267	0.222	0.277	0.383
USNO		0.877	0.870	0.870	0.893	0.877	0.901
USNO USNO USNO USNO USNO	3524935253352543525535256	0.209 0.877 0.877 0.469 0.877	0.219 0.710 0.870 0.766 0.870	0.217 0.710 0.870 0.858 0.771	0.282 0.719 0.893 0.893 0.893 0.893	0.341 0.500 0.877 0.789 0.798	0.309 0.474 0.901 0.901 0.786
USNO USNO USNO USNO USNO	3526035268352703527935389	0.877 0.592 0.877 0.773 0.000	0.870 0.584 0.870 0.845 0.033	0.870 0.511 0.870 0.675 0.031	0.647 0.562 0.893 0.700 0.038	0.656 0.543 0.877 0.520 0.040	0.485
USNO	3539235394354163541735703	0.877	0.000	0.508	0.492	0.424	0.402
USNO		0.204	0.274	0.304	0.365	0.392	0.468
USNO		0.330	0.375	0.468	0.630	0.698	0.873
USNO		0.000	0.046	0.053	0.076	0.100	0.127
USNO		0.000	0.385	*****	*****	*****	0.000
USNO	35 717	0.464	0.567	0.815	0.893	0.877	0.901
USNO	35 762	0.000	0.423	0.360	0.332	0.297	0.328
USNO	35 763	0.877	0.870	0.870	0.893	0.877	0.901
USNO	35 765	0.027	0.032	0.034	0.041	0.047	0.119
USNO	35 1096	0.136	0.160	0.171	0.148	0.165	0.177
USNO	35 1097	0.877	0.870	0.842	0.893	0.614	0.654
USNO	35 1125	0.877	0.870	0.870	0.893	0.877	0.901
USNO	35 1327	0.000	0.083	0.062	0.064	0.062	0.068
USNO	35 1328	0.580	0.606	0.596	0.658	0.877	0.901
USNO	35 1331	0.773	0.870	0.870	0.893	0.877	0.901

Table 9A. (Cont.)

1-1	-1	50404	50514	50544	50574	50604	50620
lab.	clock	52484	52514	52544	52574	52604	52639
USNO	35 153	0.420	0.524	0.579	0.592	0.751	0.604
USNO	35 156	0.692	0.644	0.789	0.643	0.686	0.565
USNO	35 161	1.142	1.121	1.126	1.163	1.163	1.106
USNO	35 164	0.572	0.777	1.126	0.000	0.552	0.357
USNO	35 165	0.367	0.369	0.332	0.485	0.699	0.697
USNO	35 166	0.696	0.608	0.378	0.304	0.260	0.193
USNO	35 167	0.601	0.605	0.545	0.518	0.477	1.033
USNO	35 169	0.903	0.860	0.579	0.687	0.783	0.658
USNO	35 171	****	****	*****	0.000	0.000	0.000
USNO	35 173	1.142	1.121	1.126	1.163	1.163	1.106
USNO	35 213	0.210	0.230	0.197	0.205	0.184	0.166
USNO	35 217	1.142	1.121	0.962	1.083	1.029	1.106
USNO	35 225	0.156	0.131	0.148	0.140	0.145	0.145
USNO	35 226	0.610	0.615	0.895	1.160	1.127	1.106
USNO	35 227	0.693	0.829	0.693	0.749	0.849	0.670
USNO	35 229	0.137	0.171	0.148	0.146	0.128	0.125
USNO	35 231	0.135	0.165	0.202	0.238	0.294	0.494
USNO	35 233	1.142	1.121	1.126	1.163	1.163	1.106
USNO	35 242	0.433	0.409	0.397	0.455	0.408	0.349
USNO	35 244	0.878	0.819	1.126	0.719	0.740	0.517
USNO	35 249	0.276	0.319	0.000	0.000	0.194	0.193
USNO	35 253	0.574	0.494	0.000	0.000	0.070	0.067
USNO	35 254	1.142	1.121	0.000	0.482	0.443	0.414
USNO	35 255	0.760	0.768	0.917	1.163	1.163	1.106
USNO	35 256	0.515	0.275	0.263	0.288	0.184	0.172
USNO	35 260	0.758	0.722	0.761	0.757	0.739	0.634
USNO	35 268	0.511	0.421	0.431	0.349	0.382	0.383
USNO	35 270	1.142	1.121	1.126	1.163	0.000	0.720
USNO	35 279	0.579	0.944	0.652	0.647	0.590	0.540
USNO	35 389	0.044	0.052	0.061	0.076	0.130	0.543
USNO	35 392	0.345	0.385	0.452	0.514	0.697	1.106
USNO	35 394	0.476	0.471	0.934	0.842	0.750	0.678
USNO	35 416	0.891	1.071	1.126	1.163	1.163	1.106
USNO	35 417	0.130	0.138	0.165	0.247	0.607	1.095
USNO	35 703	0.000	0.000	0.000	0.032	0.028	0.026
USNO	35 717	0.939	1.121	*****	*****	*****	0.000
USNO	35 762	0.289	0.288	0.312	0.416	0.574	0.608
USNO	35 763	1.142	1.121	1.126	1.163	1.163	1.106
USNO	35 765	0.191	0.548	0.746	0.637	0.524	0.367
USNO	35 1096	0.127	0.147	0.228	0.273	0.269	0.276
USNO	35 1097	0.794	0.608	0.659	0.474	0.450	0.408
USNO	35 1125	1.142	0.900	1.126	1.163	1.163	1.106
USNO	35 1327	0.071	0.084	0.108	0.148	0.277	0.703
USNO	35 1328	1.142	0.000	0.737	0.697	0.774	0.663
USNO	35 1331	0.741	0.856	0.978	0.951	0.844	0.863

lab.	clock	52304	52329	52364	52394	52424	52454
USNO	35 1438	0.487	0.574	0.617	0.798	0.877	0.901
USNO	35 1459	0.877	0.870	0.870	0.893	0.877	0.901
USNO	35 1462	0.836	0.694	0.580	0.572	0.000	0.388
USNO	35 1463	0.877	0.870	0.870	0.893	0.877	0.901
USNO	35 1468	*****	*****	*****	*****	0.000	0.000
05110	33 1400					0.000	0.000
USNO	35 1481	0.877	0.870	0.870	0.893	0.877	0.738
USNO	35 1543	0.778	0.870	0.835	0.880	0.803	0.846
USNO	35 1573	*****	*****	0.000	0.000	0.000	0.000
USNO	35 1575	0.877	0.870	0.762	0.686	0.877	0.704
USNO	35 1655	0.000	0.160	0.180	0.245	0.295	0.320
05110	55 1055	0.000	0.100	0.100	0.245	0.255	0.520
USNO	35 1692	0.429	0.494	0.303	0.240	0.230	0.164
USNO	35 1694	0.249	0.320	0.357	0.458	0.548	0.901
USNO	35 1696	0.084	0.085	0.075	0.085	0.085	0.132
USNO	35 1697	0.877	0.852	0.870	0.830	0.877	0.901
USNO	35 1698	0.877	0.870	0.870	0.893	0.877	0.901
05110	55 1050	0.077	0.070	0.070	0.055	0.0//	0.501
USNO	40 701	0.677	0.786	0.646	0.606	0.564	0.533
USNO	40 702	0.877	0.870	0.870	0.893	0.877	0.901
USNO	40 703	0.877	0.839	0.742	0.676	0.629	0.571
USNO	40 704	0.000	0.000	0.870	0.893	0.877	0.901
USNO	40 705	0.000	0.000	0.870	0.871	0.671	0.557
03110	40 705	0.000	0.000	0.070	0.071	0.071	0.337
USNO	40 708	0.191	0.185	0.166	0.179	0.174	0.166
USNO	40 709	0.000	0.000	0.870	0.893	0.877	0.901
USNO	40 710	0.106	0.099	0.118	0.114	0.105	0.094
USNO	40 711	0.008	0.008	0.007	0.008	0.007	0.007
USNO	40 712	0.877	0.870	0.870	0.893	0.877	0.901
03140	40 /12	0.077	0.070	0.070	0.093	0.077	0.901
USNO	40 713	0.597	0.612	0.571	0.588	0.601	0.609
USNO	40 714	0.877	0.870	0.870	0.893	0.851	0.758
USNO	40 715	0.877	0.870	0.870	0.893	0.877	0.870
USNO	40 716	0.004	0.004	0.004	0.005	0.005	0.006
	40 718	0.007	0.007	0.004	0.003	0.008	0.009
USNO	40 /10	0.007	0.007	0.000	0.007	0.000	0.009
USNO	40 719	*****	*****	****	*****	*****	*****
VSL	35 179	0.200	0.189	0.206	0.208	0.202	0.192
VSL	35 456	0.791	0.870	0.842	0.737	0.631	0.000
VSL	35 430	0.294	0.383	0.315	0.379	0.443	0.587
					0.3/9 *****	0.443 *****	0.30/ *****
VSL	35 731	0.535	0.444	0.396	*****	****	~~~~*

lab.	clock	52484	52514	52544	52574	52604	52639
USNO	35 1438	0.964	1.121	1.126	1.163	1.163	1.106
USNO	35 1459	1.142	1.121	1.126	0.760	0.491	0.428
USNO	35 1462	0.309	0.369	0.616	0.945	0.994	0.617
USNO	35 1463	0.907	0.992	0.000	0.292	0.254	0.223
USNO	35 1468	0.000	0.000	0.548	0.808	0.874	0.984
USNO	35 1481	0.489	0.487	0.438	0.426	0.366	0.381
USNO	35 1543	0.584	0.777	0.931	0.919	1.163	1.106
USNO	35 1573	0.444	0.592	0.717	0.595	0.739	0.791
USNO	35 1575	0.669	0.467	0.493	0.516	0.400	0.363
USNO	35 1655	0.336	0.411	0.488	0.485	0.445	0.365
USNO	35 1692	0.114	0.112	0.105	0.133	0.140	0.121
USNO	35 1694	0.767	0.747	0.790	0.835	0.820	0.646
USNO	35 1696	0.140	0.173	0.197	0.203	0.276	0.353
USNO	35 1697	1.142	1.121	1.126	*****	0.000	0.000
USNO	35 1698	1.142	1.087	1.126	1.163	1.150	1.032
USNO	40 701	0.489	0.891	1.126	1.163	1.163	1.106
USNO	40 702	1.142	1.121	1.126	1.163	1.163	1.106
USNO	40 703	0.486	0.523	0.667	0.937	1.163	1.106
USNO	40 704	1.094	1.013	1.037	0.856	0.840	0.744
USNO	40 705	0.428	0.387	0.356	0.324	0.291	0.250
USNO	4070840709407104071140712	0.145	0.146	0.157	0.153	0.158	0.149
USNO		1.087	0.829	0.759	0.000	0.329	0.166
USNO		0.075	0.070	0.070	0.064	0.060	0.051
USNO		0.006	0.006	0.006	0.006	0.006	0.005
USNO		1.142	1.121	1.126	1.163	1.163	1.106
USNO	4071340714407154071640718	0.523	0.529	0.539	0.567	0.623	0.573
USNO		0.596	0.580	0.736	0.798	0.890	0.843
USNO		0.765	0.808	0.935	0.930	1.065	0.953
USNO		0.007	0.011	0.016	0.023	0.033	0.050
USNO		0.009	0.010	0.013	0.015	0.017	0.018
USNO	40 719	*****	*****	*****	*****	0.000	0.000
VSL	35 179	0.323	0.453	0.517	0.594	0.824	0.658
VSL	35 456	0.214	0.137	0.153	*****	****	****
VSL	35 548	1.102	1.013	1.049	1.163	1.163	1.068
VSL	35 731	0.000	0.000	0.000	0.000	0.255	0.343

The clocks are designated by their type (2 digits) and serial number in the type. The codes for the types are:

12 HEWLETT-PACKARD 5061A 13 EBAUCHES, OSCILLATOM B5000 14 HEWLETT-PACKARD 5061A OPT. 4 16 OSCILLOQUARTZ 3200 17 OSCILLOQUARTZ 3000 15 DATUM/SYMMETRICOM Cs III 4x HYDROGEN MASERS 9x PRIMARY CLOCKS AND PROTOTYPES 21 OSCILLOQUARTZ 3210
23 OSCILLOQUARTZ EUDICS 3020
30 HEWLETT-PACKARD 5061B
31 HEWLETT-PACKARD 5061B OPT. 4
34 H-P 5061A/B with 5071A tube
35 AGILENT 5071A High perf.
36 AGILENT 5071A Low perf.
50 FREQ. AND TIME SYSTEMS INC. 4065A

Interval	Numt	ber of	clocks	0.	Nur weigł			ck with ** weigl			eight imum w	eight	maximum relative
2002	НМ	5071A	total	ΗM	5071A	total	HM	5071A ·	total	НМ	5071A	total	weight
Jan.	41	168	250	8	11	22	3	4	8	7	47	56	0.877
Feb.	41	166	248	8	6	18	4	1	10	6	47	55	0.870
Mar.	40	167	246	4	8	16	3	1	6	8	45	55	0.870
Apr.	40	164	245	5	10	21	3	4	9	7	40	49	0.893
May	39	174	256	4	18	28	3	5	12	6	47	55	0.877
June	39	171	252	3	20	30	3	3	8	6	38	46	0.901
July	40	173	253	5	23	34	3	2	7	4	20	25	1.142
Aug.	42	177	260	6	26	37	3	6	11	4	21	26	1.121
Sep.	41	176	253	6	20	31	3	7	11	4	26	32	1.126
Oct.	42	174	260	7	24	45	5	5	12	4	23	29	1.163
Nov.	41	169	253	5	19	38	3	6	10	5	20	28	1.163
Dec.	45	174	261	8	17	35	2	1	5	5	20	27	1.106

Table 9B. Statistical data on the weights attributed to the clocks in 2002

* A priori null weight (test interval of new clocks).

** Null weight resulting from the statistics.

HM designates hydrogen masers and 5071A designates Hewlett-Packard 5071A units with high performance tube.

Clocks with missing data during a one-month interval of computation are excluded.

TIME SIGNALS

The time signal emissions reported here follow the UTC system, in accordance with the Recommendation 460-4 of the Radiocommunication Bureau (RB) of the International Telecommunication Union (ITU) unless otherwise stated.

Their maximum departure from the Universal Time UT1 is thus 0.9 second.

The following tables are based on information received at the BIPM in February and March 2003.

•

AUTHORITIES RESPONSIBLE FOR THE TIME SIGNAL EMISSIONS

Signal	Authority
ΑΤΑ	National Physical Laboratory Dr. K.S. Krishnan Road New Delhi - 110012, India
ВРМ	Time and Frequency Division National Time Service Center, NTSC (Formely Shaanxi Astronomical Observatory, CSAO) Chinese Academy of Sciences P.O. Box 18 - Lintong Shaanxi 710600, China
BSF	National Standard Time and Frequency Laboratory Telecommunication Laboratories Chunghwa Telecom. Co., Ltd. No. 12, Ln.551, Ming-Tsu Road Sec. 5 Yang-Mei, Taoyuan, 326 Taiwan, Rep. of China
СНИ	National Research Council of Canada Institute for National Measurement Standards – Frequency and Time Standards Ottawa, Ontario, K1A 0R6, Canada
DCF77	Physikalisch-Technische Bundesanstalt Time Unit Section (4.32) Bundesallee 100 D-38116 Braunschweig Germany
EBC	Real Instituto y Observatorio de la Armada Cecilio Pujazón s/n 11.110 San Fernando Cádiz, Spain
HBG	METAS METrology and Accreditation Switzerland Electricity, Acoustic and Time Section Lindenweg 50 CH-3003 Bern-Wabern Switzerland

Signal	Authority
HLA	Time and Frequency Laboratory Korea Research Institute of Standards and Science Yusong P.O. Box 102, Taejon 305-600 Republic of Korea
IAM	Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione Viale America, 201 00144 - Roma, Italia
JJA	Japan Standard Time Group Communications Research Laboratory 2-1, Nukui-kitamachi 4-chome Koganei-shi, Tokyo 184-8795 Japan
LDS	School of Electronic and Electrical Engineering Leeds University Leeds LS2 9JT United Kingdom
LOL	Servicio de Hidrografía Naval Observatorio Naval Buenos Aires Av. España 2099 C1107AMA – Buenos Aires, Argentina
MSF	National Physical Laboratory Centre for Electromagnetic and Time Metrology Teddington, Middlesex TW11 0LW United Kingdom
RAB-99, RBU, RJH-63, RJH-69, RJH-77, RJH-86, RJH-90,RTZ,RWM	Institute of Metrology for Time and Space (IMVP), GP "VNIIFTRI" Mendeleevo, , Moscow Region 141570 Russia
TDF	FT R et D France Telecom Recherche et Développement Laboratoire RTA/D2M Technopole ANTICIPA 2, avenue Pierre Marzin 22307 - Lannion Cedex, France

Signal	Authority	
VNG	National Standards Commission P.O. Box 282 North Ryde NSW 1670 Australia	
WWV, WWVB, WWVH	Time and Frequency Division, 847.00 National Institute of Standards and Technology - 325 Broadway Boulder, Colorado 80305, U.S.A.	
γντο	Direccion de Hidrografía y Navegación Observatorio Cagigal Apartado Postal No 6745 Caracas, Venezuela	

TIME SIGNALS EMITTED IN THE UTC SYSTEM

	Location			
Station	Latitude	Frequency	Schedule (UTC)	Form of the signal
	Longitude	(kHz)		
ATA	Greater	10 000	continuous	Second pulses of 5 cycles of a 1 kHz modulation.
(1)	Kailash			Minute pulses of 100 ms duration. The time signals are
	New Delhi			advanced by 50 ms on UTC.
	India			
	28° 34'N			
	77° 19'E			
BPM	Pucheng	2 500	7 h 30 m to 1 h	Signals emitted in advance on UTC by 20 ms. Second
	China	5 000	continuous	pulses of 10 ms duration with 1 kHz modulation. Minute
	35° 0'N	10 000	continuous	pulses of 300 ms duration with 1 kHz modulation. UTC
	109° 31'E	15 000	1 h to 9 h	time signals are emitted from minute 0 to 10, 15 to 25,
				30 to 40, 45 to 55.
				UT1 time signals are emitted from minute 25 to 29, 55
				to 59.
BSF	Chung-Li	5 000	continuous except	From minute 5 to 10, 15 to 20, 25 to 30, 45 to 50, 55 to
(1)	Taiwan	15 000	interruption between	60, second pulses of 5 ms duration without 1 kHz
	Rep. of China		minutes 35 and 40	modulation.
	24° 57'N			From minute 0 to 5, 10 to 15,, 50 to 55, second
	121° 09'E			pulses of 5 ms duration with 1 kHz modulation.
				The 1 kHz modulation is interrupted 40 ms before and
				after the pulses.
				Minute pulses are extended to 300 ms duration.
				DUT1: ITU-R code by pulse lengthening.
CHU	Ottawa	3 330	continuous	Second pulses of 300 cycles of a 1 kHz modulation,
СНО	Canada	7 335	continuous	with 29th and 51st to 59th pulses of each minute
	45° 18'N	14 670		omitted. Minute pulses are 0.5 s long. Hour pulses are
	75° 45'W	14 07 0		1.0 s long, with the following 1st to 10th pulses omitted.
				A bilingual (Fr. Eng.) announcement of time (UTC) is
				made each minute following the 50th second pulse.
				FSK code (300 bps, Bell 103) after 10 cycles of 1 kHz
				on seconds 31 to 39. Year, DUT1, leap second
				information, TAI-UTC and Canadian summer time
				format on 31, and time code on 32-39. Broadcast is
				single sideband; upper sideband with carrier reinsert.
				DUT1 : ITU-R code by double pulse.

(1) Information based on the Annual Report for 2001, not confirmed by the laboratory.

Station	Location Latitude Longitude	Frequency (kHz)	Schedule (UTC)	Form of the signal
DCF77	Mainflingen Germany 50° 1'N 9° 0'E	77.5	continuous	At the beginning of each second (except the 59th second) the carrier amplitude is reduced to about 25 % for a duration of 0.1 s or 0.2 s. Coded transmission of year, month, day, hour, minute and day of the week in a BCD code from second marker No 21 to No 58 (The second marker durations of 0.1 s or 0.2 s correspond to a binary 0 or a binary 1 respectively). The coded time information is related to legal time of Germany and second markers 17 and 18 indicate if the transmitted time refers to UTC(PTB) + 2 h (summer time) or UTC(PTB) + 1 h (winter time). To achieve a more accurate time transfer and better use of the frequency spectrum available, an additional pseudo-random phase-shift keying of the carrier is superimposed to the AM second markers.
				No transmission of DUT1.
EBC	San Fernando Spain 36° 28'N 6° 12'W	15006 4998	10 h 00 m to 10 h 25 m 10 h 30 m to 10 h 55 m except Saturday, Sunday and national holidays.	Second pulses of 0.1 s duration of a 1 kHz modulation. Minute pulses of 0.5 s duration of 1 250 Hz modulation. DUT1: ITU-R code by double pulse.
HBG	Prangins Switzerland 46° 24'N 6° 15'E	75	continuous	At the beginning of each second (except the 59^{th} second), the carrier is interrupted for a duration of 0.1 s or 0.2 s corresponding to "binary 0" or "binary 1", respectively, double pulse each minute. The number of the minute, hour, day of the month, day of the week, month and year are transmitted in BCD code from the 21 st to the 58 th second. The time signals are generated by the Swiss Federal Office of Metrology and Accreditation and in accordance with the legal time of Switzerland which is UTC(CH) + 1 h (Central European Time CET) or UTC(CH) + 2 h (Central European Summer Time CEST). In addition, CET and CEST are indicated by a binary 1 at the 18 th or 17 th second, respectively.
HLA (1)	Taedok Science Town Rep. of Korea 36° 23'N 127° 22'E	5 000	continuous	Pulses of 9 cycles of 1 800 Hz modulation. 29th and 59th second pulses omitted. Hour identified by 0.8 s long 1 500 Hz tone. Beginning of each minute identified by a 0.8 s long 1 800 Hz tone. Voice announcement of hours and minutes each minute following the 52 nd second pulse. BCD time code given on 100 Hz subcarrier. DUT1: ITU-R code by double pulse.

(1) Information based on the Annual Report for 2001, not confirmed by the laboratory.

	Location			
Station	Latitude	Frequency	Schedule (UTC)	Form of the signal
	Longitude	(kHz)		
IAM	Roma	5 000	7 h 30 m to 8 h 30 m	Second pulses of 5 cycles of 1 kHz modulation. Minute
	Italy		10h 30 m to 11 h 30 m	pulses of 20 cycles.
	41° 47'N		except Sunday and national	 A second sec second second sec
	12° 27'E		holidays.	0 h 0 m.
			Advanced by 1 hour in	DUT1: ITU-R code by double pulse.
			summer.	
JJY	Miyakoji	40	Continuous	A1B type 0.2 s, 0.5 s and 0.8 s second pulses,
	Fukushima			spacings are given by the reduction of the amplitude of
	Japan			the carrier. Coded announcement of hour, minute, day
	37° 22'N			of the year, year, day of the week and leap second.
	140° 51'E			Transmitted time refers to UTC(CRL) + 9 h.
JJY	Fuji	60	Continuous	A1B type 0.2 s, 0.5 s and 0.8 s second pulses,
	Saga			spacings are given by the reduction of the amplitude of
	Japan			the carrier. Coded announcement of hour, minute, day
	33° 28'N			of the year, year, day of the week and leap second
	130° 11'E			same as JJY(40).
				Transmitted time refers to UTC(CRL) + 9 h.
LDS	Leeds	5 000	Continuous	Second pulse amplitude = 2.4 V (50 ohm), 5 ns rise
	United			time and 20 μs width.
	Kingdom			Initial clock synchronization: 50 ns of UTC.
	53 ° 48'N			
	1° 33'W			
LOL	Buenos Aires	5 000	11 h to 12 h	Second pulses of 5 cycles of 1000 Hz modulation.
(2)	Argentina	10 000	14 h to 15 h	Second 59 is omitted. Annoucement of hours and
	34° 37'S	*15 000	17 h to 18 h	minutes every 5 minutes, followed by 3 minutes of
	58° 21'W		20 h to 21 h	1000 Hz or 440 Hz modulation.
			23 h to 24 h	DUT1: ITU-R code by lengthening.
MSF	Rugby	60	Continuous, except for	Interruptions of the carrier of 100 ms for the second
	United		interruptions for	pulses and of 500 ms for the minute pulses. The signal
	Kingdom		maintenance from	is given by the beginning of the interruption. BCD NRZ
	52° 22'N		10 h 0 m to 14 h 0 m on the	code, 1 bit/s (year, month, day of the month, day of the
	1° 11'W		first Tuesday of January,	week, hour, minute) from second 17 to 59 in each
			April, July and October. A	minute, following the seconds interruption.
			longer period	DUT1: ITU-R code by double pulse.
			of maintenance during the	
			summer is announced	
			annually.	

(2)

LOL. * discontinued for maintenance

	Location			
Station	Latitude	Frequency	Schedule (UTC)	Form of the signal
	Longitude	(KHz)		
RAB-99	Khabarovsk	25.0	02 h 06 m to 02 h 40 m	A1N type signals are transmitted between minutes 10
	Russia	25.1	06 h 06 m to 06 h 40 m	and 22: 0.025 second pulses of 12.5 ms duration are
	48° 30'N	25.5		transmitted between minutes 10 and 13; second
	134° 50'E	23.0		pulses of 0.1 s duration, 10 second pulses of 1 s
		20.5		duration, 0.1 second pulses of 25 ms and minute
				pulses of 10 s duration are transmitted between
				minutes 13 and 22.
RBU	Moscow	200/3	Continuous	DXXXW type 0.1 s signals. The numbers of the minute,
	55° 44'N			hour, day of the month, day of the week, month, year of
	38° 12'E			the century, difference between the universal time and
				the local time, TJD and DUT1+dUT1 are transmitted
				each minute from the 1 st to the 59 th second.
				DUT1+dUT1 : by double pulse.
RJH-63	Krasnodar	25.0	11 h 06 m to 11 h 40 m	A1N type signals are transmitted between minutes 9
	Russia	25.1		and 20: 0.025 second pulses of 12.5 ms duration are
	44° 46'N	25.5		transmitted between minutes 9 and 11; 0.1 second
	39° 34'E	23.0		pulses of 25 ms duration, 10 second pulses of 1 s
		20.5		duration and minute pulses of 10 s duration are
				transmitted between minutes 11 and 20.
RJH-69	Moiodechno	25.0	07 h 06 m to 07 h 47 m	A1N type signals are transmitted between minutes 10
1101-00	Belarus	25.0		and 22 : 0.025 second pulses of 12.5 ms duration are
	54° 28'N	25.5		transmitted between minutes 10 and 13; second
	26° 47'E	23.0		pulses of 0.1 s duration, 10 second pulses of 1 s
	20 47 1	20.5		duration, 0.1 second pulses of 25 ms and minute
		20.5		pulses of 10 s duration are transmitted between
				minutes 13 and 22.
RJH-77	Arkhangelsk	25.0	09 h 06 m to 09 h 47 m	A1N type signals are transmitted between minutes 10
	Russia	25.1		and 22: 0.025 second pulses of 12.5 ms duration are
	64° 22'N	25.5		transmitted between minutes 10 and 13; second
	41° 35'E	23.0		pulses of 0.1 s duration, 10 second pulses of 1 s
		20.5		duration, 0.1 second pulses of 25 ms and minute
				pulses of 10 s duration are transmitted between
				minutes 13 and 22.
RJH-86	Bishkek	25.0	04 h 06 m to 04 h 47 m	A1N type signals are transmitted between minutes 10
1311-00	Kirgizstan	25.0	10 h 06 m to 10 h 47 m	and 22 : 0.025 second pulses of 12.5 ms duration are
	43° 03'N	25.1	10 11 00 11 10 10 11 47 111	transmitted between minutes 10 and 13; second
	73° 37'E	23.0		pulses of 0.1 s duration, 10 second pulses of 1 s
	13 37 E	20.5		duration, 0.1 second pulses of 25 ms and minute
		20.0		pulses of 10 s duration are transmitted between
				minutes 13 and 22.

Station	Location Latitude Longitude	Frequency (kHz)	Schedule (UTC)	Form of the signal
RJH-90	Nizhni	25.0	05 h 06 m to 05 h 47 m	A1N type signals are transmitted between minutes 10
	Novgorod	25.1		and 22: 0.025 second pulses of 12.5 ms duration are
	Russia	25.5		transmitted between minutes 10 and 13; second
	56° 11'N	23.0		pulses of 0.1 s duration, 10 second pulses of 1 s
	43° 57'E	20.5		duration, 0.1 second pulses of 25 ms and minute pulses of 10 s duration are transmitted between minutes 13 and 22.
RTZ (3)	Irkutsk	50	Winter schedule	A1X type second pulses of 0.1 s duration are
	Russia		22 h 00 m to 24 h 00 m	transmitted between minutes 0 and 5. The pulses at the
	52° 26'N		00 h 00 m to 21 h 00 m	beginning of the minute prolonged to 0.5 s. A1N type
	103° 41'E		Summer schedule	0.1 second pulses of 0.02 s duration are transmitted at
			21 h 00 m to 24 h 00 m	59 th minute. The pulses at the beginning of the second
			00 h 00 m to 20 h 00 m	are prolonged to 40 ms and of the minute to 0.5 s. DUT1+dUT1: by double pulse.
	Maaaaa	4 000	The station encodes	Add the second subsect of 0.1 a duration and
RWM (3)	Moscow Russia	4 996 9 996	The station operates simultaneously on the three	A1X type second pulses of 0.1 s duration are transmitted between minutes 10 and 20, 40 and 50.
	55° 44'N	9 990 14 996	frequencies.	The pulses at the beginning of the minute are
	38° 12'E	14 990	frequencies.	prolonged to 0.5 s.
				A1N type 0.1 s second pulses of 0.02 s duration are transmitted between minutes 20 and 30. The pulses at the beginning of the second are prolonged to 40 ms and of the minute to 0.5 ms. DUT1+dUT1: by double pulse.
TDE	Allevie	460		Disco modulation of the corrier by 11 and 1 rd in 0.1 a
TDF	Allouis France	162	continuous, except every Tuesday from 1 h to 5 h	Phase modulation of the carrier by +1 and -1 rd in 0.1 s every second except the 59 th second of each minute.
	47° 10'N		ruesday nom i n to 5 h	This modulation is doubled to indicate binary 1. The
	2° 12'E			numbers of the minute, hour, day of the month, day of the
	2"12 E			week, month and year are transmitted each minute from the 21 st to the 58 th second, in accordance with the French legal time scale. In addition, a binary 1 at the 17th second indicates that the local time is 2 hours ahead of UTC (summer time); a binary 1 at the 18 th second indicates that the local time is 1 hour ahead of UTC (winter time); a binary 1 at the 14 th second indicates that the current day is a public holiday (Christmas, 14 July, etc); a binary 1 at the 13 th
				second indicates that the current day is a day before a

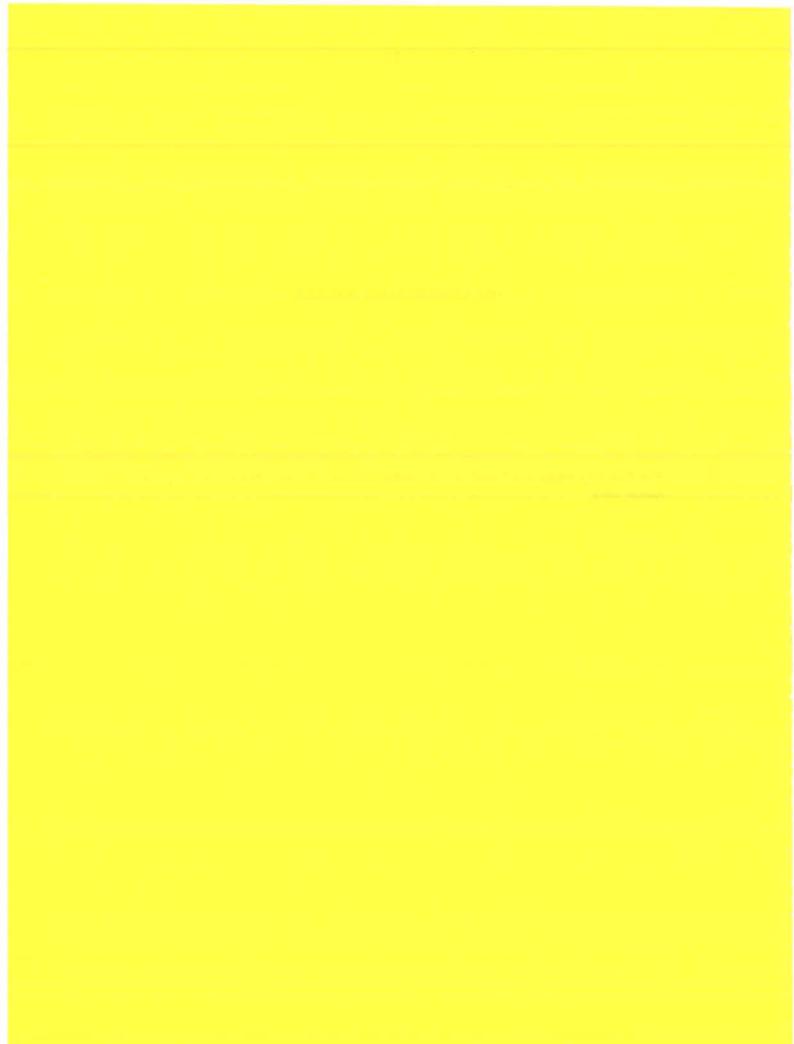
(3) RTZ and RMW are the radiostations emitting DUT1 information in accordance with the ITU-R code and also giving an additional information, dUT1, which specifies more precisely the difference UT1-UTC down to multiples of 0.02 s, the total value of the correction being DUT1+dUT1.

Positive values of dUT1 are transmitted by the marking of *p* second markers within the range between the 21st and 24th second so that dUT1 = $+p \times 0.02$ s.

public holiday.

Negative values of dUT1 are transmitted by the marking of q second markers within the range between the 31st and 34th second, so that dUT1 = $-q \times 0.02$ s.

	Location			
Station	Latitude	Frequency	Schedule (UTC)	Form of the signal
	Longitude	(kHz)		
VNG (4)	Llandilo	2 500	continuous	Second pulses of 50 ms of 1 kHz modulation. Second
	New South	5 000	continuous	pulses 55 to 58 of 5 ms of 1 kHz modulation. Second
	Wales	8 638	continuous	pulse at 59 is omitted. Minute pulses of 0.5 s of 1 kHz
	Australia	12 984	continuous	modulation. During minutes 5, 10, 15,, second
	33° 43'S	16 000	22 h to 10 h	pulses 50 to 58 are 5 ms long with 1 kHz modulation.
	150° 48'E			BCD time code giving day of the year, hour and minute
				at the next minute is given between seconds 20 and 46.
				Voice announcement on
				2 500, 5 000 and 16 000 kHz during minutes 15, 30, 45
				and 60. Morse station identification on 8 638 and
				12 984 kHz during minutes 15, 30, 45 and 60.
				DUT1: ITU-R code by double pulse.
wwv	Fort-Collins	2 500		Pulses of 5 cycles of 1 kHz modulation. 29th and 59th
	CO, USA	5 000		second pulses omitted. Hour is identified by 0.8 second
	40° 41'N	10 000	continuous	long 1 500 Hz tone. Beginning of each minute identified
	105° 2'W	15 000		by 0.8 second long 1 000 Hz tone.
		20 000		DUT1: ITU-R code by double pulse. BCD time code
				given on 100 Hz subcarrier, includes DUT1 correction.
WWVB	Fort-Collins	60	continuous	Second pulses given by reduction of the amplitude of
	CO, USA			the carrier, coded announcement of the date, time,
	40° 40'N			DUT1 correction, daylight saving time in effect, leap
	105° 3'W			year and leap second.
WWVH	Kauai	2 500		Pulses of 6 cycles of 1 200 Hz modulation. 29th and
	HI, USA	5 000	continuous	59 th second pulses omitted. Hour is identified by
	21° 59'N	10 000		0.8 second long 1 500 Hz tone. Beginning of each
	159° 46'W	15 000		minute identified by 0.8 second long 1 200 Hz tone.
				DUT1: ITU-R code by double pulse. BCD time code
				given on 100 Hz subcarrier, includes DUT1 correction.
YVTO	Caracas	5 000	continuous	Second pulses of 1 kHz modulation with 0.1 s duration.
	Venezuela			The minute is identified by a 800 Hz tone and a 0.5 s
	10° 30'N			duration. Second 30 is omitted. Between seconds 40
	66° 56'W			and 50 of each minute, voice announcement of the
				identification of the station. Between seconds 52 and
				57 of each minute, voice announcement of hour,
				minute and second.


(4) VNG: Please note that transmission of the time signal VNG ceased permanently on 31 December 2002,

ACCURACY OF THE CARRIER FREQUENCY

	Relative	
	uncertainty of	
Station	the carrier	
	frequency in 10 ⁻¹⁰	
ATA	0.1	
BPM	0.01	
BSF	0.1	
CHU	0.05	
DCF77	0.02	
EBC	0.1	
HBG	0.02	
HLA	0.02	
IAM	0.5	
JJY	0.01	
LDS	0.01	
LOL	0.1	
MSF	0.02	
RAB-99, RJH-63	0.05	
RBU	0.02	
RJH-69, RJH-77	0.05	
RJH-86, RJH-90	0.05	
RTZ	0.05	
RWM	0.1	
TDF	0.02	
VNG	0.1	
WWV	0.01	
WWVB	0.01	
WWVH	0.01	

TIME DISSEMINATION SERVICES

The following tables are based on information received at the BIPM in February and March 2003.

AUTHORITIES RESPONSIBLE FOR THE TIME DISSEMINATION SERVICES

AOS	Astrogeodynamical Observatory Borowiec near Poznan Space Research Centre P.A.S. PL 62-035 Kornik Poland
AUS	Standards for Time and Fraquency Project CSIRO National Measurement Laboratory PO Box 218 Lindfield NSW 2070 AUSTRALIA
BEV	Bundesamt für Eich- und Vermessungswesen Arltgasse 35 A-1160 Wien Vienna Austria
BNM-SYRTE	Bureau National de Métrologie – Systèmes de Référence Temps-Espace Observatoire de Paris 61, avenue de l'Observatoire 75014 Paris - France
CNM	Centro Nacional de Metrología Km. 4.5 Carretera a Los Cués El Marqués, Querétaro, C.P. 76241 México - Mexico
CRL	Japan Standard Time Group Communications Research Laboratory 2-1, Nukui-kitamachi 4-chome Koganei-shi, Tokyo 184-8795 Japan
CSIR	Time and Frequency Laboratory CSIR – National Metrology Laboratory P.O. Box 395 Pretoria 0001 South Africa
GUM	Time and Frequency Laboratory Główny Urząd Miar UI. Elektoralna 2 P.O. Box P-10 PL 00-950 Warszawa - Poland
IEN	Istituto Elettrotecnico Nazionale Galileo Ferraris Strada delle Cacce, 91 I - 10135 Torino Italie
INPL	National Physical Laboratory Danciger A bldg Givat - Ram, The Hebrew university 91904 Jerusalem ISRAEL

KRISS	Time and Frequency Group Division of Optical Metrology Korea Research Institute of Standardsand Science P.O. Box 102, Yuseon Daejon 305-600. Republic of Korea
METAS	METrology and Accreditation Switzerland Electricity, Acoustic and Time Section Lindenweg 50 CH-3003 Bern-Wabern Switzerland
NIM	Time & Frequency Laboratories National Institute of Metrology 7, District 11 Heping street Beijing - Popular Republic of China
NIST	National Institute of Standards and Technology Time and Frequency Division, 847.00 325 Broadway Boulder, Colorado 80305, USA
NMLS	Time and Frequency Laboratory National Metrology Laboratory SIRIM Berhad, No. 1 Persiaran Dato' Menteri, P. O. Box 7035, 40911 Shah Alam Malaysia
NPL	National Physical Laboratory Centre for Electromagnetic and Time Metrology Teddington, Middlesex TW11 0LW United Kingdom
NRC	National Research Council of Canada Institute for National Measurement Standards Frequency and Time Standards Bldg M-36, 1200 Montreal Rd. Ottawa, Ontario, K1A OR6, Canada
NTSC	National Time Service Center Chinese Academy of Sciences P.O. Box 18, Lintong Shaanxi 710600, China
ONBA	Servicio de Hidrografía Naval Observatorio Naval Buenos Aires Servicio de Hora Av. España 2099 C1107AMA – Buenos Aires, Argentina
ONRJ	Observatorio Nacional (CNPq) Departamento Serviço da Hora Rua General Bruce, 586, Sao Cristovao 20291- 030 – Rio de Janeiro, Brasil

ORB	Royal Observatory of Belgium Avenue Circulaire, 3 B-1180 Brussels Belgium
РТВ	Physikalisch-Technische Bundesanstalt Time Unit Section (4.32) Bundesallee 100 D-38116 Braunschweig Germany
ROA	Real Instituto y Observatorio de la Armada Cecilio Pujazón s/n 11.100 San Fernando Cádiz, Spain
SG	National Measurement Centre Standards, Productivity and Innovation Board (SPRING Singapore) 1 Science Park Drive, Singapore 118221 Singapore
SP	SP Swedish National Testing and Research Institute Box 857 S-501 15 BORAS Sweden
TL	National Standard Time and Frequency Laboratory Telecommunication Laboratories Chunghwa Telecom. Co., Ltd. No. 12, Ln.551, Ming-Tsu Road Sec. 5 Yang-Mei, Taoyuan, 326 Taiwan, Rep. of China
TP	Institute of Radio Engineering and Electronics Czech Academy of Sciences Chaberska 57 182 51 Praha 8 Czech Republic
USNO	U.S. Naval Observatory 3450 Massachusetts Ave., N.W. Washington, D.C. 20392-5420 USA
VSL	NMi Van Swinden Laboratorium Postbus 654 2600 AR Delft Netherlands

85

Time Dissemination Services

AUS	AOS Computer Time Service:
	vega.cbk.poznan.pl (150.254.183.15) Synchronization: NTP V3 primary (Caesium clock), PC Pentium, RedHat Linux Service Area: Poland/Europe Access Policy: open access Contact: Jerzy Nawrocki (nawrocki@cbk.poznan.pl) Robert Diak (kondor@cbk.poznan.pl) Full list of time dissemination services is available on: http://www.eecis.udel.edu/~mills/ntp/clock1.htm
AUS	Network Time Service Computers connected to the Internet can be synchronized to UTC(AUS) using the NTP protocol. The NTP servers are either directly referenced to UTC(AUS) or via a GPS common view link.
	There are presently three servers available to the general public: ntp.nml.csiro.au Sydney ntp.mel.nml.csiro.au Melbourne ntp.per.nml.csiro.au Perth
	Current information can be found on the web pages: www.nml.csiro.au
BEV	A NTP server is available; address: time.metrology.at; more information on http://www.metrology.at
	Provides a time dissemination service via phone and modem to synchronize PC clocks. Uses the Time Distribution System from TUG. It has a baud rate of 1200 and everyone can use it with no cost. Access phone number is +43 (0) 1 49110381 The system will be updated periodically (DUT1, Leap Second).
BNM-SYRTE	BNM-SYRTE operates one primary time server using the "Network Time Protocol" (NTP) : Hostname: ntp-p1.obspm.fr
	Futher information at: http://opdaf1.obspm.fr/www/ntp_infos.html
CNM	CENAM operates a voice automatic system that provides the local time for three different time zones for North America; Central Time, Mountain Time and Pacific Time as well the UTC(CNM). The access numbers are:
	+52 442 211 0506: Central Time +52 442 211 0507: Monition Time
	+52 442 211 0507: Monition Time +52 442 211 0508: Pacific Time
	+52 442 215 3902: UTC(CNM)

	Telephone Code
	CENAM provides a telephone code for setting time in computers. More information about this service please contact J. Mauricio López at jlopez@cenam.mx
	Network Time Protocol
	Operates one time server using the "Network Time Protocol", it is located at the Centro Nacional de Metrología, Querétaro, México. Further information at http://mensor.cenam.mx/site/InternetTime.htm
CRL	Telephone Time Service (TTS)
	Provides digital time code accessible by computer at 300/1200/2400 bps, 8 bits, no parity. Access phone numbers: + 81 42 327 7592.
CSIR	Telephone Time Service (TTS)
	Provides digital time code accessible by computer for setting time in
	computers. Measurement of telephone transmission delay is included. Access phone numbers: + 27 12 349 1576, + 27 12 349 1577.
	More information and software for accessing the service is available at http://www.nml.csir.co.za/
	Network Time Service
	Two NTP servers are available, tick.nml.csir.co.za and tock.nml.csir.co.za with an open access policy. More information is available at http://www.nml.csir.co.za/
GUM	Telephone Time Service providing the European time code by Telephone modem for setting time in computers. Includes provision for compensation of propagation time delay. Access phone number: +48 22 654 88 72
IEN	CTD Telephone Time Code Time signals dissemination, according to the European Time code format, available via modem on regular dial-up connection. Access phone number : 0039 011 3919 263 and 0039 011 3919 264. Provides a synchronization to UTC(IEN) for computer clocks without Compensation for the propagation time. Software for the synchronization of computer clocks is available on IEN home page (www.ien.it). Internet Time Service The IEN operates two time servers using the "Network Time Protocol" (NTP); host names of the servers are npt1.ien.it and ntp2.it. More information on this service can be found on the web pages: www.ien.it/ntp/index_i.shtml.

INPL (1)	INPL is providing two electronic time dissemination services:
	 via telephone. The user must download a program from INPL ftp site (vms.huji.ac.il)
	2. NTS via optic fiber to the Hebrew University which provides time on
	3. the internet. For details email clock@vms.huji.ac.il
KRISS (1)	Telephone Time Service
(')	Provides digital time code to synchronize computer clocks to Korea Standard Time (=UTC(KRIS) + 9 h) via modem.
	Access phone numbers: + 82 42 863 7117, + 82 42 868 5116
	Network Time Service
	KRISS operates a time server using the NTP to synchronize computer clocks to Korea Standard Time via the Internet.
	Host name of the server : time.kriss.re.kr (203.254.163.74)
	Software for the synchronization of computer clocks is available at http://www.kriss.re.kr/time
METAS	Telephone Time Service
	The coded time information is referenced to UTC(CH) and generated by a TUG type time code generator using an ASCII-character code. The time protocols are sent in a common format, the "European Telephone Time Code".
	Access phone numbers: +41 31 323 32 25, +41 31 323 47 00.
	Network Time Protocol
	METAS operates a time server using the "Network Time Protocol"(NTP).
	Host name of the server : ntp.metas.ch Further information available at http://www.metas.ch
	r dittier mormation available at http://www.metas.on
NIM	(1) Television Time Service
	The coded time information generated by one time code generator is inserted into the TV signal. It can be obtained by using a decode TV
	receiver. The time reference is UTC(NIM). Access TV channel: 1,2,8 of CCTV.
	(2) Telephone Time Service
	The coded time information generated by NIM time code generator, referenced to UTC(NIM). Telephone Code provides digital time code at 1200 to 9600 bauds, 8 bits, no parity, 1 stop bit.
	Access phone number: 8610 6422 9086.
	(3) Network Time Service
	Provides digital time code across the Internet using NTP.

(1) Information based on the Annual Report for 2001, not confirmed by the laboratory,

NIST	Automated Computer Time Service (ACTS)
	Provides digital time code by telephone modem for setting time in computers.
	Includes provision for calibration of telephone time delay. Access phone numbers : +1 303 494 4774 and +1 808 335 4721. Further information at http://www.boulder.nist.gov/timefreq/.
	Network Time Service (NTS)
	Provides digital time code across the Internet using three different protocols. Geographically distributed set of time servers within the United States of America.
	Further information at http://www.boulder.nist.gov/timefreq/.
NMLS	Telephone Time Service
	The coded time information is referenced to UTC(NMLS) and generated by a TUG type telephone time code generator using an ASCII-character code. The
	time protocols are sent in the "European Telephone Time Code" format. The service phone number is +60 3 55197063. Current service status is free of charge. Fees are made only on the provision of the software for accessing th service via modem dial-up.
	Network Time Protocol Version 3
	The NTP time information is referenced to UTC(NMLS) and is currently generated by two Stratum-1 NTP servers, made available for public freely. The IP address for the servers are 202.190.27.9 and 202.190.27.10.
NPL	Telephone Time Service
	A TUG time code generator provides the European Telephone Time Code, referenced to UTC(NPL), by telephone modem. Access phone number: 0906 851 6333.
	Note: this is a premium rate number and can only be accessed from within the UK.
NRC	Telephone Code
	Provides digital time code by telephone modem for setting time in computers.
	Access phone number : +1 613 745 3900.
	Network Time Protocol
	Operates two time servers using the " Network Time Protocol ", each one being on different location and network. Host names : time.nrc.ca
	time.chu.nrc.ca
	Further information at http://www.nrc.ca/inms/time/whatime.html.

NTSC	Network Time Service (NTS)
	Provides a synchronization to UTC(NTSC) computer clocks within China. Software for the synchronization of computer clocks is available on the NTSC Time and Frequency home page : http://time.sxso.ac.cn Access Policy: free
	Contact: Shaowu DONG (dongsw@ms.sxso.ac.cn).
ONBA	Speaking clock access phone number 113 (only accessible in Argentina).
	Hourly and half hourly radio-broadcast time signal. Internet time service at web site www.hidro.gov.ar/hora/hora.asp
ONRJ	Telephone Voice Announcer (55) 21 5806037. Telephone Code (55) 21 5800677 provides digital time code at 300 bauds, 8 bits, no parity, 1 stop bit (Leitch CSD5300)
	Internet Time Service at the address : 200.20.186.75 SNTP at port 123
	Time/UDP at port 37
	Time/TCP at port 37 Daytime/TCP at port 13
	WEB-based Time Services:
	1) A real-time clock aligned to UTC(ONRJ) and corrected for internet
	transmission delay. Further information at: http://200.20.186.71/asp/relogio/horainicial.asp
	2) Voice Announcer, in Portuguese, each ten seconds, after download of the Web page at: http://200.20.186.71.
ORB	ORB provides a time dissemination via phone and modem
	to synchronize PC clocks on UTC(ORB). The system used
	is the Time Distribution System from TUG, which produces the telephone time code mostly used in Europe.
	The baud rate used is 1200. The access phone number is
	32 (0) 2 373 03 20. The system is updated periodically with DUT1 and leap seconds
РТВ	Telephone Time Service
	The coded time information is referenced to UTC(PTB) and generated by a TUG type time code generator using an ASCII-character code. The time protocols are sent in a common format, the " European Telephone Time Code ". Access phone number : +49 531 51 20 38 .
	Internet Time Service
	The PTB operates two time servers using the "Network Time Protocol " (NTP). Software for the syncronization of computer clocks is available on the home pages of the PTB (www.ptb.de).
	Host names of the servers: ptbtime1.ptb.de ptbtime2.ptb.de
	ptbtimez.ptb.de

ROA T	elephone C	ode
-------	------------	-----

SG

SP

It operates the European Telephone Code. Access phone number : +34 956 599 429

Network Time Protocol

Server : hora.roa.es Synchonized to UTC(ROA) better than 10 microseconds Service policy : free

Server : ntp0.roa.es Synchonized to UTC(ROA) better than 10 microseconds Service policy : free Note : server used as prototype to check new software, hardware, etc.

Web-based time service:

Displays a real-time clock referenced to UTC(SG) at web-site http://www.SingaporeStandardTime.org.sg. Local times of major cities worldwide and their time differences will be available at the web-site from 1 March 2003.

Automated Computer Time Service (ACTS)

Transmits digital time code (NIST format) via telephone & modem for setting time in computers. The coded time information is referenced to UTC(SG). Includes provision for correcting telephone time delays. Access phone number : +65 7799978.

Information is available at http://www.SingaporeStandardTime.org.sg.

Network Time Service (NeTS)

Transmits digital time code via the Internet using three different protocols – Time, Daytime and NTP. Operates two time servers. Host names : NeTS.org.sg 203.117.180.35

Information available at http://www.SingaporeStandardTime.org.sg.

Telephone Time Service

The coded time information is referenced to UTC(SP) and generated by two TUG type time code generators using an ASCII-character code. The time protocols are sent in a common format, the "European Telephone Time Code". Access phone number: +46 33 41 57 83

Internet Time Service

The coded time information is referenced to UTC(SP) and generated by two NTP servers using the Network Time Protocol (NTP). Access host names : ntp1.sp.se and ntp2.sp.se

Spe	aking	g Cloc	k
ope	anny	y cioc	N.

	Sweden. The time announcement is referenced to UTC(SP) and disseminated from a computer based system operated and maintained at SP. Access phone number : 90510 (only accessible in Sweden). Access phone number : +4633 90510 (from outside Sweden). More information about these services are found at the web site www.sp.se
TL	Speaking Clock Service Traceable to UTC(TL). Broadcast through PSTN (Public Switching Telephone Network) automatically and provides accurate voice time signal to public users.
	The Computer Time Service Provides digital time code by telephone modem for setting time in computers. Access phone number : +886 3 4245117.
	NTP Service TL operates a time server using the "Network Time Protocol (NTP)". Host name of the server : time.stdtime.gov.tw
	Further information at http://www.stdtime.gov.tw/english/e-home.htm
ТР	Internet Time Service
	IREE operates a time server directly referenced to UTC(TP). Time information is accessible through Network Time Protocol (NTP).
	Server host name: time.ure.cas.cz More information at http:// www.ure.cas.cz/time
USNO	Telephone Voice Announcer +1 202 762-1401 Telephone Code +1 202 762-1594 provides digital time code at 1200 baud, 8 bits, no parity Automated data service for downloading files +1 202 762-1503 Web site for time and for data files: http://www.tycho.usno.navy.mil Network Time Protocol (NTP) see http://www.tycho.usno.navy.mil/ntp.html for software and site closest to you.
VSL	Telephone Time Service The coded time information is referenced to UTC(VSL) and generated by a
	TUG type time code generator using an ASCII-character code. The time protocols are sent in a common format, the "European Telephone Time Code". The access phone number is 0900 6171819. This is a toll number and therefore can only be accessed in the Netherlands.

Director's Report on the Activity and Management of the BIPM, 2002, T. 3 (July 2001 – June 2002)

BIPM Publication

1 International Atomic Time (TAI) and Coordinated Universal Time (UTC)

The reference time scales TAI and UTC have been computed from data regularly reported to the BIPM by the timing centres which maintain a local UTC, monthly results have been published in *Circular T*. The *Annual Report of the BIPM Time Section for 2001*, Volume 14, complemented by computer-readable files on the BIPM home page, give the definitive results for 2001.

2 Algorithms for time scales

The algorithm used for the calculation of the time scales is an iterative process that starts by producing a free atomic scale (EAL) from which TAI is derived. Research concerning time-scale algorithms is conducted at the Time section with the aim of improving the long-term stability of EAL and the accuracy of TAI. Studies are being undertaken to evaluate the feasibility of providing quasi real-time predictions of UTC and TAI.

2.1 EAL stability

Some 80 % of clocks are now either commercial caesium clocks of the HP 5071A type or active, autotuned active hydrogen masers. Since January 2001, the value of the maximum relative weight of clocks in TAI has been set to 2/N, where N is the total number of participating clocks. It was shown, using real clock data over three and a half years, that such a choice for the maximum relative weight leads to a better discrimination between the clocks and improves the stability of the resulting time scale. We can thus expect an improvement in the stability of EAL in the near future.

Studies on the TAI algorithm continue. An estimator has been proposed to quantify the reliability achieved by assigning an upper limit to weights. It has been shown that it is possible to optimize this estimator, thus defining an optimal weighting scheme. Tests using simulated and real data have shown that this optimal choice may be used in TAI computation.

The medium-term stability of EAL, expressed in terms of an Allan deviation, is estimated to be 0.6×10^{-15} for averaging times of twenty to forty days over the period January 1999 to June 2002.

2.2 TAI accuracy

To characterize the accuracy of TAI, estimates are made of the relative departure, and its uncertainty, of the duration of the TAI scale interval from the SI second as produced on the rotating geoid by primary frequency standards. Since August 2001, individual measurements of the TAI frequency have been provided by six primary frequency standards including two caesium fountains (NIST-F1 and PTB CSF1). As a result of a collaboration with the PTB to make available the detailed results of a bilateral comparison with TAI, a joint PTB/BIPM report has been published. Such detailed reports appear in the *Annual Report of the BIPM Time Section*.

Since August 2001 the global treatment of individual measurements has led to a relative departure of the duration of the TAI scale unit from the SI second on the geoid ranging from $+0.6 \times 10^{-14}$ to $+1.0 \times 10^{-14}$, with a standard uncertainty of 0.2×10^{-14} . Because the current procedure for steering TAI does not seem to be sufficient to reduce this offset, studies are being undertaken to establish new steering procedures that will provide a more accurate TAI without impeding its stability.

3 Time links

The BIPM Time section organizes the international network of time links. The present configuration relies mostly on the classical GPS common-view technique based on C/A-code measurements obtained from single-channel receivers which has been extended for use with multichannel dual-code dual-system (GPS and GLONASS) observations, resulting in improved accuracy for time transfer. Also TWSTFT links are used in the computation of TAI. A pilot experiment is starting, aimed at testing the use of dual-frequency P-code measurements from geodetic-type GPS receivers for TAI links. In

addition, the BIPM Time section continues to test other time and frequency comparison methods, such as those using phase measurements. Two active hydrogen masers have been acquired by the BIPM and installed in the TAI laboratory in December 2001; used for time- and frequency-transfer experiments, they also provide the frequency reference to the Length section.

3.1 Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) code measurements

i) Current work

The BIPM publishes an evaluation of the daily time differences [UTC - GPS time] and

 $[UTC - GLONASS \ time]$ in its monthly *Circular T* and routinely issues GPS and GLONASS international common-view schedules. The international network of GPS common-view links used by the BIPM follows a pattern of local stars within a continent. All GPS links are corrected for ionospheric delays using IGS maps, as well as for satellite positions using IGS post-processed precise satellite ephemerides.

ii) Determination of differential delays of GPS and GLONASS receivers

As part of our work we continue to check the differential delays between GPS receivers which operate on a regular basis in collaborating timing centres. We recall that a series of differential calibrations of GPS equipment involving the European and North American time laboratories equipped with two-way time-transfer stations began in June 1997, and that in December 1999 differential calibrations of GPS/GLONASS multichannel dual-code receivers were initiated.

iii) Standards for GPS and GLONASS receivers

The Time section continues its active involvement in the work of the CCTF Group on Global navigation satellite systems Time Transfer Standards (CGGTTS). This has involved the ongoing development of technical guidelines for manufacturers of receivers used for timing in Global navigation satellite systems. A staff member of the BIPM provides the secretariat of the CGGTTS.

iv) Multichannel GPS and GLONASS time links

Six multichannel GPS links are used in the computation of TAI. The introduction of multichannel GPS+GLONASS links into TAI is still under study.

v) IGS estimated ionospheric corrections

Ionospheric parameters estimated by the IGS are now routinely used to correct all GPS links for ionospheric delays in regular TAI calculations. A study of the possible correlation between ionospheric parameters and apparent variations in the hardware delays of dual-frequency receivers is under way.

3.2 Phase and code measurements from geodetic-type receivers

It will be recalled that GPS and GLONASS time and frequency transfer may also be carried out using dual-frequency carrier-phase measurements in addition to code measurements. This technique, already in common use in the geodetic community, can be adapted to the needs of time and frequency transfer.

Studies continue at the BIPM using the Ashtech Z12-T GPS and Javad Legacy GPS/GLONASS receivers. The method developed to perform the absolute calibration of the Z12-T hardware delays allows us to use this receiver for differential calibrations of similar receivers. Work is progressing on the comparison of results from the two absolute calibration measurements of the Z12-T carried out at the U.S. Naval Research Laboratory (NRL) in May-June 2000 and April-May 2001. The JPS Legacy GPS/GLONASS receiver, acquired in 2000, also serves as a reference with which the Z12-T is compared while at the BIPM. A report summarizing the results obtained so far for the calibration of the BIPM Z12-T has been prepared. Calibration trips started in January 2001 to make differential calibrations of all similar receivers in time laboratories worldwide have continued. As of June 2002, twelve such calibrations have taken place as part of studies conducted in the framework of the IGS/BIPM Pilot Project with a view to providing accurate time and frequency comparisons using GPS phase and code measurements. One goal is to start using data from geodetic-type receivers for the time links of TAI and a pilot experiment has been initiated towards this aim. For this purpose, procedures and software have been developed in collaboration with the ORB.

One of the 3S Navigation receivers in operation at the BIPM is used to collect data for the International GLONASS Service Pilot Project (IGLOS-PP) sponsored by the IGS, in which the BIPM participates. As previously noted, the objective of this project is, among others, to produce post-processed precise GLONASS satellite ephemerides.

3.3 Two-way time transfer

Two meetings related to TWSTFT activities were held since October 2001. The BIPM collects twoway data from seven operational stations and undertakes treatment of some two-way links. Nine TWSTFT links have been introduced into the computation of TA1; four others are in preparation for their introduction into TAI. The BIPM is also involved in the calibration of two-way time-transfer links by comparison with GPS. The Time section continues the issue of BIPM TWSTFT reports. A staff member of the BIPM provides the secretariat of the CCTF Working Group on TWSTFT.

4 Pulsars

Collaboration is maintained with radio-astronomy groups observing pulsars and analysing pulsar data provided that it is of interest for us to study the potential capability of millisecond pulsars as a means of sensing the very long-term stability of atomic time. The Time section provides these groups its post-processed realization of Terrestrial Time TT (BIPM2001). The collaboration continues with the Observatoire Midi-Pyrénées (OMP) in Toulouse to complete the processing of a small programme of survey observations carried out in recent years.

5 Space-time references

Uniformity in the definition of space reference systems plays an increasingly important role in basic metrology, particularly for astro-geodetic techniques that contribute to the International Earth Rotation Service (IERS). Since 1 January 2001, a collaborative effort between the BIPM and the U.S. Naval Observatory (USNO) continues to take responsibility for the Conventions Product Centre (CPC) of the IERS. Work is in progress on the new edition of the IERS Conventions, a 150 page document summarizing the models, constants and procedures used for data analysis in the IERS, and for the astrometry-geodesy community at large.

Following the work of the BIPM/IAU Joint Committee on General Relativity for Space-time Reference Systems and Metrology (JCR) which ceased activity in 2001, efforts continue to promote the diffusion of the IAU Recommendations adopted in 2000.

Activities related to the realization of reference frames for astronomy and geodesy are being developed by E.F. Arias in cooperation with the IERS and La Plata Observatory (Argentina).

6 Other studies

In collaboration with the BNM-LPTF/OP (SYRTE, Paris Observatory), studies remain under way on the possible use for international timekeeping of highly stable and accurate space clocks, in particular those that will be operated within the ACES (Atomic Clock Ensemble in Space) experiment on board the international space station in 2005. With relative uncertainties expected in the low 10^{-16} region, such developments will be extremely important for the improvement of TAI accuracy and for experiments in fundamental physics.

Another project concerns tests of fundamental physics (Lorentz invariance) by comparing the frequencies of a hydrogen maser and a cryogenic sapphire microwave oscillator in collaboration with the Paris Observatory and the University of Western Australia. The experiment (data acquisition) is still in progress at the BNM-LPTF and a scientist of the Time section is involved in data evaluation and analysis.

Work on atom interferometry continues, in particular studies of the effects of the quantization of external degrees of freedom (atomic recoil) on the frequency and fringe contrast of primary frequency standards.

7 Publications, lectures, travel: Time section

7.1 External publications

- 1. Defraigne P., Petit G., Bruyninx C., Use of geodetic receivers for TAI, *Proc. 33rd PTTI*, 2002, 341-348.
- 2. Heindorff T., Bauch A., Hetzel P., Petit G., Weyers S., PTB primary clocks: Performance and comparison with TAI in 2000, *Metrologia*, 2001, **38**, 497-501.
- 3. Lewandowski W., Azoubib J., Matsakis D., Recent Progress in International Time Transfer, *Proc. Beacon Symp. Space Weather Workshop*, 2001, 258-261.
- 4. Petit G., Jiang Z., Moussay P., White J., Powers E., Dudle G., Uhrich P., Progresses in the calibration of "geodetic like" GPS receivers for accurate time comparisons, *Proc. 15th EFTF*, 2001, 164-166.
- Salomon C., Wolf P. *et al.*, Cold Atoms in Space and Atomic Clocks: ACES, *C.R. Acad. Sci. Paris*, 2, Série IV, 2001, 1313-1330.
- Souchay J, Arias E.F., Chapront J., Essaïfi N., Feissel M., Gontier A.-M., Celestial System Section of the Central Bureau, *IERS Annual Report for 2000*, Bundesamts für Kartographie und Geodäsie, 2001, 26–52.
- 7. White J., Beard R., Landis G., Petit G., Powers E., Dual frequency absolute calibration of a geodetic GPS receiver for time transfer, *Proc. 15th EFTF*, 2001, 167-169.
- 8. Laurent P., Wolf P. *et al.*, Cold Atom Clocks in Space: PHARAO and ACES, *Proc. 6th Symp. Freq. Stand. Metrol.* (Gill P. ed.), World Scientific, 2002, 241-252.
- 9. Wolf P., Bize S., Bordé C.J., Clairon A., Landragin A., Laurent P., Lemonde P., Recoil effects in microwave atomic frequency standards: an update, *ibid.* 593-596.
- Wolf P., Relativity and Metrology, Proc. Int. School of Phys. "Enrico Fermi" Course CXLVI Recent Advances in Metrology and Fundamental Constants (Quinn T.J., Leschiutta S. and Tavella P. eds.), IOS Press, 2001, 575-598.
- 11. Wolf P., Relativity with clocks in space, *ibid.*, 599-608.

7.2 BIPM publications

- 12. Annual Report of the BIPM Time Section (2001), 2002, 14, 102 pp.
- 13. Circular T (monthly), 6 pp.
- 14. Azoubib J., Lewandowski W., BIPM TWSTFT Reports, 21 pp.
- Lewandowski W., Moussay P., Determination of the Differential Time Corrections Between GPS Time Equipment Located at the OP, IEN, ROA, PTB, NIST and USNO, *Rapport BIPM*-2002/02, 2002, 28 pp.