

2025 Group 2 GNSS Calibration Report Cal_ID: 1013-2025

National Standard Time and Frequency Lab Telecommunication Laboratories, Chunghwa Telecom Co., Ltd.

Calvin Shinn-Yan Lin and Wen-Hung Tseng sylin@cht.com.tw

08/30/2025 Version 1 (new)

10/08/2025 Version 2 (revised the REFDLY measurement of TTS-5)

10/31/2025 Version 2.1 (footnote added to the information sheet for REFDLY measurement description)

Summary

As one of the APMP G1 laboratories, TL conducted a relative calibration of the GNSS time transfer receivers of UzNIM (Uzbek National Institute of Metrology of Uzstandard Agency, which acronym in BIPM list is UZ), Uzbekistan with respect to the calibrated TL receiver TLT5 which setup configuration is kept unchanged since 2022. The signal delays of TLT5 for GPS, Galileo, and Beidou were calibrated by BIPM as reported with CAL_ID 1001-2022 [1]. The receiver system TLM2 of TL was used as traveling equipment to transfer the signal delays of TLT5 to the visited GNSS receivers UZ__ of UzNIM. The data were collected between MJD 60770-60894 (5th April 2025 – 7th August 2025) by simultaneous operation of pairs of co-located GNSS receivers. This campaign was declared to BIPM on 2nd July 2025 and followed as closely as possible the BIPM Guideline [2]. The results provided are the visited receivers' internal delays for GPS C1, P1, and P2 signals and Galileo E1 and E5a signals. The results will be reported using Cal ID 1013-2025.

1. Table of contents

List	of Acronyms	3
1.	Description of equipment and operations	4
	1.1 Traveling System	
	1.2 Visited Receivers	4
2.	Data Used	4
3.	Results of Raw Data Processing	5
4.	Calibration results	5
	4.1 Traveling System with Respect to The Reference System	6
	4.2 Traveling System with Respect to the Visited Systems	6
	4.3 Visited Systems with Respect to Reference System	7
	4.4 Uncertainty	8
5. F	inal results for the visited systems	10
Ack	nowledgements	11
	Annex A: Information sheets	12
	A.1 Information sheet of TLM2	12
	A.2 Information sheet of UZ	13
	Annex B: Plots of raw data and Tdev analysis	17
	B.1 reference vs. traveling	17
	B.2 traveling vs. visited, UZ	18
	B.3 reference vs. traveling, closure	
Ref	erence	20

List of Acronyms

BIPM	Bureau International des Poids et Mesures, Sèvres, France						
CGGTTS	CCTF Generic GNSS Time Transfer Standard						
АРМР	The Asia Pacific Metrology Programme						
IGS	International GNSS Service						
PikTime	PikTime Systems, the manufacturer of TTS-5 GNSS receiver						
GNSS	Global Navigation Satellite System						
GPS	Global Positioning System						
GAL	Galileo satellite navigation system						
BDS	Beidou satellite navigation system						
PPP	Precise Point Positioning						
TL	Telecommunication Laboratories, Chunghwa Telecom, Taiwan						
TLT5	TL G1 Reference receiver						
TLM2	TL travelling receiver						
UzNIM	Uzbek National Institute of Metrology, Uzbekistan						
UTC(UZ)	The standard time scale of UzNIM						
UZ	Visited receiver of UzNIM						
RINEX	Receiver Independent Exchange Format						
R2CGGTTS	RINEX-to CGGTTS conversion software, provided by ORB/BIPM						
DCLRINEX	differential calibration software using the pseudoranges directly read in the						
	RINEX files, provided by the BIPM						
TDEV	Time Deviation						
TIC	Time Interval Counter						
CABDLY	the antenna cable delay;						
INTDLY	the internal signal delay (antenna + receiver internal);						
REFDLY	the offset between the UTC reference point in the laboratory and the						
	reference point of the visited receiver						
SYSDLY	INTDLY + CABDLY						
TOTDLY	SYSDLY – REFDLY						
CLPDLY	the offset between the calibration point of the laboratory and the reference						
	point of the traveling receiver						
CLPDLY							

1. Description of equipment and operations

1.1 Traveling System

The TL Traveling System consists of a GNSS receiver TLM2 (Septentrio PolaRx5TR, which auto compensation mode was set to "ON" during all calibration trip), an antenna (PolaNt-x MF.v2), 35 meters CFD-300 antenna cable, a laptop, and two auxiliary cables (RG-316 and RG-58 with BNC connectors) to connect the calibration reference point and 10 MHz frequency reference of visited lab. The detailed information can be found in Annex A.1, TLM2 information sheet.

The 1 PPS reference cable of traveling receiver was connected to the calibration point in the visited laboratory UzNIM, the CLPDLY is 15.49 ns measured by UzNIM in this campaign.

1.2 Visited Receivers

There was one GNSS receiver UZ_ which would be calibrated in this campaign. UZ_ is a PikTime TTS-5 receiver and was calibrated by PikTime at 2022 (CAL_ID 2005-2022). We would calibrate its GPS P3 and Galileo E3 links this time. The detailed information can be found in their information sheets in Annex A.2 Information sheet of UZ .

				1	
Institute	te Status of Dates of equipment measurement		Receiver type	BIPM code	RINEX name
TL	Traveling	60770-60779	Septentrio PolaRx5 TR	TLM2	TLM2
TL	Group 1 reference	-	Septentrio PolaRx5 TR	TLT5	TLT5
UzNIM	Group 2	60881-60885	PikTime, TTS-5	UZ	UZ
TL	Traveling	60889-60894	Septentrio PolaRx5 TR	TLM2	TLM2
TL	Group 1 reference	-	Septentrio PolaRx5 TR	TLT5	TLT5

Table 1. Summary information on the calibration trip

2. Data Used

Since the reference, traveling, and visited receivers are all GNSS geodetic receivers and provide RINEX files, we use their pseudoranges directly read in their RINEX files by the software 'dclrinex' which provided by BIPM [5] dedicated to differential calibration.

3. Results of Raw Data Processing

The raw code differences of the pairs of co-located receivers during the data acquisition period, MJD column in Table 2, are generated by dclrinex. The inferred raw calibration results are taken as the median of the raw differences. The associated uncertainties are taken as the floor of their Tdev values (see Annex B). The values for INTDLY between a given pair of receivers are computed using Eq. (7) and given in Table 7.1 and 7.2.

Pair	Date	C1	Unc	P1	Unc	P2	Unc	E1	Unc	E5a	Unc
TLT5-TLM2	60770-60779	91.30	0.10	91.03	0.05	89.41	0.04	91.25	0.13	89.05	0.07
TLM2-UZ	60881-60885	-101.62	0.08	-101.04	0.06	-108.09	0.07	-102.22	0.13	-108.34	0.07
TLT5-TLM2	60889-60894	91.04	0.17	91.23	0.05	88.96	0.05	91.02	0.12	89.06	0.07

Table 2. Summary information on the raw calibration results (all values in ns)

4. Calibration results

From the definition, the raw calibration results of a pair of receivers are equal to their TOTDLY difference:

$$TOTDLY_{R}(code) - TOTDLY_{T, TL}(code) = RAWDIF_{R-T}(code)$$
 (1)

Where the $TOTDLY_R(code)$ and $TOTDLY_{T, TL}(code)$ are the TOTDLY of reference receiver and traveling receiver at TL respectively; the RAWDIF_{R-T}(code) is the raw calibration result of the reference and traveling pair read from Table 2. The code can be GPS C1/P1/P2, GAL E1/E5a, and BDS BC/B5.

We note the calibration reference point of traveling receiver and UTC reference point of visited UTC lab may not be identical. For traveling receiver, its TOTDLY in reference and visited lab may be different, here we denote the TOTDLY of traveling receiver in reference lab TL to be TOTDLY_{T, TL} (code) and TOTDLY_{T, UzNIM} (code) in visited lab.

The TOTDLY can be also expressed using SYSDLY and REFDLY; and the REFDLY is equal to the CLPDLY pluses the offset between the UTC reference point and calibration reference point in the lab:

$$REFDLY_{T,TL} (code) = CLPDLY_{T} (code) + \Delta Ref Clb_{TL}$$
 (2)

Where the ΔRef_Clb is the offset between the UTC reference point and calibration reference point in the laboratory, the value of ΔRef_Clb_{TL} and ΔRef_Clb_{UzNIM} may be different, but the value $CLPDLY_T(code)$ are all the same in the whole campaign because we use the same reference 1 PPS cable for the traveling receiver in this trip. We have:

$$TOTDLY_{T, TL}(code) = SYSDLY_{T, TL}(code) - REFDLY_{T, TL}(code)$$

$$= SYSDLY_{T, TL}(code) - [CLPDLY_{T}(code) + \Delta Ref_Clb_{TL}]$$
 (3)

4.1 Traveling System with Respect to The Reference System

From Eq. (1), (2), and (3), the RAWDIF_{R-T}(code) can be express by

$$\begin{split} &RAWDIF_{R-T}(code) \\ &= [SYSDLY_R(code) - REFDLY_R(code)] \\ &- [SYSDLY_T(code) - CLPDLY_T(code) - \Delta Ref \ Clb_{TL}] \\ &\qquad \dots \dots (4) \end{split}$$

Table 3.1 Traveling vs. Reference system (GPS, all values in ns)

D-i-	Data	C1	P1	P2	P1-P2
Pair	Date	RawDIF	RawDIF	RawDIF	RawDIF
TLT5-TLM2	60770-60779	91.30	91.03	89.41	1.62
TLT5-TLM2	60889-60894	91.04	91.23	88.96	2.27
Misclosure	-	-0.25	0.20	-0.46	0.66
Mean	-	91.17	91.13	89.19	1.94

Table 3.2 Traveling vs. Reference system (Galileo, all values in ns)

Dain	Data	E1	E5a	E1-E5a
Pair	Date	RawDIF	RawDIF	RawDIF
TLT5-TLM2	60770-60779	91.25	89.05	2.19
TLT5-TLM2	60889-60894	91.02	89.06	1.96
Misclosure -		-0.23	0.01	-0.23
Mean	-	91.13	89.06	2.08

Table 3.1 and 3.2 are the raw difference values of traveling vs. reference receiver. We don't need to measure the REFDLY of the traveling and reference receivers because they will be cancelled out against each other in the derivation of INTDLY.

4.2 Traveling System with Respect to the Visited Systems

Like Eq. (4), the raw difference of traveling receiver at visited lab (UzNIM) can be expressed:

$$\begin{split} RAWDIF_{T-V}(code) &= \\ [SYSDLY_T(code) - CLPDLY_T(code) - \Delta Ref_Clb_{UzNIM}] \\ - [SYSDLY_V(code) - REFDLY_V(code)] & (5) \end{split}$$

The ΔRef Clb_{UzNIM} is the offset from UTC(UZ) reference point to the calibration reference point of UzNIM.

Table 4.1 Traveling with re	espect to the visited	system (GPS, all values in ns	.)
------------------------------------	-----------------------	----------	-----------------------	----

Dois	Data	ADof Clb	BEEDLY	C1	P1	P2
Pair	Date ΔRef_Clk	∆Ref_Clb _{∪zNIM}	M REFDLY _V	RawDIF	RawDIF	RawDIF
TLM2-UZ	60881-60885	15.49	14.95	-101.62	-101.04	-108.09

Table 4.2 Traveling with respect to the visited system (Galileo, all values in ns)

Dair	Date	∆Ref_Clb _{∪zNIM}	REFDLY _V	E1	E5a
Pair	Date	THEI_CIDUZNIM	KEPDLIV	RawDIF	RawDIF
TLM2-UZ	60881-60885	15.49	14.95	-102.22	-108.34

4.3 Visited Systems with Respect to Reference System

```
Combine Eq. (4) and (5), we get:
```

```
\begin{split} RAWDIF(code)_{R\text{-}T} + RAWDIF(code)_{T\text{-}V} \\ &= [SYSDLY_R(code) - REFDLY_R(code)] - [SYSDLY_V(code) - REFDLY_V(code)] \\ &+ \Delta Ref\_Clb_{TL} - \Delta Ref\_Clb_{UzNIM} \\ &= TOTDLY_R(code) - TOTDLY_V(code) + \Delta Ref\_Clb_{TL} - \Delta Ref\_Clb_{UzNIM} \\ &= \Delta TOTDLY_{R\text{-}V}(code) + \Delta Ref\_Clb_{TL} - \Delta Ref\_Clb_{UzNIM} \end{split}
```

ATOTALIR-V(code) - AIRCI_CIOTE - AIRCI_CIOUZNIN

or

$$\begin{split} & \Delta TOTDLY_{R\text{-V}}(code) \\ &= RAWDIF(code)_{R\text{-T}} + RAWDIF(code)_{T\text{-V}} - \Delta Ref \ Clb_{TL} + \Delta Ref \ Clb_{UzNIM} \end{split} \ . \end{split}$$

In TL, the calibration reference point and the UTC(TL) reference point are identical, that is the $\Delta \text{Ref_Clb}_{TL} = 0$. The $\Delta \text{Ref_Clb}_{UzNIM} = 15.49$ ns was measured by UzNIM. The TOTDLY of traveling with respect to the visited system are listed in Table 5.1 and 5.2.

Table 5.1 Visited system with respect to the reference system (GPS, all values in ns)

Dois	Data	ADof Clb		$\Delta TOTDLY_{R-V}$			
Pair	Date	ΔRef_Clb _{UzNIM}	C1	P1	P2		
TLT5-UZ	60881-60885	15.49	5.04	5.58	-3.41		

Table 5.2 Visited system with respect to the reference system (Galileo, all values in ns)

Doin	Data	AD of Cile	$\Delta TOTDLY_{R-V}$		
Pair	Date	ΔRef_Clb _{UzNIM}	E1	E5a	
TLT5-UZ	60881-60885	15.49	4.40	-3.79	

4.4 Uncertainty

In this section, we use the same method as [1] to determine the uncertainty of INTDLY. We estimate all components that can affect accuracy and determine a value u_{CAL} that is to be used as the accuracy of all GPS P3 and GAL E3 links at the epoch of calibration.

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$

Where u_a and u_b are the statistical uncertainty the systematic uncertainty respectively.

The statistical uncertainty u_a originates from the Tdev of each pair of RAWDIF listed in Table 2 (graphs can be found in Annex B). We find the minimum for each Tdev curve, and then we choose the largest one among the minimums as the u_a .

The systematic uncertainty u_b is given by

$$u_b = \sqrt{\sum_n u_{b,n}^2}$$

Uncertainty values in column P3 are calculated according to $u^2_{P3}=u^2_{P1}+(1.545\times u_{P1-P2})^2$; for the Galileo delays are calculated according to $u^2_{E3}=u^2_{E1}+(1.261\times u_{E1-E5a})^2$. All possible terms to be considered in the summary are to be listed in Table 6.1 and 6.2. Values appear separately for each code (GPS C1, P1, and P2, GAL E1, and E5a) to compute a value u_{CAL} applicable to GPS P3 and GAL E3. We choose to compute u_{CAL} using for u_b the uncertainty $u_{b,TOT}$ of $\Delta TOTDLY_{R-V}$ from Eq. (6). Table 6.1 and 6.2 present all components of the uncertainty budget along with the uncertainty $u_{b,TOT}$ of $\Delta TOTDLY_{R-V}$ from equation (6) and the resulting uncertainty value u_{CAL} . The items in Table 6 are separated into several categories.

- u_{b,1} account for possible variation of the delays of the traveling receiver with respect to the reference receiver during this campaign. This is evaluated by the observed the mis-closure values in Table 3.1 and 3.2.
- $u_{b,11}$ and $u_{b,12}$ account for errors in the antenna coordinates. In general, they are estimated to be 3.0 cm (0.1 ns) because the standard uncertainty of the coordinates obtained with the data used for calibration is typically at or below this level. The $u_{b,13}$ and $u_{b,14}$ account for multipath effect. This is difficult to estimate, and 0.2 ns is conventionally used, following a discussion in the CCTF working group meeting on GNSS in 2017[6].
- $u_{b,21}$ and $u_{b,22}$ account for the measurement between the calibration reference point of the traveling receiver and the local UTC(k). $u_{b,21} = 0$ ns since the calibration reference point is the UTC(k) reference point in TL. $u_{b,22} = 0.5$ ns, it includes at least one measurement measured by UzNIM and using TIC Agilent 53230A, trigger level 1.0 V.
- $u_{b,31}$ and $u_{b,32}$ account for the measurements between the reference point of the reference station and the local UTC(k). $u_{b,31} = 0.0$ ns since the reference receiver TLT5 did not use REFDLY during calibration and time transfer, its INTDLY is in fact the TOTDLY; $u_{b,32} = 0.71$ ns at the visited site

UzNIM, it includes one 1 PPS-in and 10 MHz-in phase difference measurement measured by UzNIM and using TIC Agilent 53230A, trigger level 0.5V for 1 PPS signal, trigger level 0 V for 10 MHz signal, and the delay measurement from UTC(UZ) point to the 1 PPS-in of UZ_ measured by UzNIM.

• $u_{b,41}$ and $u_{b,42}$ account for the measurement of CABDLY. $u_{b,41} = 0$ ns since the reference receiver TLT5 did not use CABDLY in calibration and time transfer, its INTDLY is in fact the TOTDLY; $u_{b,42} = 0.5$ ns at the visited stations UzNIM, it includes at least one measurement measured by PikTime.

Table 6.1 Uncertainty contributions of GPS link, Value $P3 = P1 + 1.545 \times (P1 - P2)$. All values in ns.

Unc.	C1	P1	P2	P1-P2	Р3	Description
(T.D.)	0.17	0.05	.05 0.05	0.07		Tdev of RAWDIF of TLT5 vs.TLM2 during MJD
$u_a(T-R)$	0.17	0.03		0.07	-	60770-60779 and 60889-60894
u _{a, UZ} _(T-V)	0.08	0.06	0.07	0.09	-	Tdev of RAWDIF of TLM2 vs. UZ
u _{a, UZ}	0.18	0.08	0.08	0.12	0.20	
					Misclosu	re
$u_{b,1}$	-0.25	0.20	-0.46	0.66	-	Observed misclosure of TLT5 vs. TLM2
			Syste	matic con	nponents re	elated to RAWDIF
u _{b,11}	0.10	0.10	0.10	0.14	-	Position error at TL
u _{b,12}	0.10	0.10	0.10	0.14	-	Position error at UzNIM
u _{b,13}	0.20	0.20	0.20	0.28	-	Multipath effect at TL
$u_{b,14}$	0.20	0.20	0.20	0.28	ı	Multipath effect at UzNIM
	Lin	k of the T	raveling s	ystem to t	he local U	TC(k) and CABDLY measurements
$u_{b,21}$	0	0	0	-	-	$\Delta \text{Ref_Clb}_{\text{TL}}$ at TL, calibration point = UTC(TL) point
u _{b,22}	0.50	0.50	0.50	-	ı	ΔRef_Clb _{UzNIM} at UzNIM
$u_{b,TOT}$	0.64	0.62	0.75	0.79	1.38	Components of equation (6)
ucalo, uz_					1.39	Composed of $u_{a,UZ}$ and $u_{b,TOT}$
			Link of	the Refer	rence syste	em to its local UTC(k)
u _{b,31}	0	0	0	-	-	TLT5 did not use REFDLY to calculate P3
			Link o	f the Visit	ed system	to its local UTC(k)
$u_{b,32}$	0.71	0.71	0.71	-	ı	REFDLY measurement of UZ
				An	tenna cabl	e delays
$u_{b,41}$	0	0	0	-	-	TLT5 did not use CABDLY to calculate P3
$u_{b,42}$	0.50	0.50	0.50	-	-	CABDLY measurement of UZ_ (measured by PikTime)
$u_{b, \mathrm{INT}}$	1.08	1.07	1.15	0.79	1.63	Components of equation (7)
ucalo, uz_					1.64	Composed of ua, UZ_ and ub, INT

Table 6.2 Uncertainty contributions of GAL link, $E3 = E1 + 1.261 \times (E1 - E5a)$, all values in ns

Unc.	E1	E5a	E1-E5a	Е3	Description	
u _a (T-R)	0.12	0.07	0.15		Tdev of RAWDIF of TLT5 vs.TLM2 during MJD	
u _a (1-K)	0.13	0.07		60681-60690 and 60770-60779		
$u_{a,UZ}(T-V)$	0.13	0.07	0.15		Tdev of RAWDIF of TLM2 vs. UZ	
u _{a,UZ}	0.18	0.10	0.21	0.32		
	Misclosure					
$u_{b,1}$	-0.23	0.01	-0.23	-	Observed mis-closure of TLT5 vs. TLM2	
			Systematic	componen	ts related to RAWDIF	
u _{b,11}	0.10	0.10	0.14	-	Position error at TL	
u _{b,12}	0.10	0.10	0.14	-	Position error at UzNIM	
u _{b,13}	0.20	0.20	0.28	-	Multipath effect at TL	
u _{b,14}	0.20	0.20	0.28	-	Multipath effect at UzNIM	
Link of the Traveling system to the local UTC(k)						
u _{b,21}	0	0	ı	-	$\Delta \text{Ref_Clb}_{TL}$ at TL, calibration point = UTC(TL) point	
u _{b,22}	0.50	0.50	-	-	ΔRef_Clb _{UzNIM} at UzNIM	
$\mathbf{u}_{\mathrm{b,TOT}}$	0.63	0.59	0.50	0.90	Components of equation (6)	
ucalo,uz_				0.95	Composed of $u_{a,UZ}$ and $u_{b,TOT}$	
Link of the Reference system to its local UTC(k)						
u _{b,31}	0	0	-	-	TLT5 did not use REFDLY to calculate E3	
	Link of the Visited system to its local UTC(k)					
u _{b,32}	0.71	0.71	-	-	REFDLY of UZ	
Antenna cable delays						
u _{b,41}	0	0	-	-	TLT5 did not use CABDLY to calculate E3	
u _{b,42}	0.50	0.50	-	-	CABDLY of UZ_	
$u_{b,INT}$	1.08	1.05	0.50	1.25	Components of equation (7)	
ucalo,uz_				1.29	Composed of ua,UZ_ and ub,INT	

5. Final results for the visited systems

The Final results are presented for each visited system as they need to be entered to produce timing data in the CGGTTS format, i.e., in the form of INTDLY. The value INTDLY for each visited station, INTDLY_V, can be obtained by using equation (7).

The calibrated INTDLYs of visited lab can be derived:

```
\begin{split} &INTDLY_{V}(code) \\ &= TOTDLY_{R}(code) - \Delta TOTDLY_{R-V}(code) - CABDLY_{V}(code) + REFDLY_{V}(code) \\ &\qquad ...... (7) \end{split}
```

Using the TOTDLY_R values reported in 1001-2022 for the Reference system TLT5 and the values CABDLY_V, REFDLY_V, ΔRef_Clb_{UzNIM} from the information sheet (Annex A), **Table 7.1 and 7.2** then reports INTDLY_V for all systems visited. The uncertainty value u_{cal} for P3, E3, and B3 is obtained from **Table 6.1** and **6.2**. It is used by the BIPM to assign the value u_b which will apply to all links to which the system participates.

Table 7.1 Summary of final results of GPS link

Reference	Cal_ld	Date		INTDLY/ns		
System	Cai_iu	Date		C1	P1	P2
TLT5	1001-2022	¹ Jan. 07, 2023		206.80	204.50	203.30
Visited	Calld	Dete	(pa)/	INTDLY/ns		
stations	Cal_Id	Date	u _{CAL} (P3)/ ns	C1	P1	P2
TLT5-UZ	1013-2025	July 29, 2025	1.6	31.0	28.2	36.0

Table 7.2 Summary of final results of GAL link

Reference	Callid	Date		INT	DLY/ns
System	Cal_Id	Date		E1	E5a
TLT5	1001-2022	Jan. 07, 2023		206.80	204.60
Visited	6-1-1-1	Data	ucal (E3)/ ns	INTDLY/ns	
stations	Cal_Id	Date		E1	E5a
TLT5-UZ	1013-2025	July 29, 2025	1.3	31.7	37.7

Acknowledgements

The authors appreciate colleagues in UzNIM for their efforts on installation of traveling equipment and data collection.

_

¹ The date performed the calibration id 1001-2022

Annexes

Annex A: Information sheets

A.1 Information sheet of TLM2

Laboratory:		TL		
Date and hour of the beginning of measureme	nts:	2025-04-05 00:00:00 UTC		
Date and hour of the end of measurements:		2025-08-07 23:59:00 UTC		
Info	ormation on the system			
4-character BIPM code	Local: TLT5	Travelling:		
		TLM2		
Receiver maker and type: Receiver serial number:	Septentrio PolaRx5TR 3227923	Septentrio PolaRx5TR 4701426		
1 PPS trigger level /V:	1 V	1 V		
Antenna cable maker and type: Phase stabilised cable (Y/N):	Andrew FSJ yes	CFD-300 No		
Length outside the building /m:	~ 30	~10 (total length 35 m)		
Antenna maker and type:/Serial number:	SEPCHOKE_B3E6 SPKE/5303	PolaNt-x MF.v2/23674		
Temperature (if stabilised) /°C	23	23		
	Measured delays/ns			
	Local:	Travelling:		
Delay from local UTC to receiver 1 PPS-in:	14.593±0.017 ns	02		
Delay from 1 PPS-in to internal Reference (if different):	-	-		
Antenna cable delay:	No measurement	No measurement		
Splitter delay (if any):	Null	(1)		
Additional cable delay (if any):	Null	(1)		
Data used for the gen	eration of CGGTTS files			
• INT DLY (GPS)/ns:				
• INT DLY (GAL)/ns:				
• CAB DLY /ns:				
• REF DLY /ns:				
Coordinates reference frame:		WGS-84		
Latitude or X /m:		-		
Longitude or Y /m:		-		
Height or Z /m:		-		
	General information			
Rise time of the local UTC pulse:		1 ns		
Is the laboratory air conditioned:		Yes		
Set temperature value and uncertainty:		23 ± 1 °C		
Set humidity value and uncertainty:		No humidity control		

⁽¹⁾ For a trip with closure, it is not needed if the traveling equipment is used in the same set-up throughout.

_

 $^{^{2}}$ The reference cable of TLM2 is connected to the UTC(TL) reference point.

A.2 Information sheet of UZ_

Laboratory:		UzNIM			
Date and hour of the beginning of mean	surements:	July 25, 2025, MJD 60881			
Date and hour of the end of measureme	ents:	July 29, 2025, MJD 60885			
	Information	on the system			
	Local:	z on the system	Travelling:		
4-character BIPM code	UZ_		TLM2		
Receiver maker and type:	Pik Time TTS-5	5	Septentrio		
Receiver serial number:	1027		4701426		
1 PPS trigger level /V:	1.0 V		-		
Antenna cable maker and type:	Andr	ew Helix FSJ	GED 200		
Phase stabilised cable (Y/N):		Y	CFD-300		
Length outside the building /m:	Length outside	the building	35		
	25 m (total leng	th is 46 m)	33		
Antenna maker and type:	JAVAD RinGan	tG5T	Septentrio, PolaRx5TR		
Antenna serial number:	RA 10041		4701426		
Temperature (if stabilised) /°C					
Measured delays /ns (if needed fill box "Additional Information" below)					
	Local:		Travelling:		
Delay from local UTC to			15.49 ns (Local UTC to calibration		
receiver 1 PPS-in:		19.60 ns	point)		
Delay from 1 PPS-in to internal		-4.65 ³			
Reference (if different):		-4.03	<u>-</u>		
Antenna cable delay:	1	85.68 ns	-		
Splitter delay (if any):		-	-		
Additional cable delay (if any):		-	-		
Da	ta used for the gen	eration of CGGTT	S files		
• INT DLY (GPS) /ns:		48,17			
• INT DLY (GLONASS) /ns:		67,32			
• CAB DLY /ns:		185,68			
• REF DLY /ns:		4,170			
Coordinates reference frame:		ITRF			
Latitude or X /m:		+1702150,8743			
Longitude or Y /m:		+4483774,5549			
Height or Z/m:		+4191194,0365			
	General	information			
• Rise time of the local UTC pulse:			4.0		
• Is the laboratory air conditioned:		Yes			

The delay from UTC(UZ) to UZ__ 1 PPS-in is 19.60 ns. The phase difference between UZ__ 1 PPS-in and the 10 MHz-in is 37.02 ns. UZ__'s actual REFDLY is 14.95 ns, a value calculated by the internal operating software (TTS-5) within UZ__.

13

Set temperature value and uncertainty:	23 ± 1°C
Set humidity value and uncertainty:	50% ±15%

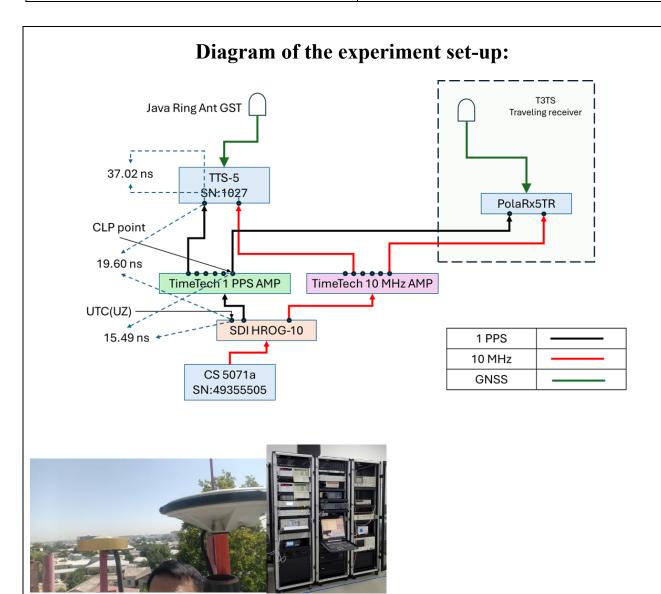


Figure 1, Experimental set-up

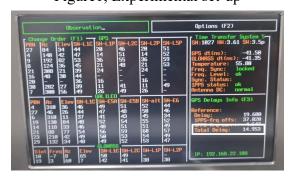
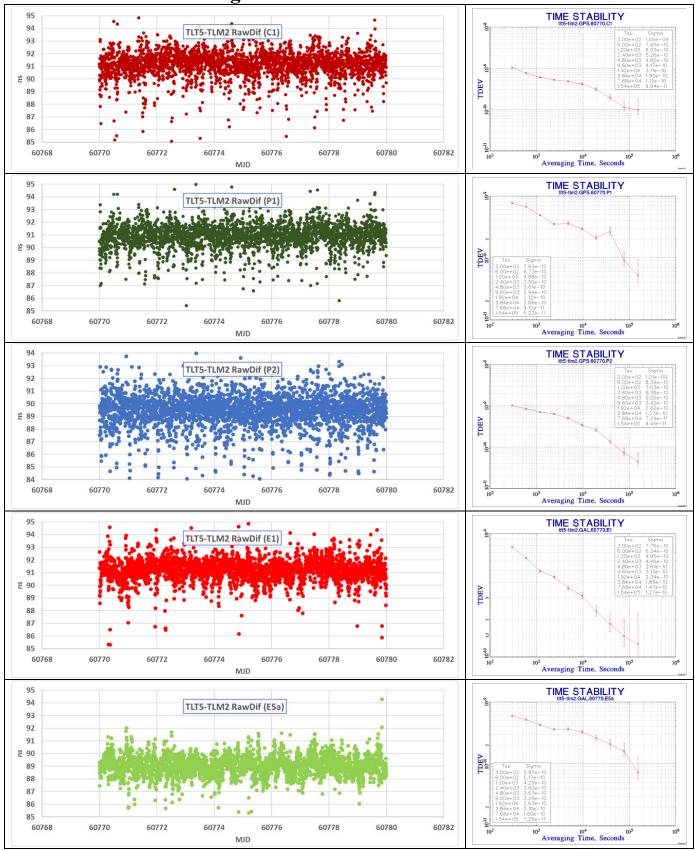
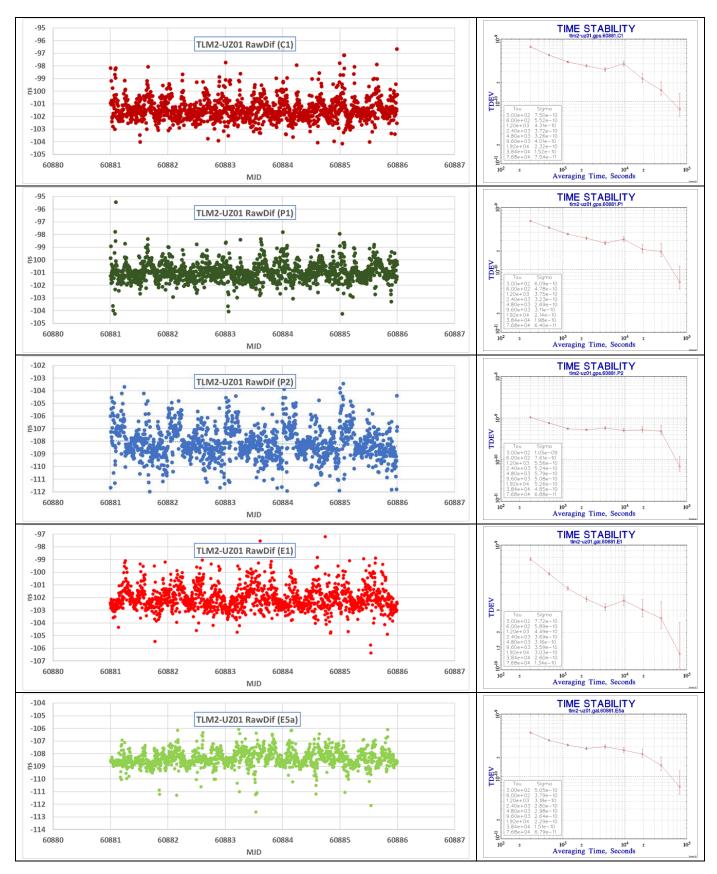
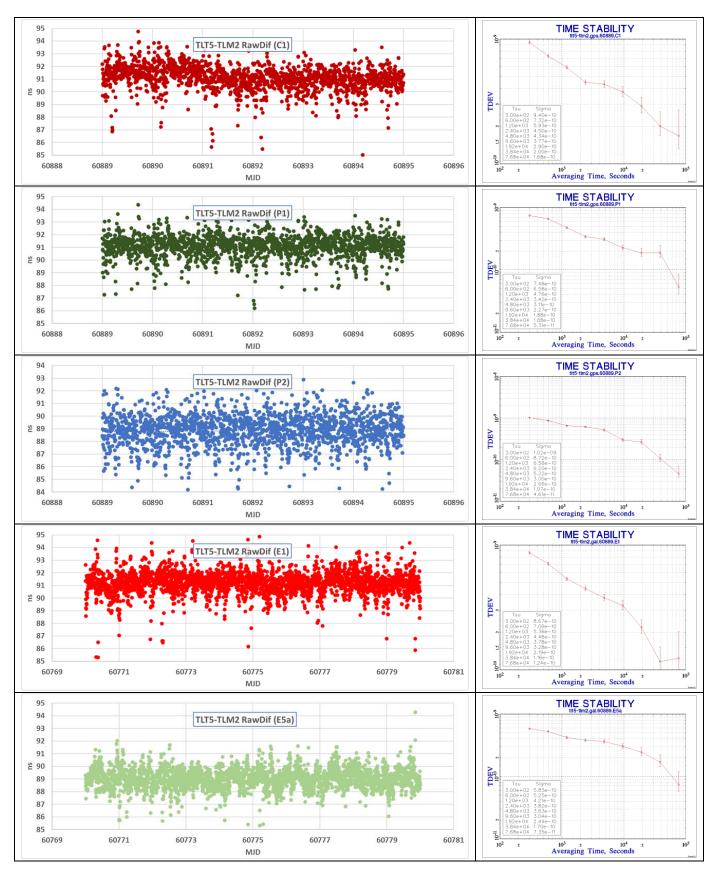



Figure 2, the REFDLY of TTS-5 (Screen showed as Total Delay)


Log of Events / Additional Information: The original REFDLY and CABDLY measured by PikTime The REFDLY was re-measured by UzNIM using TIC Agilent 53230A The definition point of UTC(UZ) is set to be the 2nd 1 PPS output of micro-phase-stepper SDI HROG-10, and the HROG-10 was re-boot at MJD 60900

Annex B: Plots of raw data and Tdev analysis


B.1 reference vs. traveling

B.2 traveling vs. visited, UZ_

B.3 reference vs. traveling, closure

Reference

- [1] BIPM "2022 Group 1 GPS calibration trip", ftp://ftp2.bipm.fr/pub/tai/publication/gnss-calibration/group1/1001-2022
- [2] BIPM guidelines for GNSS calibration, V4.0, 05/08/2021
- [3] https://webtai.bipm.org/ftp/pub/tai/publication/time-calibration/Current/1013-2018 GPSP3C1 UzNIM V1-0.pdf
- [4] https://webtai.bipm.org/ftp/pub/tai/publication/time-calibration/Current/1201-2019_GPSP3C1_UzNIM-TC_V1-0.pdf
- [5] BIPM guidelines Annex3 "Procedure for computing raw difference of GNSS code measurements for geodetic receivers", V3.2, 12/07/2021
- [6] W. Lewandowski, C. Thomas, 1991, "GPS Time transfers," Proc. IEEE, Vol. 79, No. 7, 991-1000
- [7] G. Petit et al. BIPM TM212, Nov. 2012
- [8] J. Kouba, P. Heroux, 2002, "Precise Point Positioning Using IGS Orbit and Clock Products," GPS Solutions, Vol 5, No. 2, 12-28
- [9] P. Defraigne and G. Petit, "CGGTTS-Version 2E: an extended standard for GNSS time transfer", Metrologia 52 (2015) G1