

Project: G1G2_1020_2023
Code: 1020-2023
Date: 01/09/2024
Version: 1.1

Version: 1.1
Page: 1 of 33

GNSS CALIBRATION REPORT

G1G2_1020_2023

Prepared by: Florian Heimbach (PTB)
Time Dissemination
Working Group

Approved by: Juergen Becker (PTB)

Time Dissemination Working Group

Authorized by: BIPM

Project: G1G2_1020_2023

Code: 1020-2023

Version: 1.1

Safe date: 22/01/2024 12:04:00

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 2 of 33

TABLE OF CONTENTS

LIST OF TABLES AND FIGURES	4
REFERENCES	5
ACRONYMS	6
EXECUTIVE SUMMARY	7
1. DESCRIPTION OF EQUIPMENT AND OPERATIONS	8
1.1. PARTICIPANTS	8
1.2. TRAVELING EQUIPMENT	8
1.3. VISITED EQUIPMENT	8
1.4. SCHEDULE	g
1.5. CALIBRATION PROCEDURE	g
2. DATA USED	12
3. RESULTS OF RAW DATA PROCESSING	14
3.1. OVERVIEW	14
3.2. COMMON-CLOCK SET-UP IN PTB: PERIOD 1	15
3.3. OPERTATION OF PTBM AT FTMC	17
3.4. COMMON-CLOCK SET-UP IN PTB: PERIOD 2	19
4. CALIBRATION RESULTS	20
4.1. TRAVELING SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM	20
4.2. TRAVELING SYSTEM WITH RESPECT TO THE VISITED SYSTEM	20
4.3. VISITED SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM	20
4.4. INT DLY UNCERTAINTY EVALUATION	21
5. FINAL RESULTS FOR THE VISITED SYSTEMS	24
ANNEX A: BIPM CALIBRATION INFORMATION SHEETS	25
. ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS	31

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 3 of 33

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 4 of 33

LIST OF TABLES AND FIGURES

Figure 1-1 PTBM: views of the device and RxControl configuration and messages regarding PPS In and OUT	
Figure 3-1 UTC(PTB) reference point and 1 PPS signal distribution to PT13, PTBM, and other receivers;	; 15
Figure 3-2 UTC(PTB) signal distribution (5 MHz, 10 MHz) to PT13, PTBM, and other receivers	16
Figure 3-3 Installation of GNSS antennas at PTB, PT13 antenna (yellow) and PTBM antenna during CC and CC2 (orange)	
Figure 3-4 PPS signal distribution at FTMC with PTBM as operated from MJD60268 until MJD60282 \dots	18
Figure 3-5 PTBM antenna installation at FTMC	19
Figure B-1 Left: Raw code differences between T and G for GPS signals during CC1, Δ P1 (blue) and Δ P (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC1	
Figure B-2 Left: Raw code differences between T and LT02 for GPS signals, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and LT02 for GPS signals	31

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 5 of 33

REFERENCES

	REFERENCES
RD01	2020 Group 1 GNSS calibration trip (CAL_ID 1001-2020)
RD02	BIPM guidelines for GNSS calibration, V3.0, 02/04/2015
RD03	BIPM Procedure for computing raw difference of GNSS code measurements for geodetic receivers, dcIrinex software version 3.1, April 2021
RD04	J. Kouba, P. Heroux, 2002, "Precise Point Positioning Using IGS Orbit and Clock Products", GPS Solutions, Vol. 5, No. 2, 12-28
RD05	W. Lewandowski, C. Thomas, 1991, "GPS Time transfers," Proc. IEEE, Vol. 79, No. 7, 991-1000
RD06	P. Defraigne and G. Petit, "CGGTTS-Version 2E: an extended standard for GNSS time transfer", Metrologia 52 (2015) G1
RD07	D. A. Howe and N. Schlossberger, "Characterizing Frequency Stability Measurements Having Multiple Data Gaps", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 69, No. 2 (2022)
RD08	BIPM Template for calibration report to the BIPM, V3.1, 29/08/2015

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 6 of 33

ACRONYMS

	ACRONYMS
ВІРМ	Bureau International des Poids et Mesures, Sèvres, France
CAB DLY	Antenna Cable Delay
CGGTTS	CCTF Generic GNSS Time Transfer Standard
DCLRINEX	Differential calibration software using the pseudoranges directly read from the RINEX files, software was provided by the BIPM
EURAMET	The European Association of National Metrology Institutes
FMTC	Center for Physical Sciences and Technology, Lithuania
IGS	International GNSS Service
INT DLY	Internal Signal Delay
GNSS	Global Navigation Satellite System
PPP	Precise Point Positioning
РТВ	Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
REF DLY	Reference Delay
RINEX	Receiver Independent Exchange Format
R2CGGTTS	RINEX-to CGGTTS conversion software, provided by ORB / BIPM
TDEV	Time Deviation
TIC	Time Interval Counter

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 7 of 33

EXECUTIVE SUMMARY

As part of the support of the BIPM Time and Frequency Group by EURAMET G1 laboratories, PTB conducted a relative calibration of GNSS equipment of FMTC, Lithuania, with respect to the calibration of PTB receiver PT13, which currently serves as the reference receiver in all GNSS time links to PTB in the context of realization of TAI. The PT13 signal delays for GPS and Galileo were determined by BIPM as reported with CAL_ID 1001-2020 [RD01]. PTB provided its receiver PTBM for the purpose as traveling equipment. The current campaign followed as much as possible the BIPM Guide [RD02] and results will be reported using CAL_ID 1020-2023. Results provided are the visited receiver's internal delays for GPS P-code signals on the two frequencies L1 and L2 (INT DLY (P1), and INT DLY(P2)) and the C/A-code signal on L1 (L1C). The delays were determined using the DCLRINEX software, which was provided by the BIPM [RD03].

This report documents the installation, data taking and evaluation during the campaign. Its structured based on the BIPM template [RD08].

The determination of the internal delay values of the receiver at the visited site is a three-step process.

At first (Common-Clock 1, CC1), the traveling receiver, PTBM, was compared to the "golden" receiver, PT13, and the offset between the actual and the assumed PTBM delay values were determined.

After that, the receiver was installed at the visited site. At FTMC, two GNSS receivers are reported to BIPM, named LT02 and LT03. These are connected to different time sources, of which one is defined as the local UTC. PTBM was first connected to the same clock as the receiver LT03 and operated for a week. After this week, PTBM was operated while being connected to the second clock, which is time source for the receiver LT02. With these measurements, the internal delay values of the devices under test and their statistical properties were determined with respect to PTBM.

Finally, the stability of the PTBM delays was assessed by a second Common-Clock measurement (CC2) in PTB. Based thereon, the "final" INT DLY values of the visited receivers and their uncertainty values were calculated.

The structure of this report follows this sequence of work. After presentation of the participants and schedule, a general section follows that contains the (mathematical) calibration procedure, followed by a report of data collection at PTB and FTMC. The final results and the uncertainty discussion close the report. In the Annex the BIPM information tables are reproduced.

The final results are included in Table 5-1. The internal GPS delays of receivers LT02 and LT03 were determined with an uncertainty of 1.3 ns for dual frequency observations.

As a reminder: All uncertainty values reported in this document are $1-\sigma$ values.

The responsible party at PTB quality management gave the advice to stress in this report that the correctness of all results and of the stated uncertainty values relies partially on the correctness of the entries in the installation report (BIPM information tables) provided by the visited institute.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 8 of 33

1. DESCRIPTION OF EQUIPMENT AND OPERATIONS

1.1. PARTICIPANTS

Table 1-1 List of participants

Institute	Point of contact	Site address
PTB	Florian Heimbach	PTB, AG 4.42
	0049 531 592 4422	Bundesallee 100
	florian.heimbach@ptb.de	38116 Braunschweig, Germany
FTMC	Rimantas Miškinis	FMTC Center for Physical Sci-
	00370 687 80333	ences and Technology Saletekio av. 3
	Rimantas.miskinis@ftmc.lt	LT-10257 Vilnius, Lithuania

1.2. TRAVELING EQUIPMENT

The PTBM traveling measurement set-up consists of a 19"-chassis, containing a GNSS receiver (Septentrio PolaRx5TR), a TIC (Piktime T4100U) and internal cabling. The auto compensation mode of the GNSS receiver was set to "ON" during the whole calibration trip. The set-up further includes an antenna (Navexperience 3G+C REFERENCE), 25 meters LMR-400 antenna cable, an N to TNC adapter and a laptop.

The delay from the visited UTC reference point to the calibration reference point was measured by a SI SR620 TIC (SN: 4832). The measurement was carried out by staff from FTMC, who also provided the TIC.

1.3. VISITED EQUIPMENT

Table 1-2 List of the visited equipment

Institute	Status of equipment	Dates of measurement	Receiver type	BIPM code	RINEX name
FTMC	Group 2	28.11.2023 - 03.12.2023	TTS-5	LT03	LT03
FTMC	Group 2	04.12.2023 - 08.12.2023	TTS-5	LT02	LT02

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 9 of 33

1.4. SCHEDULE

Table 1-3 Schedule of the campaign

Date	Institute	Action	Remarks
2023-11-01 until 2023-11-07	РТВ	First common-clock comparison between PTBM and PT13	7 days used for the evaluation, MJD 60249 - 60255
2023-11-28 until 2023-12-03	FTMC	Operation of PTBM in parallel with local receiver LT03	6 days used for the evaluation, MJD 60276 - 60281
2023-12-04 until 2023-12-08	FTMC	Operation of PTBM in parallel with local receiver LT02	4 days used for the evaluation, MJD 60282 - 60286
2023-12-15 until 2023-12-21	PTB	Operation of PTBM after return	7 days used for the evaluation, MJD 60659 - 60665

1.5. CALIBRATION PROCEDURE

When dealing with G1G2 calibrations, in principle we distinguish receivers V, T, and G: V for visited, T for traveling, and G for golden reference.

G1 labs have committed to ship their T to the other sites. In the current campaign, PT13 (named PTBB when referred to as IGS station) serves as the reference receiver G. The PT13 signal delays for GPS and Galileo were determined by BIPM as reported with CAL_ID 1001-2020 [RD01]. PTBM served as the traveling receiver T.

Conventionally, the receiver delay D is considered as the sum of different terms that are defined subsequently:

(1) INT DLY

The internal signal delay represents the sum of $X_R + X_S$.

 X_R represents the receiver hardware delay, between a reference point whose definition depends on the receiver type and the internal time reference of the measurements. X_S represents the antenna delay, between the phase center and the antenna cable connector at the antenna body. We distinguish the two quantities for the two frequencies, f1 and f2.

INT DLY(f1) and INT DLY(f2) of receiver V are the basic quantities that are determined during the relative calibration. For calculating ionosphere—free observation data, INT DLY(f3) is calculated as 2.54×INT DLY(f1) - 1.54×INT DLY(f2) for GPS, and as 2.26×INT DLY(f1) - 1.26×INT DLY(f2) for Galileo, respectively. In figures and results tables, we use the designation P1, P2 for GPS, and E1, E5a for Galileo, instead of f1, f2.

The following terms are considered frequency independent, i.e. no distinction is made for f1 and f2.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 10 of 33

(2) CAB DLY

The sum $X_C + X_D$ represents the antenna cable delay (CAB DLY).

 X_{C} corresponds to the delay of the long cable from the antenna to the input connector at either the antenna splitter or the receiver body directly. If a splitter is installed, X_{D} corresponds to the delay of the splitter and the small cable up to the receiver body. For a simple set-up with just an antenna cable, $X_{D} = 0$.

(3) REF DLY

The sum $X_P + X_O$ represents the reference delay (REF DLY).

X_P corresponds to the delay of the cable between the laboratory reference point for local UTC and the 1 PPS-in connector of the receiver.

X_O corresponds to the delay between the 1PPS-in connector and the receiver internal reference point, the latter depending on the receiver type:

- For Septentrio PolaRx4: Xo available at the 1 PPS-out socket of the receiver
- For Septentrio PolaRx5TR: optionally Xo is determined autonomously by the receiver, or it can be determined alike to the PolaRx4.
- For DICOM GTR50, GTR51 and GTR55: X₀ = 0,
- For TTS-4: RD02, Section 2.3.2, and Annex G specify the procedure for TTS-4, which in detail depends on the software version.

PT13 (PolaRx5TR) has been installed in April 2019, and the PPS IN Delay Compensation option has never been used. On the contrary, PTBM (PolaRx5TR) normally makes use of the auto-compensation option as it reduces the number of measurements and potential errors at the visited site. In this case, the REF DLY is the offset between the UTC(k) reference point and the input to the PPS IN socket on the PTBM rack.

For clarity, Figure 1-1 shows the traveling equipment in two views and screenshots of the PPS configuration menu of the PolaRx5 RxControl software and the receiver message received when the auto-compensation is active.

The distinction of the individual components of the receiver delay reflects the fact that two of them, 2 and 3, can in principle be measured with standard laboratory equipment. Changes of the receiver installation typically affect cabling and thus such delays.

The quantity to be determined by the relative calibration is the INT DLY. The INT DLY of the device under test is determined in such a way that the common-clock differences obtained between the device under test and the reference are zero on average. The INT DLY of T may need to be adjusted so that T and G match, but in practice the small correction to be applied is considered only when INT DLY of V is adjusted to G, using T as intermediate for the measurements made at the different sites.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 11 of 33

Figure 1-1 PTBM: views of the device and RxControl configuration and messages regarding PPS In and OUT.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 12 of 33

2. DATA USED

The G, T, and V receivers are all GNSS geodetic receivers and provide RINEX observation files. RINEX navigation files produced by the PT13 receiver were used for CC1 and CC2 analysis. RINEX navigation files from PTBM were used at all stages. Code measurements were taken from the pseudoranges directly read from the RINEX files by the software DCLRINEX dedicated to differential calibration, as provide by BIPM [RD03]. The software produces raw code differences of co-located receivers from the pseudoranges as

$$RAW DIF_{T-G}(f) = TOT DLY_{T}(f) - TOT DLY_{G}(f),$$
(1)

with $TOT DLY_R(f)$ and $TOT DLY_T(f)$ representing the total delays of the reference and traveling receiver respectively. The total delay of G, or T can be written as

$$TOT DLY(f) = INT DLY(f) + CAB DLY - REF DLY.$$
 (2)

This report states the differences in system delays Δ SYS DLY according to [RD08]. The system delay is described as the sum of the INT DLY and the CAB DLY.

$$SYS DLY(f) = INT DLY(f) + CAB DLY$$
(3)

The \triangle SYS DLY for T-G and T-V can therefore be calculated from the raw code differences and the reference delays as

$$\Delta SYS DLY_{T-G}(f) = RAW DIF_{T-G,median}(f) + REF DLY_{T} - REF DLY_{G}$$
(4)

and

$$\Delta SYS DLY_{T-V}(f) = RAW DIF_{T-V,median}(f) + REF DLY_{T} - REF DLY_{V}.$$
 (5)

For the analysis of a measurement series, the RAW DIFs of all available satellites were averaged for each epoch. From this data, the median and standard deviation were determined. Using (4) & (5), the Δ SYS DLY for V-G can be written in the form

$$\Delta SYS DLY_{V-G}(f) = \Delta SYS DLY_{T-G}(f) - \Delta SYS DLY_{T-V}(f).$$
(6)

Therefore, the equation

INT
$$DLY_V(f) = INT DLY_G(f) + \Delta SYS DLY_{V-G}(f) + CAB DLY_G - CAB DLY_V$$
 (7)

can be used to calculate the INT DLY of all visited receivers.

The analysis also includes the time deviations of the measurement series. The time instability (TDEV) values were determined from the epoch-averaged timelines. If applicable, data gaps in the

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 13 of 33

timeline were filled using the algorithm developed by D. A. Howe and N. Schlossberger [RD07], before TDEV analysis.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 14 of 33

3. RESULTS OF RAW DATA PROCESSING

3.1. OVERVIEW

The raw code differences of the pairs of co-located receivers during the data acquisition period are generated using the DCLRINEX software. The stated raw calibration results are taken as the median of the raw differences. The associated uncertainties are derived from the TDEV at 50000 s. The default value of 0.1 ns is chosen if the measured TDEV is less than 0.1 ns.

Table 3-1 Summary information on the raw calibration results for GPS signals (all values in ns)

Pair	Date	RAWDIF(P1)	Unc.	RAWDIF(P2)	Unc.
PTBM-PT13	60249 - 60255	59.7	0.1	60.5	0.1
PTBM-LT02	60282 - 60286	75.2	0.1	77.7	0.1
PTBM- LT03	60276 - 60281	76.5	0.1	66.2	0.1
PTBM-PT13	60659 - 60665	54.9	0.1	55.5	0.1

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 15 of 33

3.2. COMMON-CLOCK SET-UP IN PTB: PERIOD 1

For CC1, PTBM was operated for 7 days at PTB. The installation of the receivers in PTB is depicted in Figure 3-1 for PPS signals and in Figure 3-2 for 5 MHz (and 10 MHz) signals.

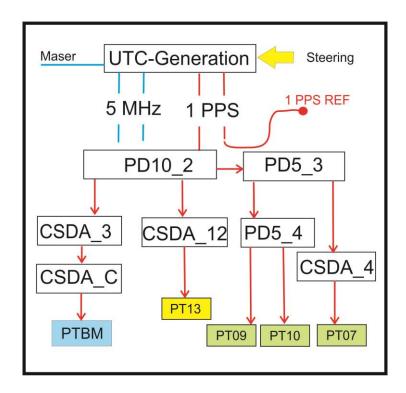


Figure 3-1 UTC(PTB) reference point and 1 PPS signal distribution to PT13, PTBM, and other receivers;

PD stands for pulse distributor, CSDA stands for clock signal distribution amplifier

A clarification may be helpful regarding the 1 PPS REF point. When measuring with a TIC the time difference between Port A = UTC(PTB), and Port B = 1 PPS REF, then the result is +2.7 ns. Figure 3-3 illustrates the installation of GNSS antennas on the roof of the PTB time laboratory (clock hall) during CC1.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 16 of 33

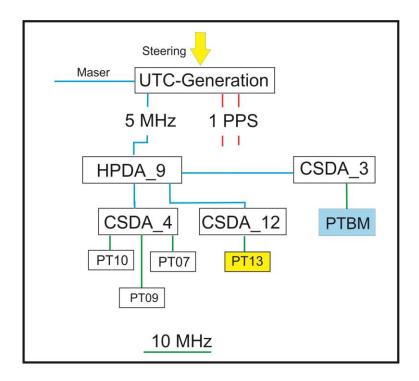


Figure 3-2 UTC(PTB) signal distribution (5 MHz, 10 MHz) to PT13, PTBM, and other receivers HPDA stands for High-precision distribution amplifier (for rf frequencies)

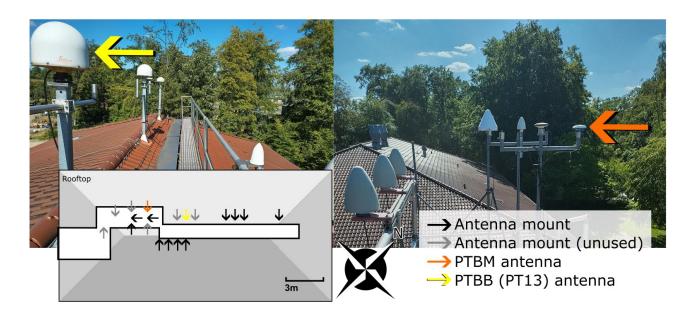


Figure 3-3 Installation of GNSS antennas at PTB, PT13 antenna (yellow) and PTBM antenna during CC1 and CC2 (orange)

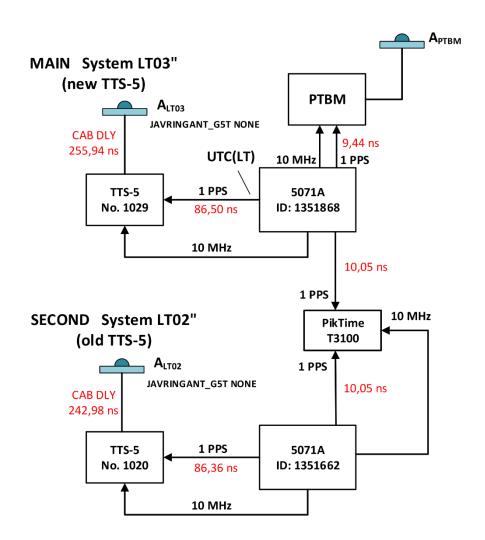
The period 60249 to 60255 (7 days) was chosen to determine the initial PTBM INT DLY values (CC1). The result of comparison with PT13 as the reference are shown in Figure B-1. The figures show the raw code differences and the corresponding TDEVs. The numerical results are given in Table 3-1.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1


 Page:
 17 of 33

3.3. OPERTATION OF PTBM AT FTMC

The PTBM was dispatched on 8th of November 2023 and set-up at FTMC on the 20th of October. PTBM was operated for 18 days. FTMC operates two GNSS receivers with designation LT02 and LT03 whose delays were determined. Information sheets about these receivers are shown in Annex A. Both are PikTime Systems TTS-5 GNSS receivers. As FTMC is operating the two receivers on two different time sources, it was decided to measure LT03 and LT02 successively.

The PPS signal distribution to PTBM and FTMC receivers is illustrated in Figure 3-4 and Figure 3-5. The antenna installation at FTMC is shown in Figure 3-5. PTBM was operated with its own antenna and antenna cable.

Raw code differences and the corresponding TDEVs are shown in Annex B starting with Figure B-2 and B-3. The numerical results are given in Table 3-1.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 18 of 33

Figure 3-4 PPS signal distribution at FTMC with PTBM as operated from MJD60268 until MJD60282

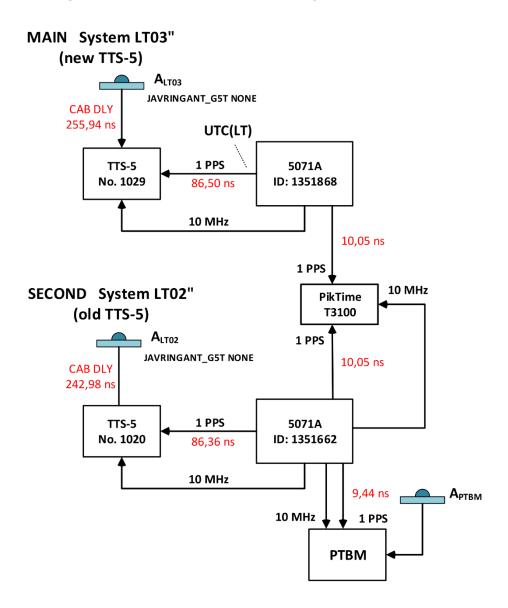


Figure 3-5 PPS signal distribution at FTMC with PTBM as operated from MJD60282 until MJD60286

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 19 of 33

Figure 3-5 PTBM antenna installation at FTMC

3.4. COMMON-CLOCK SET-UP IN PTB: PERIOD 2

The period 60659 to 60665 (7 days) was chosen to determine PTBM INT DLY values during the common clock period CC2. The configuration of PTBM was "standard", the automatic PPS IN delay compensation was activated. The result of comparison with PT13 as the reference are shown in Figure B-4. The figures show the raw code differences and the corresponding TDEVs. The numerical results are given in Table 3-1.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 20 of 33

4. CALIBRATION RESULTS

4.1. TRAVELING SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM

Table 4-1 Calibration results T vs. G (all values in ns)

Pair	Date	REF DLY _T	REF DLY _G	RAW DIF	ΔSYS DLY _{T-G}	Code
PTBM-PT13	60249 - 60255	42.8	56.2	59.7	46.3	P1
PTBM-PT13	60249 - 60255	42.8	56.2	60.5	47.1	P2
PTBM-PT13	60659 - 60665	47.5	56.2	54.9	46.2	P1
PTBM-PT13	60659 - 60665	47.5	56.2	55.5	46.7	P2

4.2. TRAVELING SYSTEM WITH RESPECT TO THE VISITED SYSTEM

Table 4-2 Calibration results T vs. V (all values in ns)

Pair	Date	REF DLY _T	REF DLY _V	RAW DIF	ΔSYS DLY _{T-V}	Code
PTBM-LT02	60282 - 60286	9.4	81.1	75.2	3.5	P1
PTBM-LT02	60282 - 60286	9.4	81.1	77.7	6.0	P2
PTBM-LT03	60276 - 60281	9.4	86.4	76.5	-1.6	P1
PTBM-LT03	60276 - 60281	9.4	86.4	66.2	-11.8	P2

4.3. VISITED SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM

Table 4-3 Calibration results V vs. G (all values in ns)

Pair	Date	CAB DLY _V	CAB DLY _G	ΔSYS DLY _{V-G}	ΔINT DLY _{V-G}	Code
PT13-LT02	2023	243.0	205.7	42.7	5.4	P1
PT13-LT02	2023	243.0	205.7	40.9	3.7	P2
PT13-LT03	2023	255.9	205.7	47.9	-2.4	P1
PT13-LT03	2023	255.9	205.7	58.8	8.5	P2

The numerical results of the two common-clock campaigns at PTB are given in Table 4-1. The Δ SYS DLY_{T-G} values agree very well with the largest change noted between CC1 and CC2 amounting 0.07 ns for P1.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 21 of 33

4.4. INT DLY UNCERTAINTY EVALUATION

The overall uncertainty of the INT DLY values obtained as a result of the calibration is given by

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$
, (8)

with the statistical uncertainty u_a and the systematic uncertainty u_b . The statistical uncertainty is related to the instability of the common clock data collected at the visited sites and PTB, respectively. The systematic uncertainty is given by

$$\mathbf{u}_{\mathbf{b}} = \sqrt{\sum_{n} u_{b,n}^2}.\tag{9}$$

The contributions to the sum (9) are listed and explained subsequently. Values in column P3 are calculated according to $u(P3) = \sqrt{\{u(P1)^2 + (1.54 \times u(P1-P2))^2\}}$. Uncertainties for the Galileo delays are calculated according to $\sqrt{\{u(E1)^2 + (1.26 \times u(E1-E5a))^2\}}$.

Note that the uncertainty of the INT DLY values of PTB's fixed receiver PT13 (G) which served as the reference is not included.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 22 of 33

Table 4-4 Uncertainty contributions for the calibration of receiver delays at FTMC, all values in ns

	Uncertainty	Value f1	Value f2	Value f1-f2	Value f3	Description
1	u _a (PTB)	0.1	0.1	0.14	13	CC measurement uncertainty at PTB, TDEV max. of the two CC campaigns
2	u _a (FTMC)	0.1	0.1	0.14		CC measurement uncertainty, for the FTMC receivers
3	u _a (GPS)	0.14	0.14	0.2	0.34	
	-	Re	sult of cl	osure meas	surement	at PTB
4	u _{b,1} (GPS)	0.1	0.4	0.41		Misclosure, see Table 4-1
		Systemat	tic compo	nents due	to anteni	na installation
5	u _{b,11}	0.2	0.2	0.28		Multipath at PTB
6	U _{b,12}	0.2	0.2	0.28		Multipath at FTMC
		Inst	allation	of PTBM and	d visited	receivers
7	u _{b,21}	0.2	0.2	0		Connection of PTBM to UTC(PTB) (REF DLY)
8	u _{b,22}	0.2	0.2	0		Connection of PTBM to UTC(FTMC) (REF DLY)
9	U _{b,23}	0.2	0.2	0		Connection of receivers at FTMC to UTC(FTMC) (REF DEL)
10	U _{b,24}	0.1	0.1	0		TIC nonlinearities at PTB
11	U _{b,25}	0.1	0.1	0		TIC nonlinearities at FTMC
			Ar	ntenna cabl	e delay	
12	u _{b,31} (PTB)	0.5	0.5	0		Uncertainty estimation for the PTBM CAB DLY when installed at PTB
13	u _{b,32} (FTMC)	0	0	0		Uncertainty estimation for the PTBM CAB DLY when installed at FTMC
14	u _{b,33} (FTMC)	0.5	0.5	0		Uncertainty estimation for FTMC CAB DLY values
15	u _{b,INT} (GPS)	1.06	1.06	0.57	1.23	
16	u _{CAL,0} (GPS)				1.3	

As demonstrated in Table 3-1, the three receivers at FTMC show almost the same time instability. The TDEV plots in Annex B show marginal differences, and the value of 0.1 ns is a conservative estimate anyway. Thus, a single uncertainty budget can cover all other contributions.

The uncertainty contribution $u_{b,1}$ is based on the difference between the two common clock campaigns involved which was very small for the current campaign. A conservative estimate of 0.1 ns was chosen.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 23 of 33

At PTB, the PPS IN Delay Compensation has been initiated several times, with the PTBM receiver connected to different 10 MHz cables in sequence. Results reported agreed within 0.1 ns. Thus, when the receiver is operated in the same modus at each site the achievable uncertainty is likely the lowest. This was the case during the current campaign.

An uncertainty contribution due to potential multipath disturbance is added as $u_{b,11}$ and $u_{b,12}$. If at a given epoch in time the recorded time differences REFSYS would be biased by multipath, this might change with time due to the change in the satellite constellation geometry. [RD05] gives an estimate that has often been referred to. It was agreed at the 2017 meeting of the CCTF WG on GNSS that a 0.2 ns-uncertainty should be attributed to the multipath effect.

The uncertainties of the connection of the receivers to the local time scales $(u_{b,21}, u_{b,22}, u_{b,23})$ has been estimated 0.2 ns for all cases.

The uncertainty contributions $u_{b,24}$ and $u_{b,25}$ are related to imperfections in the TIC in conjunction with the relationship between the zero-crossings of the external reference frequency and the 1 PPS signals. This "nonlinearity" is probably caused by the internal interpolation process. By connecting the travelling TIC successively to 10 MHz, using cables of different lengths, the effect was estimated to be at most 0.1 ns if 1 PPS signals with a slew rate of approximately 0.5 V/ns are used.

The measurement of antenna cable delays causes contributions $u_{b,31}$, $u_{b,32}$ and $u_{b,33}$. During the current campaign the same PTBM cable was employed on each occasion. CAB DLY values were measured at PTB in previous campaigns, with the cable rolled out and with the cable on the spool. Each measurement was made with a differential method so that the TIC-internal error should be small anyway. All results agreed within 0.1 ns if the same PPS signal source was used but differed by up to 0.5 ns when the slew rate of the pulse was significantly different. Thus, we retain an uncertainty contribution $u_{b,31}$ of 0.5 ns. For the stationary antenna cables at FTMC we conservatively assume the same uncertainty of the delay value.

Note anyway that this uncertainty contribution $u_{b,33}$ a priori has no impact on the uncertainty of the time transfer link between PTB and the visited institute. If the stated CAB DLY for the visited fixed receiver(s) would be erroneous, this would be absorbed in the INT DLY values produced as a result of the campaign.

G1G2_1020_2023 Project: Code: 1020-2023 01/09/2024 Date: 1.1 Version:

24 of 33 Page:

5. FINAL RESULTS FOR THE VISITED SYSTEMS

The results of the calibration campaign G1G2_1020_2023 are summarized in Table 5-1. INT DLY values for the golden reference receiver PT13 were determined in 2021 [RD01]. The uncertainty values are taken from Table 4-4. The final INT DLY values were calculated using equation (7) with the values listed in Table 4-1, Table 4-2 and Table 4-3.

Table 5-1 Summary of final results for GPS links, all values in ns

Reference system	Cal_Id	Date		INT DLY (P1)	INT DLY (P2)
PT13	1001-2020	59303		31.6	29.3
Visited system	Cal_Id	Date	u _{CAL} (P3)	INT DLY (P1)	INT DLY (P2)
LT02	1020-2023	60666	1.1	37.0	33.0
LT03	1020-2023	60666	1.1	29.2	37.8

ANNEXES

ANNEX A: BIPM INFORMATION SHEETS

ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 25 of 33

ANNEX A: BIPM CALIBRATION INFORMATION SHEETS

First common clock measurement at PTB

Laboratory:		РТВ				
Date and hour of the beginning of	2023-11-01 00:00 UTC (MJD 60249)					
Date and hour of the end of measure	2022-08-11 23:59 UTC (MJD 60256)					
Information on the system						
			Traveling:			
4-character BIPM code	PT13			РТВМ		
Receiver maker and type:	PolaRx	5TR (5.2.0)	Pola	PolaRx5TR (5.4.0)		
Receiver serial number:	S/N 47	70 1292		S/N 3048338		
1 PPS trigger level /V: 1				1		
Antenna cable maker and type: Phase stabilised cable (Y/N):	ECOFL	.EX15		LMR-400 (N)		
Length outside the building /m:	approx	c. 25	25			
Antenna maker and type: Antenna serial number:	LEICA AR25			Navexperience 3G+C REFERENCE S/N RE 0560		
Temperature (if stabilized) /°C						
Measured delays /ns	1		l e			
	Local:			Traveling:		
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	9.59 ±	: 0.1 (#)	48.	5 +/- 0.2		
Delay from 1 PPS-in to internal Reference (if different): (X_0) / ns	46.63	± 0.1 (#)		Determined automatically by receiver software		
Antenna cable delay: (X _C) / ns	205.7 ± 0.1			264.9 ± 0.5		
Splitter delay (if any): N/A						
Data used for the generation of C	GGTTS	files				
		LOCAL:		Traveling		
☐ INT DLY (or X _R +X _S) (GPS) /ns:		31.6 (P1), 29.3 (P2), 33.6 (C (*)		18.9 (P1) 17.1 (P2) (****) 0.0 (C1)		
\square INT DLY (or X_R+X_S) (GALILEO) /ns	;;	33.6 (E1), 33.6 (E5a) (*)	20.8 (E1), 17.9 (E5a) (****)		
☐ CAB DLY (or X _C) /ns:	205.7		264.9			
\square REF DLY (or $X_P + X_O$) /ns:	56.2		48.5			
□ Coordinates reference frame:	ITRF		ITRF			
X /m:		+3844059.86 (***)		+3844062.56 (\$)		
Y /m:		+709661.56 (***) P1		+709658.49 (\$) P7		
Z /m		+5023129.87 (***)		+5023127.88 (\$)		
General information						
☐ Rise time of the local UTC pulse:	3 ns					
☐ Is the laboratory air conditioned:	Yes					
Set temperature value and uncertaint	ty:	23.0 °C, peak-to-peak variations 0.5° C				

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 26 of 33

Notes valid for CC1 - CC2:

(#) Local measurements repeated on occasion of campaign 1001-2020.

- (\$) Coordinates of mast P7 (APC) were determined on 26.05.2020 using NRCan PPP
- (*) values based on G1 calib 1001-2020 [RD01]]

(***) values provided by BIPM via Mail 2019-08-07

(****) PTBM INT DLY were adjusted so that PTBM – PT13 for GPS and Galileo were close to zero for convenience.

Names of files to be used in processing for site PTB Travelling receiver GZPTBMMJ.DDD, EZPTBMMJ.DDD Reference receiver GZPT13MJ.DDD, EZPT13MJ.DDD

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 27 of 33

PTBM operation at FTMC: Receiver LT02

Laboratory:	FTMC					
Date and hour of the beginning of measurement	2023-12-04.	2023-12-04. UTC 09 h. MJD 60282				
Date and hour of the end of measurements:	2023-12-08. UTC 11 h. MJD 60286					
Information on the system						
	Local:		Travell	ling:		
4-character BIPM code	LT02		РТВМ			
Receiver maker and type: Receiver serial number:	PikTime TTS-5 SN: 1020		Septent 304833	trio PolaRx5TR (5.4.0)		
1 PPS trigger level /V:	1.0		1.0			
Antenna cable maker and type: Phase stabilized cable (Y/N):	CELLFLEX ¼", LCF14-50J Y			N-type, LMR400, N-connectors		
Length outside the building /m:	ca. 10 m		ca. 10 r	n		
Antenna maker and type: Antenna serial number:	JAVAD RinGant G3T SN: 000656			Navexperience 3G+C reference S/N RE 0560		
Temperature (if stabilized) /°C	-		-			
Measured delays /ns						
	Local:		Travell	ling:		
Delay from local UTC to receiver 1 PPS-in (X_P) / ns	86.4 + 112.8		9.44	9.44		
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns	81.05		N/A			
Antenna cable delay: (X_C) / ns	243	264.9		.9		
Splitter delay (if any):	N/A		N/A			
Additional cable delay (if any):	N/A			N/A		
Data used for the generation of CGGTTS	files					
		LOCAL:		Travelling		
□ INT DLY (or X_R+X_S) (GPS) /ns:		N/A		N/A		
☐ INT DLY (or X _R +X _S) (GALILEO) /ns:		N/A		N/A		
☐ CAB DLY (or X _C) /ns:		N/A		N/A		
\square REF DLY (or $X_P + X_O$) /ns:		N/A		N/A		
☐ Coordinates reference frame:		N/A		N/A		
X /m:		N/A		N/A		
Y /m:		N/A		N/A		
Z /m		N/A		N/A		
General information						
☐ Rise time of the local UTC pulse:		5 ns				
☐ Is the laboratory air conditioned:		Yes				
Set temperature value and uncertainty:	23 +/-0.5 °C					

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 28 of 33

PTBM operation at FTMC: Receiver LT03

Laboratory:	FTMC				
Date and hour of the beginning of measureme	2023-12-04. UTC 09 h. MJD 60282				
Date and hour of the end of measurements:	2023-12-08. UTC 11 h. MJD 60286				
Information on the system			_		
	Local:		Travelli	ing:	
4-character BIPM code	LT03		РТВМ		
Receiver maker and type: Receiver serial number:	PikTime TTS-5 SN: 1029		Septentrio PolaRx5TR (5.4.0) 3048338		
1 PPS trigger level /V:	1.0		1.0		
Antenna cable maker and type: Phase stabilized cable (Y/N):	CELLFLEX ¼", LCF14-50J Y		N-type, LMR400, N-connectors		
Length outside the building /m:	ca. 10 m		ca. 10 m	า	
Antenna maker and type: Antenna serial number:	JAVAD RinGant G5T SN: RA100059		Navexperience 3G+C reference S/N RE 0560		
Temperature (if stabilized) /°C	-		-		
Measured delays /ns	1				
Tradation delays / 115	Local:		Travelling:		
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	86.5		9.44		
Delay from 1 PPS-in to internal Reference (if different): (X_0) / ns	87.48		N/A		
Antenna cable delay: (X _C) / ns	255.9	264.9		4.9	
Splitter delay (if any):	N/A		N/A		
Additional cable delay (if any):	N/A		N/A	/A	
Data used for the generation of CGGTTS f	iles				
		LOCAL:		Travelling	
□ INT DLY (or X _R +X _S) (GPS) /ns:		N/A		N/A	
□ INT DLY (or X_R+X_S) (GALILEO) /ns:		N/A		N/A	
☐ CAB DLY (or X _C) /ns:		N/A		N/A	
\square REF DLY (or X_P+X_O) /ns:		N/A		N/A	
☐ Coordinates reference frame:		N/A		N/A	
X /m:		N/A		N/A	
Y /m:		N/A		N/A	
Z /m		N/A		N/A	
General information					
☐ Rise time of the local UTC pulse:	5 ns				
☐ Is the laboratory air conditioned:	Yes				
Set temperature value and uncertainty:		23 +/-0.5 °C			

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 29 of 33

Second common clock measurement at PTB

Laboratory:		РТВ					
Date and hour of the beginning of	2023-12-16 00:00 UTC (MJD 60294)						
Date and hour of the end of measurements: 2023-12-23 23:59 UTC (MJD 60301)							
Information on the system							
	Local:			Traveling:			
4-character BIPM code	PT13			РТВМ			
Receiver maker and type:	PolaRx5TR (5.2.0)			PolaRx5TR (5.3.0)			
Receiver serial number:	S/N 470 1292			S/N 3048338			
1 PPS trigger level /V:	1			1			
Antenna cable maker and type: Phase stabilized cable (Y/N):	ECOFL	EX15		LMR-400 (N)			
Length outside the building /m:	approx	x. 25		25			
Antenna maker and type: Antenna serial number:	LEICA AR25 726333, Calib Geo++ 18.08.2015			Navexperience 3G+C REFERENCE S/N RE 0560			
Temperature (if stabilized) /°C							
Measured delays /ns			•				
	Local:		Tı	Traveling:			
Delay from local UTC to receiver 1 PPS-in (X_P) / ns	9.59 ± 0.1 (#)		41	41.13			
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns	μ_0 μ_1 μ_2 μ_3 μ_4 μ_4 μ_4			Determined automatically by receiver software			
Antenna cable delay: (X _C) / ns	205.7 ± 0.1			264.9 ± 0.5			
Splitter delay (if any):	N/A						
Data used for the generation of C	Data used for the generation of CGGTTS files						
		LOCAL:		Traveling			
		31.6 (P1), 29.3 (P2), 33.6 (C1)(*)		18.9 (P1) 17.1 (P2) (****) 0.0 (C1)			
\square INT DLY (or X_R+X_S) (GALILEO) /ns	:	33.6 (E1), 33.6 (E5a) (*)		20.8 (E1), 17.9 (E5a) (****)			
☐ CAB DLY (or X _C) /ns:		205.7		264.9			
\square REF DLY (or X_P+X_O) /ns:		54.3		41.13			
☐ Coordinates reference frame:		ITRF (***)		ITRF (****)			
<pre></pre> <pre>/m:</pre>		+3844059.86 (***)		+3844062.56 (\$)			
Y /m:		+709661.56 (***)	Mast P10	+709659.49 (\$) Mast			
Z /m		+5023129.87 (***)		+5023127.88 (\$)			
General information							
☐ Rise time of the local UTC pulse:	3 ns						
☐ Is the laboratory air conditioned:	Yes						
Set temperature value and uncertaint	23.0 °C, peak-to-peak v	ariatio	ons 0.6° C				

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 30 of 33

Notes valid for CC1 - CC2:

(#) Local measurements repeated on occasion of campaign 1001-2020.

- (\$) Coordinates of mast P7 (APC) were determined on 26.05.2020 using NRCan PPP
- (*) values based on G1 CAL_ID 1001-2020 [RD01]]

(***) values provided by BIPM via Mail 2019-08-07

(****) PTBM INT DLY were adjusted so that PTBM - PT13 for GPS and Galileo were close to zero for convenience.

Names of files to be used in processing for site PTB
Travelling receiver GZPTBMMJ.DDD, GMPTBMMJ.DDD, EZPTBMMJ.DDD
Reference receiver GZPT13MJ.DDD, GMPT13MJ.DDD, EZPT13MJ.DDD

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 31 of 33

. ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS

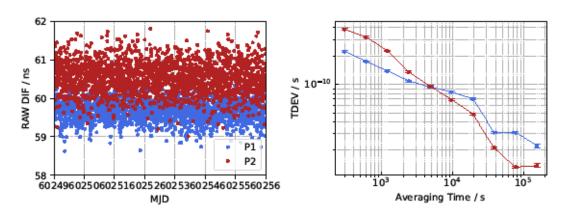


Figure B-1 Left: Raw code differences between T and G for GPS signals during CC1, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC1.

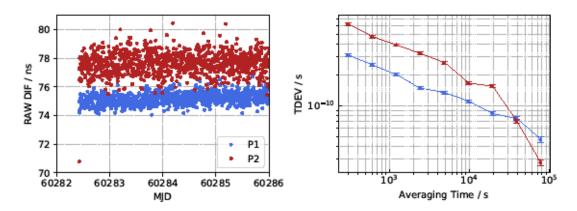


Figure B-2 Left: Raw code differences between T and LT02 for GPS signals, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and LT02 for GPS signals.

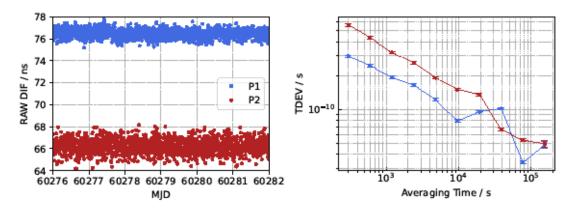


Figure B-3 Left: Raw code differences between T and LT03 for GPS signals, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and LT03 for GPS signals.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 32 of 33

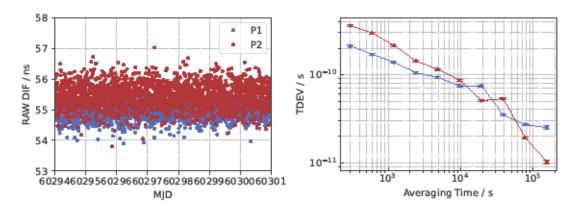


Figure B-4 Left: Raw code differences between T and G for GPS signals during CC2, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC2.

 Project :
 G1G2_1020_2023

 Code:
 1020-2023

 Date:
 01/09/2024

 Version:
 1.1

 Page:
 33 of 33

END of DOCUMENT