Definitions

XP: From external reference to 1PPS in
Z12T:XO: From 1PPS in to internal reference (i.e. 20 MHz in inverted, delayed by 15.8 ns (Meas 3.3) or 20 MHz out advanced by 2.4 ns (Meas 3.2), first positive zero crossing)
PolaRx2 XO: From 1PPS in to internal reference (i.e. 1PPS out (Meas 3.4) delayed by 8.7 ns)
XC, XD: Cables etc... from antenna to receiver (typically XC is long cable, XD is short cable(s) + splitter if needed)
XR: receiver internal delay; XS antenna delay
Reference values for BPOT (May 2012): XR1+XS1 =-3.0 ns XR2+XS2 $=-\mathbf{3 . 0} \mathrm{ns}$

Set-up at ORB October 2012

ITRF

BPOT (GTR 50)
Values used by the receiver
BRUX (PolaRx4TR)

ZTBR (PolaRx2)

ZTB1 (Ashtech Z12T)

Z Ampli to 1PPS in
7.5 ns
$\mathrm{XP}=7.5 \mathrm{~ns}$
REF DLY $=48.2 \mathrm{~ns}$
5.4 ns
$\mathrm{XP}=5.4 \mathrm{~ns}$
$X P+X O=147.9 \mathrm{~ns}$.
10.5 ns
$X P=10.5 n \mathrm{n}$
$\mathrm{XP}+\mathrm{XO}=251.2 \mathrm{n}$
10.0 ns
$X P=10.0 \mathrm{~ns}$
$\mathrm{XP}+\mathrm{XO}=36.3 \mathrm{~ns}$

Meas $3.1 / \mathrm{ns}$ Meas $3.2 / \mathrm{ns}$

Ant. Cable /ns

N/A

Int ref -1 PPSin $(X O)=0.0 \mathrm{~ns}$
Int ref -1 PPSin $(X O)=142.5 \mathrm{~ns}$
Int ref-1PPSin $(\mathrm{XO})=240.7 \mathrm{~ns}$
Int ref - 1PPSin (XO) = 240.7 ns
10.5 ns

N/A
Int ref -1 PPSin $(X O)=26.3 \mathrm{~ns}$
$\mathrm{XC}=129.4 \mathrm{~ns} ; \mathrm{XD}=0.0 \mathrm{~ns}$ Short base: XC+XD = 129.4 ns CAB DLY $=128.5 \mathrm{~ns}$
$X C=237 \mathrm{~ns} ; X D=0.0 \mathrm{~ns}$ Short baseline: $X C+X D=237.0 \mathrm{~ns}$
$\mathrm{XC}=156.5 \mathrm{~ns} ; \mathrm{XD}=6.0 \mathrm{~ns}$ (including 2.1 ns splitter) Short baseline: $\mathrm{XC}+\mathrm{XD}=162.5 \mathrm{~ns}$
$\mathrm{XC}=156.5 \mathrm{~ns} ; \mathrm{XD}=7.6 \mathrm{~ns}$ (including 2.1 ns splitter) Short baseline: $X C+X D=164.1 \mathrm{~ns}$

Observations

Short baseline: MJD 56198-56207, doy 272-281 (28 Sept to 7 Oct 2012)

Measurement results

26 Oct. 2012 L. Tisserand (R2CGGTTS)

Delta (-XP-XO+XR1+XC+XD+XS1) (BRUX - BPOT) $=+104.4 \mathrm{~ns}$ Delta $(-X P-X O+X R 2+X C+X D+X S 2)(B R U X-B P O T)=+100.3 \mathrm{~ns}$

bpot - brux

Delta $(-X P-X O+$ XR1 + XC + XD + XS1 $)($ ZTBR -BPOT$)=+84.7 \mathrm{~ns}$ Delta (-XP-XO+XR2+XC+XD+XS2) (ZTBR - BPOT) $=+96.2 \mathrm{~ns}$

Delta (-XP-XO+XR1+XC+XD+XS1) (ZTB1-BPOT) $=+403.8 \mathrm{~ns}$ Delta $(-X P-X O+X R 2+X C+X D+X S 2)($ ZTB1 - BPOT $)=+417.1 \mathrm{~ns}$

Calibration results

6 Nov. 2012 (G. Petit)

Short baseline

BPOT: -XP-XO + XR1 + XC + XD + XS1 $=38.6 n$
BPOT: $-X P-X O+X R 2+X C+X D+X S 2=38.6 n$
RUX: -XP-XO+XC+XD = 89.1 n
Therefore
BRUX: XR1+XS1 = 53.9 ns
BRUX: XR2+XS2 $=49.8 \mathrm{~ns}$

For BPOT, XC+XD-XP-XO is the difference between the actual value (129.4-7.5 $=121.9 \mathrm{~ns})$ and the value entered in the receiver $(128.5-48.2=80.3 \mathrm{~ns})=41.6 \mathrm{~ns}$

ZTBR: -XP-XO + XC + XD $=-88.7 \mathrm{~ns}$
 Therefore

ZTBR: XR1+XS1 $=212.0 \mathrm{~ns}$
ZTBR: XR2+XS2 $=223.5 \mathrm{~ns}$

ZTB1: -XP-XO + XC + XD $=127.8 \mathrm{~ns}$
Therefore
ZTB1: XR1+XS1 = 314.6 ns

