RECOMMENDATION CCTF PSFS 2 (2021)

Updates to the CIPM list of standard frequencies

The Consultative Committee for Time and Frequency (CCTF), at its 22nd session in 2020 and 2021,

considering that

- a common list of "Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the second" has been established,
- the CCL-CCTF Frequency Standards Working Group (WGFS) has reviewed several candidates for updating the list;

recommends

that the following transition frequencies shall be updated in the list of recommended values of standard frequencies:

- the unperturbed optical transition $5s^2 {}^{1}S_0 5s5p {}^{3}P_0$ of the ${}^{115}In^+$ ion with a frequency of $f_{115In+} = 1267402452901041.3$ Hz and an estimated relative standard uncertainty of 4.3×10^{-15} ;
- the unperturbed optical transition $6s^{2} {}^{1}S_{0} 6s6p {}^{3}P_{0}$ of the 199 Hg neutral atom with a frequency of $f_{199Hg} = 1$ 128 575 290 808 154.32 Hz and an estimated relative standard uncertainty of 2.4×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $3s^2 {}^{1}S_0 3s^3p {}^{3}P_0$ of the ${}^{27}Al^+$ ion with a frequency of $f_{27Al^+} = 1$ 121 015 393 207 859.16 Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $5d^{10}6s {}^{2}S_{1/2} 5d {}^{9}6s^{2} {}^{2}D_{5/2}$ of the ${}^{199}Hg^{+}$ ion with a frequency of $f_{199Hg^{+}} = 1\ 064\ 721\ 609\ 899\ 146.96\ Hz$ and an estimated relative standard uncertainty of 2.2×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition 6s ${}^{2}S_{1/2}$ (F = 0, m_F = 0) 5d ${}^{2}D_{3/2}$ (F = 2, m_F = 0) of the ${}^{171}Yb^{+}$ ion with a frequency of $f_{171Yb^{+}}$ (quadrupole) = 688 358 979 309 308.24 Hz and an estimated relative standard uncertainty of 2.0×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition 6s ${}^{2}S_{1/2} 4f {}^{13}6s^{2} {}^{2}F_{7/2}$ of the ${}^{171}Yb^{+}$ ion with a frequency of $f_{171Yb^{+}}$ (octupole) = 642 121 496 772 645.12 Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $6s^2 {}^1S_0 6s6p {}^3P_0$ of the 171 Yb neutral atom with a frequency of $f_{171Yb} = 518 \ 295 \ 836 \ 590 \ 863.63$ Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $5s {}^{2}S_{1/2} 4d {}^{2}D_{5/2}$ of the ${}^{88}Sr^{+}$ ion with a frequency of $f_{88Sr+} = 444\ 779\ 044\ 095\ 486.3$ Hz and an estimated relative standard uncertainty of 1.3×10^{-15} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $5s^2 {}^{1}S_0 5s5p {}^{3}P_0$ of the ⁸⁸Sr neutral atom with a frequency of $f_{88Sr} = 429 \ 228 \ 066 \ 418 \ 007.01 \ Hz$ and an estimated relative standard uncertainty of 2.0×10^{-16} ;

This radiation is now endorsed as a secondary representation of the second;

- the unperturbed optical transition $5s^2 {}^{1}S_0 5s5p {}^{3}P_0$ of the ${}^{87}Sr$ neutral atom with a frequency of $f_{87Sr} = 429 \ 228 \ 004 \ 229 \ 872.99$ Hz and an estimated relative standard uncertainty of 1.9×10^{-16} (this radiation is already endorsed as a secondary representation of the second);
- the unperturbed optical transition $4s {}^{2}S_{1/2} 3d {}^{2}D_{5/2}$ of the ${}^{40}Ca^{+}$ ion with a frequency of $f_{40Ca^{+}} = 411\ 042\ 129\ 776\ 400.4$ Hz and an estimated relative standard uncertainty of 1.8×10^{-15} ;

This radiation is now endorsed as a secondary representation of the second;

- the unperturbed ground-state hyperfine transition of ⁸⁷Rb with an unchanged frequency of $f_{87Rb} = 6\ 834\ 682\ 610.904\ 312\ 6$ Hz and an estimated relative standard uncertainty of 3.4×10^{-16} (this radiation is already endorsed as a secondary representation of the second).

that the BIPM publish in electronic form:

- the list of recommended values of standard frequencies updated accordingly,
- the list of publications reporting measurements from which these values are obtained by least square fit adjustment,
- the output covariance matrix derived from this least square adjustment

and informs the CIPM accordingly.