Name Laboratory:	ONRJ (Rio de Janeiro, Brasil)

Receiver setup information

Type:	TTS4
Serial Number:	110
Receiver Internal Delay (GPS)	-42,11ns $\pm 0.90 \mathrm{~ns}$ (from PIKTIME)
Receiver Internal Delay (GLO)	-348,08ns $\pm 2.70 \mathrm{~ns}$ (from PIKTIME)
Antenna cable identification:	Cable TTS4_110
Antena cable delay:	$\boldsymbol{+ 1 8 7 , 0 7 n s} \pm \mathbf{0 . 0 5 n s}$ (from PIKTIME)
UTC (Reference Delay):	
cable used:	Cable 3A and cable C
Pulse Distribution Unit Identification:	Serial number 0104 (TIMETECH)
Delay (cable 3A + Pulse Distribution + cable C)	-62,10ns $\pm 0.04 \mathrm{~ns}$ (from calibration)
Coordinates reference frame:	
Latitude or X m	+4283645.81 m (GPS,GLONASS)
Longitude or Y m	-4026023.84 m (GPS,GLONASS)
Height or Z m	-2466092.55 m (GPS,GLONASS)

Antenna information

Type:	TSA - 100 Temperature Stabilized Antenna
Serial Number:	
The antenna is temperature stabilized	$\mathbf{3 5} \pm \mathbf{1 0}^{\circ} \mathbf{C}$
Set temperature value:	

General information

Rise time of the local UTC pulse:	4 ns
The laboratory is air conditioned:	
Set temperature value and uncertainty:	$\mathbf{2 5 . 0} \pm \mathbf{0 . 5} \mathbf{C}$
Set humidity value and uncertainty:	$\mathbf{5 0 . 0} \pm \mathbf{5 \%} \mathbf{C}$

Description of the local method of reference cable delay (cable 3A + Pulse Distribution + cable C) measurement

Plot of the measurement setup diagram:

Diagram 1

The method used to calibrate the reference cable delay (cable 3A + Pulse Distribution + cable C) was taken 600 measurements with resulting mean value equal $51.32 \mathrm{~ns} \pm 0.03 \mathrm{~ns}$.

Diagram 2

The method used to calibrate the cable 3B was taken 600 measurements with resulting mean value equal $10.78 \mathrm{~ns} \pm 0.03 \mathrm{~ns}$ to cable 3 B delay.

So, the value of reference cable delay is then obtained by the following formula:
$($ cable 3A + Pulse Distribution + cable C)delay $=$ mean value + cable 3B delay so
(cable 3A + Pulse Distribution + cable C)delay $=\mathbf{5 1 . 3 2 n s}+\mathbf{1 0 . 7 8 n s}=62.1 \mathrm{~ns} \pm 0.03 \mathrm{~ns}$.
The counter used was Stanford SR-620.

