

GNSS CALIBRATION REPORT G1G2_ 1015-2024

Prepared by:

Carmen Vélez (ROA)

Approved by:

Héctor Álvarez (ROA)

Authorized by:

BIPM

 Project:
 EURAMET_ROA_G1G2

 Code:
 1015-2024

 Version:
 1.0

 Date:
 02/05/2024

1015-2024 02/05/2024 1.0 2 of 24

TABLE OF CONTENTS

1. INTRODUCTION	. 5
1.1. SCOPE OF THE DOCUMENT	.5
1.2. DOCUMENT STRUCTURE	.5
1.3. DOCUMENTS	.6
1.4. ACRONYMS AND ABBREVIATIONS	.6
2. PARTICIPANTS AND SCHEDULE	.8
3. THE ROA TRAVELING EQUIPMENT	.9
4. CALIBRATION PROCEDURE 1	10
5. DATA PROCESSING 1	11
6. UNCERTAINTY ESTIMATION 1	13
7. FINAL RESULTS	14
8. ANNEX-A	15
8.1. CALIBRATION INFORMATION SHEET AT ROA1	15
8.2. CALIBRATION INFORMATION SHEET AT DEFNAT 1	17
9. ANNEX-B: CCD AT EACH LAB	19

LIST OF TABLES AND FIGURES

Table 1-1: List of Acronyms and Abbreviations	6
Table 2-1: List of participants.	8
Table 2-2: Schedule of the campaign and involved receivers.	8
Table 5-1: Initial delays (in ns) of receiver at start of calibration	11
Table 6-1: Uncertainty contributions for the calibration of receiver delays	13
Table 7-1: GPS calibration results, all values in ns	14
Table 7-2: Galileo calibration results, all values in ns.	14

Figure 9-1: Before the calibration trip (GPS)	
Figure 9-2: Before the calibration trip (Galileo)	
Figure 9-3: After the calibration trip (GPS)	
Figure 9-4: After the calibration trip (Galileo)	
Figure 9-5: GPS CCD at DEFNAT	
Figure 9-6: Galileo CCD at DEFNAT	21

1. INTRODUCTION

1.1. SCOPE OF THE DOCUMENT

In 2014, as a result of a CCTF recommendation for a collaboration between the BIPM and the RMOs for GNSS equipment calibration, some National Metrology Institutes (NMIs) and Designated Institutes (DIs), were selected to be G1 laboratories, to function as regional nodes for the GPS calibrations. The mission of these Labs, once calibrated by BIPM, was to perform new calibration trips among G2 laboratories, under the responsibility of RMOs.

ROA, as EURAMET G1 laboratory, organized this year, a GNSS receiver relative calibration campaign, which took place at DEFNAT(TN).

In this campaign was carried out a differential calibration with closure, where the travelling system served as a transfer between DEFNAT system and the reference receiver RO_7. This last was calibrated and reported this year (Cal Id=1001-2022), being continuously monitored since then.

1.2. DOCUMENT STRUCTURE

The current campaign has been carried out in accordance with ROA calibration procedure and following as much as possible the BIPM guidelines for GNSS calibrations [RD02]. The results will be reported using Cal Id, and they will provide the visited receivers' internal delays for GPS (C1, P1, P2) and Galileo (E1, E5a) code signals.

Section 1 of this document gives the introduction, the document structure and a document baseline (in terms of applicable and reference documents and used acronyms).

Section 2 reports, the participating laboratories, dates of visits, and GPS receivers involved in this calibration campaign.

Section 3 presents an overview of the travelling equipment specifically prepared for this activity.

Section 4 basically describes the calibration procedure.

Section 5 explains the data processing carried out by our own software and all the necessary tables to get the results.

Section 6 is focused in the uncertainty estimation, in all the terms taken into account for the uncertainty budget.

Section 7 shows the final results, with the new internal delays, as well as all the necessary information to get them.

The report concludes with the Annex-A for each visited receiver, and the Annex-B, which contains all the figures with the common clock differences (CCD).

1.3. DOCUMENTS

	REFERENCES
RD01	BIPM report 1001-2020 V1.2 / 20210712, subject: 2021 Group 1 GNSS calibration trip (Phase 2).
RD02	BIPM guidelines for GNSS calibration, V3.2, 15/02/2016.
RD03	G. Petit, Z. Jiang, P. Moussay, J. White, E. Powers, G. Dudle, P. Uhrich, 2001, Progresses in the calibration of geodetic like GPS receivers for accurate time comparisons, Proc. 15th EFTF, pp. 164-166.
RD04	p. Defraigne, C. Bruyninx, 2001, Time Transfer for TAI using a geodetic receiver, An Example with the Ashtech ZXII-T, GPS Solutions, 5(2), pp. 43-50.
RD05	J. Kouba, P. Heroux, 2002, Precise Point Positioning Using IGS Orbit and Clock Products, GPS Solutions, Vol. 5, No. 2, pp. 12-28.

1.4. ACRONYMS AND ABBREVIATIONS

Acronym	Definition
BIPM	Bureau International des Poids et Mesures.
CCD	Common Clock Difference.
CCTF	Consultative Committee for Time and Frequency.
CGGTTS	CCTF Generic GNSS Time Transfer Standard.
CCTF	Consultative Committee for Time and Frequency.
DEFNAT	Defense National Laboratory
DI	Designated Institute.
EURAMET	European Association of National Metrology Institutes.
Galileo	European GNSS
GNSS	Global Navigation Satellite System
GPS	Global Positioning System.
IGS	International GNSS Service.
ITRF	International Terrestrial Reference Frame.
MJD	Modified Julian Date.
NMI	National Metrology Institute.
NRCan	Natural Resources Canada.
PPP	Precise Point Positioning.
RINEX	Receiver Independent Exchange Format.
RMO	Regional Metrology Organization.
ROA	Real Instituto y Observatorio de la Armada, San Fernando, Spain.
TDEV	Time Deviation. Is a measure of time stability based on the modified Allan Variance.
TIC	Time Interval Counter.
UTC	Coordinated Universal Time.
UTC(k)	Version of UTC realized at each of the contributing NMIs.

Table 1-1: List of Acronyms and Abbreviations

Acronym	Definition				
	CGGTTS specific acronyms				
CABDLY	Field present in the CGGTTS header. It is the group delay inside the antenna cable, including both end connectors.				
INTDLY	Field present in the CGGTTS header. It is the code- and frequency-dependent combined electric delay of the GNSS signal inside the antenna and the receiver. See also [RD03].				
REFDLY	Field present in the CGGTTS header. It is the time offset between the receiver internal clock (or its conventional realization by an external signal) and the local clock at the station. See also [RD03].				
REFGPS	Time difference between the reference clock and GPS time, for each satellite at the mid- point of the 13 min track. Receiver delay, cable delay, tropospheric delay and (for one single code) modelled ionospheric delay corrections have been applied.				

1015-2024 02/05/2024 1.0 8 of 24

2. PARTICIPANTS AND SCHEDULE

Participating laboratories, dates and GPS receivers involved in the calibration campaign are summarized in Table 2-1 and Table 2-2. Nevertheless, a complete information related with the receiver set-up and the signal distribution system have been provided by all Labs (see relevant Annex-A).

Table	2-1:	List	of	participants.
-------	------	------	----	---------------

Institute	Point of contact	Postal address
ROA	Carmen Vélez Tel +34 956545615 cvelez@roa.es	Real Instituto y Observatorio de la Armada Plaza de las Tres Marinas s/n 11100, San Fernando, Spain
DEFNAT	Zouaoui Jihène Tel: (+216) 71 560 488 metrologie@defense.tn	Base militaire Bab-Saadoun 1068-Cité Rommana- Bab Saadoun BP 81 Tunis (TN)

Table 2-2: Schedule of the campaign and involved receivers.

Institute	Status of equipment	Dates of Receiver type		BIPM code	RINEX code
ROA	Traveling		Septentrio PolaRx5TR		TR
ROA	Group 1 reference	MJD: 60351-60355 11/02/24-15/02/24	Septentrio PolaRx4TR	RO_7	RO_7
DEFNAT	Group 2 reference	MJD: 60383-60390 14/03/23-21/03/23	Piktime Systems TTS-4	DN_	DN_
ROA	Group 1 reference	MJD: 60419-60422 19/04/23-22/04/23	Septentrio PolaRx4TR RO_7		RO_7

1015-2024 02/05/2024 1.0 9 of 24

3. THE ROA TRAVELING EQUIPMENT

Traveling equipment consists of one shipping box containing the following items:

- Antenna: NOVATEL GNSS-850, SN: NMLK21450007U
- PolaRx5TR receiver, SN: 4701310 _
- PolaRx5TR power cable with adaptator -
- PolaRx5TR usb cable _
- PolaRx5TR Ethernet cable -
- Antenna cable (50 m, H155) _
- Laptop TOSHIBA, SN: X7052920H (without battery) _
- TOSHIBA laptop power cable with adaptator.
- 1 10 dB attenuator
- 1 BNC-BNC female adapter
- 5/8 inch screw
- 2 BNC cables.

As it is shown in the equipment list, only one receiver was used as traveling equipment. We used a direct antenna cable to connect the PolaRx5TR and the Novatel antenna.

Code:
Date:
Version:
Page:

1015-2024 02/05/2024 1.0 10 of 24

4. CALIBRATION PROCEDURE

The calibration has been performed based on C1, P3 GPS and E1, E3 CGGTTS Galileo files. Instead using the files automatically generated by each particular receiver, we have generated them from RINEX V.3 observation files, by means of R2CGGTTS software tool V8.3 developed at the Royal Observatory of Belgium [RD04]. This was done to avoid any systematic error induced by the use of a different tropospheric model, and mainly by imprecise antenna positions.

On this latter point, the coordinates of the antenna phase centre at each location have been especially computed for the calibration period from RINEX files by using the NRCan PPP software [RD05], so the time transfer error caused by this factor is nearly negligible.

Basically, the calibration consists on the following. From the known delays of the reference receiver (RO_7) and an average of the traveling receiver delays between the start and the end of the campaign, we can obtain INTDLY(C1), INTDLY(P1) and INTDLY(P2) for the receivers in the visited Labs. As the calibration is consisting in building differential pseudo-ranges for each code C1, P1 and P2 between pairs of receivers in common-clock set-up, they can be easily obtained by using the data collected in C1 and also in P3 CGGTTS files:

 $\gamma = (f_1/f_2)^2 = (77/60)^2$

REFGPS(P1) = REFSYS(P3) + MSIO

 $REFGPS(P2) = REFGPS(P3) + \gamma \times MSIO$

where *MSIO* are the measured ionospheric delays.

In a similar way, with $\gamma = (E1/E5a)^2 = (1575.42/1176.45)^2$, INTDLY(E1) and INTDLY(E5a) can be obtained.

Code:
Date:
Version:
Page:

5. DATA PROCESSING

For the calculation process we have used a ROA-authored program, in which the common clock differences (CCD) are obtained from the common-view of CGGTTS files. For each location, the coordinates of the antenna have been carefully calculated for the calibration period.

As was stated before, from the known delays of the reference receiver RO_7, it has been obtained the internal delays for each receiver at the visited site. Normally, the antenna cable delay (CABDLY) is maintained without any change, and the reference delay (REFDLY) is normally updated, anyway, any variation with respect to the true values, will be assumed by the INTDLY results.

Table 5-1 summarizes the initial delays of the DN_ receiver at the start of calibration. With these values new CGGTTS files have been generated. Tables 5-2 and 5-3 show the raw CCD differences at the visited Lab.

Table 5-1: Initial delays (in ns) of receiver at start of calibration.

BIPM	INT DLY	REF	CAB				
code	C1	P1	P2	E1	E5a	DLY	DLY
DN_						-70.35	200.80

Table 5-2: GPS raw common clock differences, all values in ns.

Pair	RAW ∆C1	Sigma	RAW ΔP1	Sigma	RAW ΔP2	Sigma
TR-DN_	28.17	0.17	29.99	0.16	29.86	0.21

Table 5-3: Galileo raw common clock differences, all values in n	Table	5-3: Galileo	raw common	clock differences,	all values in ne
--	-------	--------------	------------	--------------------	------------------

Pair	RAW Δ E1	Sigma	RAW ∆E5a	Sigma
TR-DN_	27.63	0.22	14.77	0.46

Taking a close loop to the closure measurements of Tables 5-4 and 5-5, we can observe a normal behavior of TR receiver, where the C1, P1, P2, E1 and E5a variations have remained relatively constant (below 0.58 ns).

1.0

Table 5-4: GPS closure	measurements at ROA	, all values in ns.
------------------------	---------------------	---------------------

Pair	RAW ΔC1	Sigma	RAW ΔP1	Sigma	RAW ΔP2	Sigma
TR-RO_7 (before the trip)	0.01	0.21	0.09	0.23	-0.05	0.24
TR-RO_7 (after the trip)	0.47	0.24	0.58	0.26	-0.60	0.23
Misclosure	-0.46		-0.49		0.55	
Mean	0.24		0.33		-0.33	

Table 5-5: Galileo closure measurements at ROA, all values in ns.

Pair	RAW ΔE1	Sigma	RAW Δ5a	Sigma
TR-RO_7 (before the trip)	0.02	0.22	0.04	0.28
TR-RO_7 (after the trip)	0.43	0.23	0.02	0.25
Misclosure	-0.41		0.02	
Mean	0.23		0.03	

	ARMADA ESPAÑOLA	UNCLASSIFIED	Code:	1015-2024
	REAL INSTITUTO Y		Date:	02/05/2024
DE ESPAÑA DE DEFENSA	OBSERVATORIO DE LA		Version:	1.0
	AITIADA		Page:	13 of 24

6. UNCERTAINTY ESTIMATION

The overall uncertainty of the INT DLY values obtained as a result of the calibration is given by:

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$
, (1) with (1)

with the statistical uncertainty u_a and the systematic uncertainty u_b . The statistical uncertainty is related to the instability of the common clock data collected at each site and collected at ROA when the INT DLY of travelling equipment was determined. The systematic uncertainty is given by:

$$u_{b} = \sqrt{\sum_{n} u_{b,n}^{2}}$$
(2)

The contributions to the sum (2) are listed and explained subsequently. In the Table 6-1, we have considered the larger type A uncertainty found at remotes sites, which is quite small, so there is no need to develop it in detail for each Lab. Note that the uncertainty of the INT DLY values of ROA's fixed receiver RO_7 , which served as the reference, is not included.

Table 6-1: Uncertainty contributions for the calibration of receiver delays

		Valu	Value	Value	Value	Value	Value	Value	
	Uncertainty	C1	P1	P2	P3	E1	E5a	E3	Description
1	U _{a(ROA)}	0.10	0.10	0.10	0.15	0.10	0.10	0.10	CCD uncertainty at ROA, TDEV at $\tau = 1 \text{ day}$
1	U _{a(DFM)}	0.10	0.10	0.10	0.15	0.10	0.10	0.10	CCD uncertainty at remote Lab, TDEV at $\tau = 1$ day
	-		Syste	ematio	comp	onent	ts due	to mi	sclosure
2	u _{b,11}	0.24	0.33	0.33	1.35	0.23	0.03	0.48	TR misclosure mean, see Tables 5-4 and 5-5
	Sy	/stema	atic co	mpon	ents d	lue to	anten	na ins	stallation
2	u _{b,12}	0.05	0.05	0.05	0.05	0.05	0.05	0.05	Position error of RO_7 receiver
3	u _{b,13}	0.05	0.05	0.05	0.05	0.05	0.05	0.05	Position error at remote Lab.
4	U _{b,14}	0.10	0.10	0.10	0.10	0.10	0.10	0.10	Multipath at ROA.
5	U _{b,15}	0.10	0.10	0.10	0.10	0.10	0.10	0.10	Multipath at remote Lab.
			Ins	stallat	ion of	RO_7	and D	N_ re	ceiver
6	U _{b,21}	0.30	0.30	0.30	0.30	0.30	0.30	0.30	Connection of TR to UTC(ROA) (REFDLY).
7	U _{b,22}	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Connection of TR to UTC(k) (REFDLY).
7	U _{b,23}	0.30	0.30	0.30	0.30	0.30	0.30	0.30	Connection of reference receiver to UTC(ROA) (REFDLY).
7	U _{b,24}	0.50	0.50	0.50	0.50	0.50	0.50	0.50	Connection of receivers at site k to UTC(k) (REFDLY).
7	U _{b,25}	0.10	0.10	0.10	0.10	0.10	0.10	0.10	TIC nonlinearities at ROA.
10	u _{b,26}	0.10	0.10	0.10	0.10	0.10	0.10	0.10	TIC nonlinearities at remote sites.

Real Instituto y Observatorio de la Armada, San Fernando, Spain, May 2024.

UNCLASSIFIED Code: Date: Version: Page:

7. FINAL RESULTS

The results of the internal calibration are summarized in Table 7.1-2. INTDLY and associated uncertainty C1 values have been calculated from Table 5.1-3 and Table 6.1, respectively, rounded to the tenth of a nanosecond (the same for GPS P1, P2 and Galileo E1, E5a codes):

INTDLY C1 = $-\Delta$ C1(Table 5-2/Table 5-3) + Δ C1_{mean}(Table 5-4/Table 5-5)

Receiver	REF DLY	CAB DLY	INTDLY C1	u _{cal} C1	INT DLY P1	u _{cal} P1	INT DLY P2	U _{cal} P2	u _{cal} P3
DN_	-70.4	200.8	-27.9	0.9	-29.7	0.9	-30.2	0.9	1.6

Table 7-1: GPS calibration results, all values in ns.

Table 7-2: Galileo calibration results, all values in ns.

Receiver	REF DLY	CAB DLY	INTDLY E1	u _{cal} E1	INT DLY E5a	u _{cal} E5a	u _{cal} E3
DN_	-70.4	200.8	-27.4	0.9	-14.7	0.9	1.0

UNCLASSIFIED Code: Date: Version: Page:

1015-2024 02/05/2024 1.0 15 of 24

8. ANNEX-A

8.1. CALIBRATION INFORMATION SHEET AT ROA

Laboratory:	ROA	ROA							
Date and hour of the beginning of mea	surements: 11.02.2024	11.02.2024							
Date and hour of the end of measurem	ents: 15.02.2024	1							
Information on the system									
	Local:	Travelling:							
4-character BIPM code	RO_7	TR							
• Receiver maker and type:	Septentrio PolaRx4TR PRO v2.	.9.6 Septentrio PolaRx5TR v5.3.2							
Receiver serial number:	3007633	4701310							
1 PPS trigger level /V:	1 V	1 V							
• Antenna cable maker and type:	LDF1RK-50	H155							
Phase stabilised cable (Y/N):									
Length outside the building /m:	Approximately 18 m	Approximately 50 m							
• Antenna maker and type:	LEICA AR25	Novatel antenna GPS-850							
Antenna serial number:	725233	NMLK21450007U							
Measured delays /ns									
	Local:	Travelling:							
• Delay from local UTC to	305.6 ns	287.5 ns							
receiver 1 PPS-in:		Auto-compensation PPS IN: ON							
Delay from 1 PPS-in to internal	146.7 ns								
Reference (if different):									
• Delay from local UTC to	70.0 ns								
receiver 1 PPS-out:									
• Antenna cable delay:	14.0 ns	199.8 ns							
Antenna cable type:									
Additional cable delay	5.9 ns								
Data uso	ed for the generation of CG	GTTS files							
	Local:	Travelling:							
• INT DLY (GPS) /ns:	55.9 ns C1, 54.5 ns P1, 53.6 ns	P2 27.5 ns C1, 25.4 ns P1, 23.6 ns P2							
• INT DLY (GALILEO) /ns:	55.4 ns E1, 63.9 ns E5a	27.7 ns E1, 28.8 ns E5a							
• CAB DLY /ns:	89.9 ns	199.8 ns							
• REF DLY /ns:	452.4 ns	287.5 ns							
• Coordinates reference frame:	ITRF	ITRF							

• Coordinates reference frame:	ITRF	ITRF						
Latitude or X /m:	5105581.72	5105581.11 m						
Longitude or Y /m:	-555193.35	-555194.82 m						
Height or Z /m:	3769704.60	3769705.26 m						
General information								
• Rise time of the local UTC pulse:		0.5 ns						
• Is the laboratory air conditioned:		Yes						
Set temperature value and uncertainty:		(22 ± 2) °C						
Set humidity value and uncertainty:		< 70 %						

8.2. CALIBRATION INFORMATION SHEET AT DEFNAT

Laboratory:		DEFNAT		
Date and hour of the beginning of measurements:		14.03.2024		
Date and hour of the end of measurements:		21.03.2024		
Information on the system				
	Local:		Travelling:	
4-character BIPM code	DN_		TR	
• Receiver maker and type:	Piktime systems TTS-4 HW:133.57 SW:3.4n		Septentrio PolaRx5TR v5.3.2	
Receiver serial number:	0130		4701310	
1 PPS trigger level /V:	1 V		1 V	
• Antenna cable maker and type:	See photo attached		H155	
Phase stabilised cable (Y/N):	Y			
Length outside the building /m:	Approximately 40 m		Approximately 50 m	
• Antenna maker and type:	TSA antenna		Novatel antenna GPS-850	
Antenna serial number:	N/A		NMLK21450007U	
Measured delays /ns				
	Local:		Travelling:	
• Delay from local UTC to	25.50 ns		15.05 ns	
receiver 1 PPS-in:			Auto-compensation PPS IN: ON	
Delay from 1 PPS-in to internal	phase corr: -8.30 ns			
Reference (if different):	fw corr: -87.50 ns			
(see section 2 for details)	70.35 ps			
Antenna ashla dalayy	-70.55 115			
• Antenna cable type:	200.80 ns		199.80 ns	
Data used for the generation of CGG115 lifes				
	Local:		Travelling:	
• INT DLY (GPS) /ns:	0 ns C1, 0 ns P10 ns P2		27.5 ns C1, 25.4 ns P1, 23.6 ns P2	
• INT DLY (GALILEO) /ns:	0 ns E1, 0 ns E5a		27.7 ns E1, 28.8 ns E5a	
• CAB DLY /ns:	200.80 ns		199.80 ns	
• REF DLY /ns:	-70.35 ns		15.05 ns	
• Coordinates reference frame:	ITRF		ITRF	
Latitude or X /m:	5032252.94 m		5032255.34 m	
Longitude or Y /m:	901442.45 m		901439.44 m	
Height or Z /m:	3801050.09 m		3801048.25 m	
General information				
• Rise time of the local UTC pulse:			0.5 ns	
• Is the laboratory air conditioned:		Yes		
Set temperature value and uncertainty:		(22 ± 2) °C		
Set humidity value and uncertainty:		< 70 %		

1.0

18 of 24

Real Instituto y Observatorio de la Armada, San Fernando, Spain, May 2024.

9. ANNEX-B: CCD at each Lab

Figure 9-1: Before the calibration trip (GPS)

Figure 9-2: Before the calibration trip (Galileo)

Figure 9-3: After the calibration trip (GPS)

Figure 9-4: After the calibration trip (Galileo)

Figure 9-5: GPS CCD at DEFNAT

Figure 9-6: Galileo CCD at DEFNAT

Real Instituto y Observatorio de la Armada, San Fernando, Spain, May 2024.

1015-2024 02/05/2024 1.0 22 of 24

Acknowledgement

We are grateful to the Natural Resources Canada (NRCan) for the use of Precise Point Positioning (PPP) software for positioning computations.

Special thanks to our colleagues Ramzi Jebeur from DEFNAT for the unreserved collaboration and support that they have provided.

END OF DOCUMENT