

Project :
Code:
Date:
Version:
Page:

G1G2_1019_2023 1019-2023 09/10/2023 1.1 1 of 33

GNSS CALIBRATION REPORT G1G2_1019_2023

Prepared by: Florian Heimbach (PTB) Time Dissemination Working Group

Approved by: Juergen Becker (PTB) Time Dissemination Working Group

Authorized by: BIPM

Project: Code: Version: Safe date: G1G2_1019_2023 1019-2023 1.1 01/11/2023 8:32:00

1.1

TABLE OF CONTENTS

LIST OF TABLES AND FIGURES
REFERENCES
ACRONYMS
EXECUTIVE SUMMARY
1. DESCRIPTION OF EQUIPMENT AND OPERATIONS
1.1. PARTICIPANTS
1.2. TRAVELING EQUIPMENT
1.3. VISITED EQUIPMENT
1.4. SCHEDULE
1.5. CALIBRATION PROCEDURE
2. DATA USED
3. RESULTS OF RAW DATA PROCESSING
3.1. OVERVIEW
3.2. COMMON-CLOCK SET-UP IN PTB: PERIOD 115
3.3. OPERTATION OF PTBM AT VTT17
3.4. COMMON-CLOCK SET-UP IN PTB: PERIOD 2
4. CALIBRATION RESULTS
4.1. TRAVELING SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM
4.2. TRAVELING SYSTEM WITH RESPECT TO THE VISITED SYSTEM
4.3. VISITED SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM
4.4. INT DLY UNCERTAINTY EVALUATION
5. FINAL RESULTS FOR THE VISITED SYSTEMS
ANNEX A: BIPM CALIBRATION INFORMATION SHEETS
. ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS

G1G2_1019_2023 1019-2023 09/10/2023 1.1 3 of 33

G1G2_1019_2023 1019-2023 09/10/2023 1.1 4 of 33

LIST OF TABLES AND FIGURES

Figure 1-1 PTBM: views of the device and RxControl configuration and messages regarding PPS In and OUT11
Figure 3-1 UTC(PTB) reference point and 1 PPS signal distribution to PT13, PTBM, and other receivers; 15
Figure 3-2 UTC(PTB) signal distribution (5 MHz, 10 MHz) to PT13, PTBM, and other receivers16
Figure 3-3 Installation of GNSS antennas at PTB, PT13 antenna (yellow) and PTBM antenna during CC1 and CC2 (orange)
Figure 3-4 PPS signal distribution at VTT to the receivers17
Figure 3-5 PTBM antenna installation at VTT18
Figure B-1 Left: Raw code differences between T and G for GPS signals during CC1, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC130
Figure B-2 Left: Raw code differences between T and G for Galileo signals during CC1, Δ E1 (green) and Δ E5a (orange) Right: TDEV of the raw code differences between T and G for Galileo signals during CC1
Figure B-3 Left: Left: Raw code differences between T and MI04 for GPS signals, △P1 (blue) and △P2 (red) Right: TDEV of the raw code differences between T and MI04 for GPS signals

Project : G1G2_1019_2023 Code: 1019-2023 Date: 09/10/2023 Version: Page: 5 of 33

1.1

REFERENCES

	REFERENCES
RD01	2020 Group 1 GNSS calibration trip (CAL_ID 1001-2020)
RD02	BIPM guidelines for GNSS calibration, V3.0, 02/04/2015
RD03	BIPM Procedure for computing raw difference of GNSS code measurements for geodetic receivers, dclrinex software version 3.1, April 2021
RD04	J. Kouba, P. Heroux, 2002, "Precise Point Positioning Using IGS Orbit and Clock Products", GPS Solutions, Vol. 5, No. 2, 12-28
RD05	W. Lewandowski, C. Thomas, 1991, "GPS Time transfers," Proc. IEEE, Vol. 79, No. 7, 991-1000
RD06	P. Defraigne and G. Petit, "CGGTTS-Version 2E: an extended standard for GNSS time transfer", Metrologia 52 (2015) G1
RD07	D. A. Howe and N. Schlossberger, "Characterizing Frequency Stability Measurements Having Multiple Data Gaps", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 69, No. 2 (2022)
RD08	BIPM Template for calibration report to the BIPM, V3.1, 29/08/2015

1.1

ACRONYMS

	ACRONYMS
BIPM	Bureau International des Poids et Mesures, Sèvres, France
CAB DLY	Antenna Cable Delay
CGGTTS	CCTF Generic GNSS Time Transfer Standard
DCLRINEX	Differential calibration software using the pseudoranges directly read from the
	RINEX files, software was provided by the BIPM
EURAMET	The European Association of National Metrology Institutes
ESTEC	European Space Research and Technology Centre
IGS	International GNSS Service
INT DLY	Internal Signal Delay
GNSS	Global Navigation Satellite System
PPP	Precise Point Positioning
РТВ	Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
REF DLY	Reference Delay
RINEX	Receiver Independent Exchange Format
R2CGGTTS	RINEX-to CGGTTS conversion software, provided by ORB / BIPM
TDEV	Time Deviation
TIC	Time Interval Counter
VTT	Technical Research Centre of Finland Ltd.

EXECUTIVE SUMMARY

As part of the support of the BIPM Time and Frequency Group by EURAMET G1 laboratories, PTB conducted a relative calibration of GNSS equipment of VTT, Finland, with respect to the calibration of PTB receiver PT13, which currently serves as the reference receiver in all GNSS time links to PTB in the context of realization of TAI. The PT13 signal delays for GPS and Galileo were determined by BIPM as reported with CAL_ID 1001-2020 [RD01]. PTB provided its receiver PTBM for the purpose as traveling equipment. The current campaign followed as much as possible the BIPM Guide [RD02] and results will be reported using CAL_ID 1019-2023. Results provided are the visited receiver's internal delays for GPS P-code signals on the two frequencies L1 and L2 (INT DLY (P1), and INT DLY(P2)), the C/A-code signal on L1 (L1C) and the equivalent for Galileo on frequencies E1 and E5a. The delays were determined using the DCLRINEX software, which was provided by the BIPM [RD03].

This report documents the installation, data taking and evaluation during the campaign. Its structured based on the BIPM template [RD08].

The determination of the internal delay values of the receiver at the visited site is a three-step process.

At first (Common-Clock 1, CC1), the traveling receiver, PTBM, was compared to the "golden" receiver, PT13, and the offset between the actual and the assumed PTBM delay values were determined.

After that, the receiver was installed at the visited sites and the internal delay values of the devices under test and their statistical properties were determined with respect to PTBM.

Finally, the stability of the PTBM delays was assessed by a second Common-Clock measurement (CC2) in PTB. Based thereon, the "final" INT DLY values of the visited receivers and their uncertainty values were calculated.

The structure of this report follows this sequence of work. After presentation of the participants and schedule, a general section follows that contains the (mathematical) calibration procedure, followed by a report of data collection at PTB and VTT. The final results and the uncertainty discussion close the report. In the Annex the BIPM information tables are reproduced.

The final results are included in Table 5-1 and Table 5-2. The internal delays of receivers MI04 and MI05 were determined with uncertainties between 1.0 ns and 1.1 ns for dual frequency observations.

As a reminder: All uncertainty values reported in this document are $1-\sigma$ values.

The responsible party at PTB quality management gave the advice to stress in this report that the correctness of all results and of the stated uncertainty values relies partially on the correctness of the entries in the installation report (BIPM information tables) provided by the visited institute.

1. DESCRIPTION OF EQUIPMENT AND OPERATIONS

1.1. PARTICIPANTS

Institute	Point of contact	Site address	
РТВ	Florian Heimbach +49 531 592 4422 florian.heimbach@ptb.de	PTB, AG 4.42 Bundesallee 100 38116 Braunschweig, Germany	
VTT	Anders Wallin +35 820 722 7994 anders.wallin@vtt.fi	VTT Technical Research Centre of Finland Ltd Tekniikantie 1 02150 Espoo, Finland	

Table 1-1 List of participants

1.2. TRAVELING EQUIPMENT

The PTBM traveling measurement set-up consists of a 19"-chassis, containing a GNSS receiver (Septentrio PolaRx5TR), a TIC (Piktime T4100U) and internal cabling. The auto compensation mode of the GNSS receiver was set to "ON" during the whole calibration trip. The set-up further includes an antenna (Navexperience 3G+C REFERENCE), 25 meters LMR-400 antenna cable, an N to TNC adapter and a laptop.

The delay from the visited UTC reference point to the calibration reference point was measured by a Keysight 53230A (SN: MY62010247) TIC, provided by VTT.

1.3. VISITED EQUIPMENT

Institute	Status of equipment	Dates of measurement	Receiver type	BIPM code	RINEX name
VTT	Group 2	24.08.2023 - 30.08.2023	DICOM GTR51	MI04	MI04
VTT	Group 2	24.08.2023 - 30.08.2023	Septentrio PolaRx5 TR	MI05	MI05

Table 1-2 List of the visited equipment

1.4. SCHEDULE

Table 1-3 Schedule of the campaign

Date	Institute	Action	Remarks
2023-08-03 until 2023-08-09	РТВ	First common-clock comparison between PTBM and PT13	7 days used for the evaluation, MJD 60159 - 60165
2023-08-22 until 2023-09-11	VTT	Operation of PTBM in parallel with local receiver	7 days used for the evaluation, MJD 60180 - 60186
2023-09-28 until 2023-10-05	РТВ	Operation of PTBM after return	7 days used for the evaluation, MJD 60216 - 60222

1.5. CALIBRATION PROCEDURE

When dealing with G1G2 calibrations, in principle we distinguish receivers V, T, and G: V for visited, T for traveling, and G for golden reference.

G1 labs have committed to ship their T to the other sites. In the current campaign, PT13 (named PTBB when referred to as IGS station) serves as the reference receiver G. The PT13 signal delays for GPS and Galileo were determined by BIPM as reported with CAL_ID 1001-2020 [RD01]. PTBM served as the traveling receiver T.

Conventionally, the receiver delay D is considered as the sum of different terms that are defined subsequently:

(1) INT DLY

The internal signal delay represents the sum of $X_R + X_S$.

 X_R represents the receiver hardware delay, between a reference point whose definition depends on the receiver type and the internal time reference of the measurements. X_S represents the antenna delay, between the phase center and the antenna cable connector at the antenna body. We distinguish the two quantities for the two frequencies, f1 and f2.

INT DLY(f1) and INT DLY(f2) of receiver V are the basic quantities that are determined during the relative calibration. For calculating ionosphere—free observation data, INT DLY(f3) is calculated as $2.54 \times INT$ DLY(f1) - $1.54 \times INT$ DLY(f2) for GPS, and as $2.26 \times INT$ DLY(f1) - $1.26 \times INT$ DLY(f2) for Galileo, respectively. In figures and results tables, we use the designation P1, P2 for GPS, and E1, E5a for Galileo, instead of f1, f2.

The following terms are considered frequency independent, i.e. no distinction is made for f1 and f2.

(2) CAB DLY

The sum $X_C + X_D$ represents the antenna cable delay (CAB DLY).

1.1

X_c corresponds to the delay of the long cable from the antenna to the input connector at either the antenna splitter or the receiver body directly. If a splitter is installed, X_D corresponds to the delay of the splitter and the small cable up to the receiver body. For a simple set-up with just an antenna cable, $X_D = 0$.

(3) **REF DLY**

The sum $X_P + X_O$ represents the reference delay (REF DLY).

X_P corresponds to the delay of the cable between the laboratory reference point for local UTC and the 1 PPS-in connector of the receiver.

X_o corresponds to the delay between the 1PPS-in connector and the receiver internal reference point, the latter depending on the receiver type:

- For Septentrio PolaRx4: Xo available at the 1 PPS-out socket of the receiver
- For Septentrio PolaRx5TR: optionally Xo is determined autonomously by the receiver, or it • can be determined alike to the PolaRx4.
- For DICOM GTR50, GTR51 and GTR55: $X_0 = 0$,
- For TTS-4: RD02, Section 2.3.2, and Annex G specify the procedure for TTS-4, which in ٠ detail depends on the software version.

PT13 (PolaRx5TR) has been installed in April 2019, and the PPS IN Delay Compensation option has never been used. On the contrary, PTBM (PolaRx5TR) normally makes use of the autocompensation option as it reduces the number of measurements and potential errors at the visited site. In this case, the REF DLY is the offset between the UTC(k) reference point and the input to the PPS IN socket on the PTBM rack.

For clarity, Figure 1-1 shows the traveling equipment in two views and screenshots of the PPS configuration menu of the PolaRx5 RxControl software and the receiver message received when the auto-compensation is active.

The distinction of the individual components of the receiver delay reflects the fact that two of them, 2 and 3, can in principle be measured with standard laboratory equipment. Changes of the receiver installation typically affect cabling and thus such delays.

The quantity to be determined by the relative calibration is the INT DLY. The INT DLY of the device under test is determined in such a way that the common-clock differences obtained between the device under test and the reference are zero on average. The INT DLY of T may need to be adjusted so that T and G match, but in practice the small correction to be applied is considered only when INT DLY of V is adjusted to G, using T as intermediate for the measurements made at the different sites.

G1G2_1019_2023 1019-2023 09/10/2023 1.1 11 of 33

Figure 1-1 PTBM: views of the device and RxControl configuration and messages regarding PPS In and OUT.

2. DATA USED

The G, T, and V receivers are all GNSS geodetic receivers and provide RINEX observation files. RINEX navigation files produced by the PT13 receiver were used for CC1 and CC2 analysis. RINEX navigation files from PTBM were used at all stages. Code measurements were taken from the pseudoranges directly read from the RINEX files by the software DCLRINEX dedicated to differential calibration, as provide by BIPM [RD03]. The software produces raw code differences of co-located receivers from the pseudoranges as

$$RAW DIF_{T-G}(f) = TOT DLY_{T}(f) - TOT DLY_{G}(f),$$
(1)

with $TOT DLY_R(f)$ and $TOT DLY_T(f)$ representing the total delays of the reference and traveling receiver respectively. The total delay of G, or T can be written as

$$TOT DLY(f) = INT DLY(f) + CAB DLY - REF DLY.$$
(2)

This report states the differences in system delays \triangle SYS DLY according to [RD08]. The system delay is described as the sum of the INT DLY and the CAB DLY.

$$SYS DLY(f) = INT DLY(f) + CAB DLY$$
(3)

The \triangle SYS DLY for T-G and T-V can therefore be calculated from the raw code differences and the reference delays as

$$\Delta SYS DLY_{T-G}(f) = RAW DIF_{T-G,median}(f) + REF DLY_T - REF DLY_G$$
(4)

and

$$\Delta SYS DLY_{T-V}(f) = RAW DIF_{T-V,median}(f) + REF DLY_T - REF DLY_V.$$
(5)

For the analysis of a measurement series, the RAW DIFs of all available satellites were averaged for each epoch. From this data, the median and standard deviation were determined. Using (4) & (5), the Δ SYS DLY for V-G can be written in the form

$$\Delta SYS DLY_{V-G}(f) = \Delta SYS DLY_{T-G}(f) - \Delta SYS DLY_{T-V}(f).$$
(6)

Therefore, the equation

$$INT DLY_V(f) = INT DLY_G(f) + \Delta SYS DLY_{V-G}(f) + CAB DLY_G - CAB DLY_V$$
(7)

can be used to calculate the INT DLY of all visited receivers.

The analysis also includes the time deviations of the measurement series. The time instability (TDEV) values were determined from the epoch-averaged timelines. If applicable, data gaps in the

Project :	G1G2_1019_2023
Code:	1019-2023
Date:	09/10/2023
Version:	1.1
Page:	13 of 33

timeline were filled using the algorithm developed by D. A. Howe and N. Schlossberger [RD07], before TDEV analysis.

3. RESULTS OF RAW DATA PROCESSING

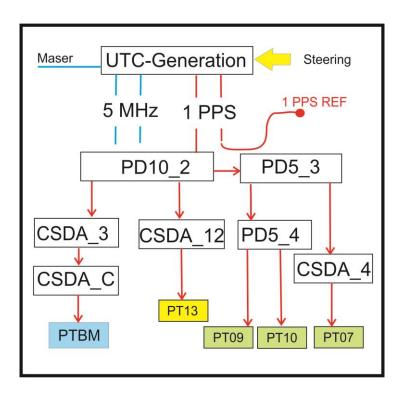
3.1. OVERVIEW

The raw code differences of the pairs of co-located receivers during the data acquisition period are generated using the DCLRINEX software. The stated raw calibration results are taken as the median of the raw differences. The associated uncertainties are derived from the TDEV at 50000 s. The default value of 0.1 ns is chosen if the measured TDEV is less than 0.1 ns.

Pair	Date	RAWDIF(P1)	Unc.	RAWDIF(P2)	Unc.
PTBM-PT13	60159 - 60165	58.82	0.1	59.56	0.1
PTBM-MI04	60180 - 60186	275.31	0.1	273.37	0.1
PTBM-MI05	60180 - 60186	164.93	0.1	164.12	0.1
PTBM-PT13	60216 - 60222	59.07	0.1	56.64	0.1

Table 3-1 Summary information on the raw calibration results for GPS signals (all values in ns)

Table 3-2 Summary information on the raw calibration results for	r Galileo signals (all values in ns)
--	--------------------------------------


Pair	Date	RAWDIF(E1)	Unc.	RAWDIF(E5a)	Unc.
PTBM-PT13	60159 - 60165	59.07	0.1	56.64	0.1
PTBM-MI04	60180 - 60186	-	-	-	-
PTBM-MI05	60180 - 60186	164.69	0.1	162.81	0.1
PTBM-PT13	60216 - 60222	59.94	0.1	57.31	0.1

G1G2_1019_2023 1019-2023 09/10/2023 1.1 15 of 33

3.2. COMMON-CLOCK SET-UP IN PTB: PERIOD 1

For CC1, PTBM was operated for 7 days at PTB. The installation of the receivers in PTB is depicted in Figure 3-1 for PPS signals and in Figure 3-2 for 5 MHz (and 10 MHz) signals.

Figure 3-1 UTC(PTB) reference point and 1 PPS signal distribution to PT13, PTBM, and other receivers; PD10 stands for pulse distributor, CSDA stands for clock signal distribution amplifier

A clarification may be helpful regarding the 1 PPS REF point. When measuring with a TIC the time difference between Port A = UTC(PTB), and Port B = 1 PPS REF, then the result is +2.7 ns. Figure 3-3 illustrates the installation of GNSS antennas on the roof of the PTB time laboratory (clock hall) during CC1.

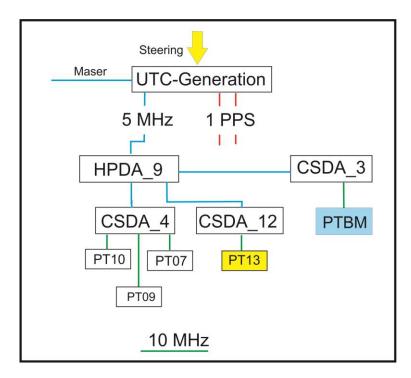


Figure 3-2 UTC(PTB) signal distribution (5 MHz, 10 MHz) to PT13, PTBM, and other receivers HPDA stands for High-precision distribution amplifier (for rf frequencies)

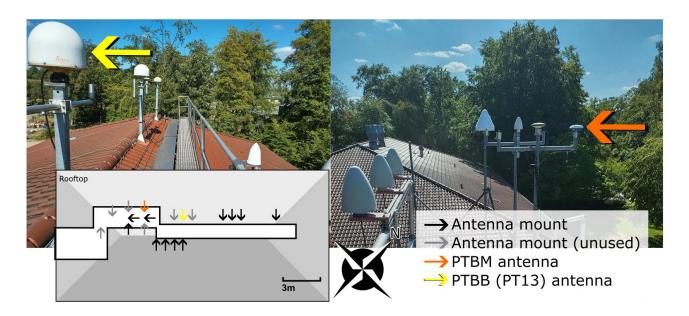


Figure 3-3 Installation of GNSS antennas at PTB, PT13 antenna (yellow) and PTBM antenna during CC1 and CC2 (orange)

The period 60159 to 60165 (7 days) was chosen to determine the initial PTBM INT DLY values (CC1). The result of comparison with PT13 as the reference are shown in Figure B-1 and Figure B-2. The figures show the raw code differences and the corresponding TDEVs. The numerical results are given in Table 3-1 and Table 3-2.

G1G2_1019_2023 1019-2023 09/10/2023 1.1 17 of 33

3.3. OPERTATION OF PTBM AT VTT

The PTBM was dispatched and set-up at VTT on 22nd of August 2023 and was operated from the same day onwards for 20 days. VTT operates two GNSS receivers with designation MI04 and MI05 whose delays were determined. Information sheets about these receivers are shown in Annex A. MI04 is a DICOM GTR51 GNSS receiver operated during the campaign with the software version 1.2.6. A GTR51 with software version 1.4.0 and older automatically compensates for INT DLY, REF DLY and CAB DLY in it's produced RINEX files. Therefore, the RAW DIFs for MI04, as listed in table 3-1 and 3-2, already contain these delays. For better understanding, the RAW DIF values in table 4-2 were reverse calculated to not include the aforementioned delays.

The PPS and 10 MHz signal distribution to receiver PTBM and VTT receivers is illustrated in Figure 3-4.

The antenna installation at VTT is illustrated Figure 3-5 PTBM was operated with its own antenna and antenna cable.

Raw code differences and the corresponding TDEVs are shown in Annex B starting with Figure B-3 to B-5. The numerical results are given in Table 3-1 and Table 3-2.

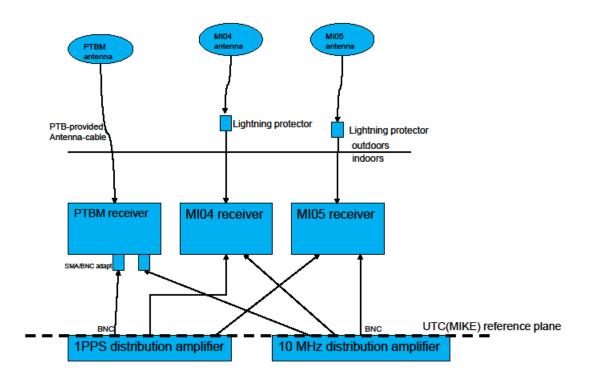


Figure 3-4 PPS signal distribution at VTT to the receivers

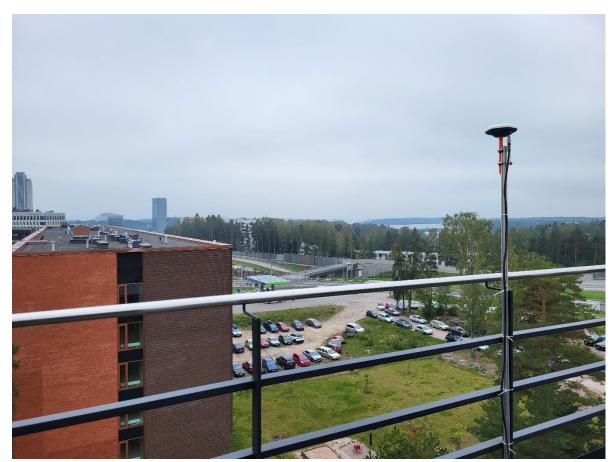


Figure 3-5 PTBM antenna installation at VTT

3.4. COMMON-CLOCK SET-UP IN PTB: PERIOD 2

The period 60216 to 60222 (7 days) was chosen to determine PTBM INT DLY values during the common clock period CC2. The configuration of PTBM was "standard", the automatic PPS IN delay compensation was activated. The result of comparison with PT13 as the reference are shown in Figure B- and Figure B-. The figures show the raw code differences and the corresponding TDEVs. The numerical results are given in Table 3-1 and Table 3-2.

4. CALIBRATION RESULTS

4.1. TRAVELING SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM

Pair	Date	REF DLY _T	REF DLY _G	RAW DIF	ΔSYS DLY _{T-G}	Code
PTBM-PT13	60159 - 60165	43.2	56.2	58.82	45.8	P1
PTBM-PT13	60159 - 60165	43.2	56.2	59.56	46.6	P2
PTBM-PT13	60159 - 60165	43.2	56.2	59.07	46.1	E1
PTBM-PT13	60159 - 60165	43.2	56.2	56.64	43.6	E5a
PTBM-PT13	60216 - 60222	42.8	56.2	59.68	46.3	P1
PTBM-PT13	60216 - 60222	42.8	56.2	60.49	47.1	P2
PTBM-PT13	60216 - 60222	42.8	56.2	59.87	46.5	E1
PTBM-PT13	60216 - 60222	42.8	56.2	57.31	43.9	E5a

Table 4-1 Calibration results T vs. G (all values in ns)

4.2. TRAVELING SYSTEM WITH RESPECT TO THE VISITED SYSTEM

Pair	Date	REF DLY _T	REF DLY _v	RAW DIF	ΔSYS DLY _{T-V}	Code
PTBM-MI04	60180 - 60186	8.25	8.58	107.49	107.16	P1
PTBM-MI04	60180 - 60186	8.25	8.58	105.45	105.12	P2
PTBM-MI04	60180 - 60186	-	-	-	-	E1
PTBM-MI04	60180 - 60186	-	-	-	-	E5a
PTBM-MI05	60180 - 60186	8.25	5.09	164.93	168.09	P1
PTBM-MI05	60180 - 60186	8.25	5.09	164.12	167.28	P2
PTBM-MI05	60180 - 60186	8.25	5.09	164.69	167.85	E1
PTBM-MI05	60180 - 60186	8.25	5.09	162.81	165.97	E5a

Table 4-2 Calibration results T vs. V (all values in ns)

1.1

4.3. VISITED SYSTEM WITH RESPECT TO THE REFERENCE SYSTEM

Pair	Date	$\textbf{CAB} \; \textbf{DLY}_{v}$	CAB DLY _G	$\Delta SYS DLY_{V-G}$	$\Delta INT DLY_{V-G}$	Code
PT13-MI04	2023	215.4	205.7	-61.11	-70.8	P1
PT13-MI04	2023	215.4	205.7	-58.28	-68.0	P2
PT13-MI04	2023	-	-	-	-	E1
PT13-MI04	2023	-	-	-	-	E5a
PT13-MI05	2023	96.2	205.7	-122.04	-12.5	P1
PT13-MI05	2023	96.2	205.7	-120.43	-10.9	P2
PT13-MI05	2023	96.2	205.7	-121.54	-12.0	E1
PT13-MI05	2023	96.2	205.7	-122.19	-12.7	E5a

Table 4-3 Calibration results V vs. G (all values in ns)

The numerical results of the two common-clock campaigns at PTB are given in Table 4-1. The ΔSYS DLY_{T-G} values agree very well with the largest change noted between CC1 and CC2 amounting 0.07 ns for P1.

4.4. INT DLY UNCERTAINTY EVALUATION

The overall uncertainty of the INT DLY values obtained as a result of the calibration is given by

$$u_{CAL} = \sqrt{u_a^2 + u_b^2} , \qquad (8)$$

with the statistical uncertainty u_a and the systematic uncertainty u_b. The statistical uncertainty is related to the instability of the common clock data collected at the visited sites and PTB, respectively. The systematic uncertainty is given by

$$u_{b} = \sqrt{\sum_{n} u_{b,n}^{2}}.$$
(9)

The contributions to the sum (9) are listed and explained subsequently. Values in column P3 are calculated according to $u(P3) = \sqrt{\{u(P1)^2 + (1.54 \times u(P1-P2))^2\}}$. Uncertainties for the Galileo delays are calculated according to $\sqrt{\{u(E1)^2 + (1.26 \times u(E1 - E5a))^2\}}$.

Note that the uncertainty of the INT DLY values of PTB's fixed receiver PT13 (G) which served as the reference is not included.

Table 4-4 Uncertainty contributions for the calibration of receiver delays at VTT, all values in ns

	Uncertainty	Value f1	Value f2	Value f1-f2	Value f3	Description
1	u _a (PTB)	0.1	0.1	0.14		CC measurement uncertainty at PTB, TDEV max. of the two CC campaigns
2	u _a (VTT)	0.1	0.1	0.14		CC measurement uncertainty, for the VTT receivers
3a	u _a (GPS)	0.14	0.14	0.2	0.34	
3b	u _a (Galileo)	0.14	0.14	0.2	0.29	
	-	Re	sult of cl	osure meas	surement	at PTB
4a	u _{b,1} (GPS)	0.43	0.49	0.65		Misclosure, see Table 4-1
4b	u _{b,1} (Galileo)	0.44	0.34	0.55		Misclosure, see Table 4-1
	5	Systemat	tic compo	onents due	to anten	na installation
5	U _{b,11}	0.2	0.2	0.28		Multipath at PTB
6	U _{b,12}	0.2	0.2	0.28		Multipath at VTT
	-	Inst	allation o	of PTBM and	d visited	receivers
7	U _{b,21}	0.2	0.2	0		Connection of PTBM to UTC(PTB) (REF DLY)
8	U _{b,22}	0.2	0.2	0		Connection of PTBM to UTC(VTT) (REF DLY)
9	U _{b,23}	0.2	0.2	0		Connection of receivers at VTT to UTC(VTT) (REF DEL)
10	U _{b,24}	0.1	0.1	0		TIC nonlinearities at PTB
11	U _{b,25}	0.1	0.1	0		TIC nonlinearities at VTT
	-	-	Ar	ntenna cabl	e delay	
12	u _{b,31} (PTB)	0.5	0.5	0		Uncertainty estimation for the PTBM CAB DLY when installed at PTB
13	u _{b,32} (VTT)	0	0	0		Uncertainty estimation for the PTBM CAB DLY when installed at VTT
14	u _{b,33} (VTT)	0.5	0.5	0		Uncertainty estimation for VTT CAB DLY values
				Total		
15a	u _{b,INT} (GPS)	0.95	0.98	0.76	1.51	
15a	u _{b,INT} (Galileo)	0.95	0.91	0.68	1.28	
16a	u _{CAL,0} (GPS)				1.55	
16a	u _{CAL,0} (Galileo)				1.31	

As demonstrated in Table 3-1 and Table 3-2, the three receivers at VTT show almost the same time instability. The TDEV plots in Annex B show marginal differences, and the value of 0.1 ns is a conservative estimate anyway. Thus, a single uncertainty budget can cover all other contributions.

G1G2_1019_2023 Project : Code: 1019-2023 09/10/2023 Date: Version: Page: 22 of 33

1.1

The uncertainty contribution u_{b.1} is based on the difference between the two common clock campaigns involved which was very small for the current campaign. A conservative estimate of 0.1 ns was chosen.

At PTB, the PPS IN Delay Compensation has been initiated several times, with the PTBM receiver connected to different 10 MHz cables in sequence. Results reported agreed within 0.1 ns. Thus, when the receiver is operated in the same modus at each site the achievable uncertainty is likely the lowest. This was the case during the current campaign.

An uncertainty contribution due to potential multipath disturbance is added as up 11 and up 12. If at a given epoch in time the recorded time differences REFSYS would be biased by multipath, this might change with time due to the change in the satellite constellation geometry. [RD05] gives an estimate that has often been referred to. It was agreed at the 2017 meeting of the CCTF WG on GNSS that a 0.2 ns-uncertainty should be attributed to the multipath effect.

The uncertainties of the connection of the receivers to the local time scales (u_{b,21}, u_{b,22}, u_{b,23}) has been estimated 0.2 ns for all cases.

The uncertainty contributions u_{b.24} and u_{b.25} are related to imperfections in the TIC in conjunction with the relationship between the zero-crossings of the external reference frequency and the 1 PPS signals. This "nonlinearity" is probably caused by the internal interpolation process. By connecting the travelling TIC successively to 10 MHz, using cables of different lengths, the effect was estimated to be at most 0.1 ns if 1 PPS signals with a slew rate of approximately 0.5 V/ns are used.

The measurement of antenna cable delays causes contributions u_{b.31}, u_{b.32} and u_{b.33}. During the current campaign the same PTBM cable was employed on each occasion. CAB DLY values were measured at PTB in previous campaigns, with the cable rolled out and with the cable on the spool. Each measurement was made with a differential method so that the TIC-internal error should be small anyway. All results agreed within 0.1 ns if the same PPS signal source was used but differed by up to 0.5 ns when the slew rate of the pulse was significantly different. Thus, we retain an uncertainty contribution u_{b.31} of 0.5 ns. For the stationary antenna cables at VTT we conservatively assume the same uncertainty of the delay value.

Note anyway that this uncertainty contribution u_{b.33} a priori has no impact on the uncertainty of the time transfer link between PTB and the visited institute. If the stated CAB DLY for the visited fixed receiver(s) would be erroneous, this would be absorbed in the INT DLY values produced as a result of the campaign.

Project	:
Code:	
Date:	
Version	:
Page:	

5. FINAL RESULTS FOR THE VISITED SYSTEMS

The results of the calibration campaign G1G2_1019_2023 are summarized in Table 5-1 and Table 5-2. INT DLY values for the golden reference receiver PT13 were determined in 2021 [RD01]. The uncertainty values are taken from Table 4-4. The final INT DLY values were calculated using equation (7) with the values listed in Table 4-1, Table 4-2 and Table 4-3.

Reference system	Cal_Id	Date		INT DLY (P1)	INT DLY (P2)
PT13	1001-2020	59303		31.6	29.3
Visited system	Cal_Id	Date	u _{CAL} (P3)	INT DLY (P1)	INT DLY (P2)
MI04	1019-2023	60223	1.0	-39.2	-38.7
MI05	1019-2023	60223	1.0	19.1	18.4

Table 5-1 Summary of final results for GPS links, all values in ns

 Table 5-2 Summary of final results for the Galileo links, all values in ns

Reference system	Cal_Id	Date		INT DLY (E1)	INT DLY (E5a)
PT13	1001-2020	59303		33.6	33.6
Visited system	Cal_Id	Date	u _{CAL} (P3)	INT DLY (E1)	INT DLY (E5a)
MI04	1019-2023	-	-	-	-
MI05	1019-2023	60223	1.1	21.6	20.9

ANNEXES

ANNEX A: BIPM INFORMATION SHEETS ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS

ANNEX A: BIPM CALIBRATION INFORMATION SHEETS

First common clock measurement at PTB

Laboratory:		РТВ				
Date and hour of the beginning of		2023-08-03 00:00 UTC (MJD 60159)				
Date and hour of the end of measur	ements	2022-08-09 23:59 UTC	C (MJD 6	50165)		
Information on the system						
	Local	1	Т	raveling:		
4-character BIPM code	PT13		P	ГВМ		
Receiver maker and type:	PolaR	(5TR (5.2.0)	Pc	blaRx5TR (5.4.0)		
Receiver serial number:	S/N 4	70 1292	S/	'N 3048338		
1 PPS trigger level /V:	1		1			
Antenna cable maker and type: Phase stabilised cable (Y/N):	ECOFL	EX15	LN	1R-400 (N)		
Length outside the building /m:	approx	x. 25	25	5		
Antenna maker and type: Antenna serial number:	_	AR25 3, Calib Geo++ 18.08.2		avexperience 3G+C REFERENCE 'N RE 0560		
Temperature (if stabilized) /°C						
Measured delays /ns						
	Local		Ті	aveling:		
Delay from local UTC to receiver 1 PPS-in (X₂) / ns	9.59 ±	± 0.1 (#)		48.5 +/- 0.2		
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns	46.63 ± 0.1 (#)			Determined automatically by receiver software		
Antenna cable delay: (X _C) / ns	205.7	± 0.1	26	264.9 ± 0.5		
Splitter delay (if any):	N/A					
Data used for the generation of	CGGTTS	5 files				
		LOCAL:		Traveling		
\Box INT DLY (or X _R +X _S) (GPS) /ns:		31.6 (P1), 29.3 (P2), 33.6 (((*)		1) 18.9 (P1) 17.1 (P2) (****) 0.0 (C1)		
□ INT DLY (or X _R +X _S) (GALILEO) /r	is:	33.6 (E1), 33.6 (E5a) (*)		20.8 (E1), 17.9 (E5a) (****)		
\Box CAB DLY (or X _C) /ns:		205.7		264.9		
\Box REF DLY (or X _P +X _O) /ns:		56.2		48.5		
Coordinates reference frame:		ITRF		ITRF		
X /m:		+3844059.86 (***)	Maat	+3844062.56 (\$)		
Y /m:		Hat		+709658.49 (\$) P7		
Z /m		+5023129.87 (***)		+5023127.88 (\$)		
General information						
□ Rise time of the local UTC pulse:		3 ns				
		Yes				
Set temperature value and uncertain	nty:	23.0 °C, peak-to-peak variations 0.5° C				

G1G2_1019_2023 1019-2023 09/10/2023 1.1 25 of 33

Notes valid for CC1 – CC2:

(#) Local measurements repeated on occasion of campaign 1001-2020.

(\$) Coordinates of mast P7 (APC) were determined on 26.05.2020 using NRCan PPP

(*) values based on G1 calib 1001-2020 [RD01]]

(***) values provided by BIPM via Mail 2019-08-07

(****) PTBM INT DLY were adjusted so that PTBM – PT13 for GPS and Galileo were close to zero for convenience.

Names of files to be used in processing for site PTB Travelling receiver GZPTBMMJ.DDD, EZPTBMMJ.DDD Reference receiver GZPT13MJ.DDD, EZPT13MJ.DDD

PTBM operation at VTT: Receiver MI04

Laboratory:		νττ			
Date and hour of the beginning of measurem	2023-08-22 ca.	13:00+03	}		
Date and hour of the end of measurements:		2023-09-11	2023-09-11		
Information on the system	-				
	Local:		Travell	ing:	
4-character BIPM code	MI04		РТВМ		
Receiver maker and type:	Dicom GTR51	(1.2.6)	Septent	trio PolaRx5TR (5.4.0)	
Receiver serial number:	S/N 1403001		304833	8	
1 PPS trigger level /V:	1.0		1.0		
Antenna cable maker and type: Phase stabilized cable (Y/N):	Armored cable	e, N-connecntors	N-type, N	LMR400, N-connectors	
Length outside the building /m:	ca. 10 m		ca. 10 r	n	
Antenna maker and type: Antenna serial number:	NOV703GGG.I NEG1405022	R2	Navexp S/N RE	erience 3G+C reference 0560	
Temperature (if stabilized) /°C	-		-		
Measured delays /ns					
	Local:		Travell	ling:	
Delay from local UTC to receiver 1 PPS-in (X_P) / ns	8.579		8.247		
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns	N/A		N/A		
Antenna cable delay: (X _C) / ns	215.4		264.9		
Splitter delay (if any):	N/A		N/A		
Additional cable delay (if any):	N/A		N/A		
Data used for the generation of CGGTTS	files				
		LOCAL:		Travelling	
\Box INT DLY (or X _R +X _S) (GPS) /ns:		N/A		N/A	
□ INT DLY (or $X_R + X_S$) (GALILEO) /ns:		N/A		N/A	
\Box CAB DLY (or X _c) /ns:		N/A	N/A		
\Box REF DLY (or X _P +X _O) /ns:		N/A		N/A	
☐ Coordinates reference frame:		N/A		N/A	
X /m:		N/A		N/A	
′ /m:		N/A		N/A	
Z /m		N/A		N/A	
General information					
\Box Rise time of the local UTC pulse:	1.49 ns 10% to 90% rise time				
□ Is the laboratory air conditioned:		Yes			
Set temperature value and uncertainty:		20 °C to 22 °C v	ariation d	uring one week	

PTBM operation at VTT: Receiver MI05

Laboratory:		VTT				
Date and hour of the beginning of measurem	2023-08-22 ca. 1	3:00+03				
Date and hour of the end of measurements:		2023-09-11				
Information on the system			T			
	Local:		Travell	ing:		
4-character BIPM code	MI05		РТВМ			
Receiver maker and type:	Septentrio Polal	Rx5TR (5.5.0)	Septent	rio PolaRx5TR (5.4.0)		
Receiver serial number:	3046486		304833	8		
PPS trigger level /V:	1.0		1.0			
Antenna cable maker and type:		ct, LMR-400, N-	N-type.	LMR400, N-connectors		
Phase stabilized cable (Y/N):	connectors		N cype,			
	N					
Length outside the building /m:	ca. 10 m		ca. 10 n			
Antenna maker and type:	Tallysmann VP6		-	erience 3G+C reference		
Antenna serial number:	VP6050C190124	40012	S/N RE	0000		
Temperature (if stabilized) /°C	-		-			
Measured delays /ns	-					
	Local:		Travell	ing:		
Delay from local UTC to receiver 1 PPS-in (X_P) / ns	5.092		8.247			
Delay from 1 PPS-in to internal	N/ A		N/A			
Reference (if different): (X ₀) / ns	N/A		N/A			
Antenna cable delay: (X _C) / ns	96.2		264.9			
Splitter delay (if any):	N/A		N/A			
Additional cable delay (if any):	N/A		N/A			
Data used for the generation of CGGTTS	files					
		LOCAL:		Travelling		
\Box INT DLY (or X _R +X _S) (GPS) /ns:		N/A		N/A		
□ INT DLY (or $X_R + X_S$) (GALILEO) /ns:		N/A		N/A		
CAB DLY (or X _c) /ns:		N/A		N/A		
\Box REF DLY (or X _P +X _O) /ns:		N/A	N/A			
Coordinates reference frame:		N/A	-	N/A		
X /m:		N/A		N/A		
/m:		N/A	_	N/A		
Z /m		N/A		N/A		
General information						
□ Rise time of the local UTC pulse:		1.49 ns 10% to 9	90 <u>% r</u> ise	time		
□ Is the laboratory air conditioned:		Yes				
Set temperature value and uncertainty:		20 °C to 22 °C va	20 °C to 22 °C variation during one week			

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT, BRAUNSCHWEIG, SEPTEMBER 2022

Second common clock measurement at PTB

Laboratory:		РТВ				
Date and hour of the beginning of	2022-07-15 00:00 UTC (MJD 59776)					
Date and hour of the end of measur	ements:	2022-07-21 24:00 UT	С (МЈ	JD 5	9781)	
Information on the system						
	Local	:		Tra	veling:	
4-character BIPM code	PT13			PTE	ЗМ	
Receiver maker and type:	PolaR	<5TR (5.2.0)		Pola	aRx5TR (5.3.0)	
Receiver serial number:	S/N 4	70 1292		S/N	3048338	
1 PPS trigger level /V:	1			1		
Antenna cable maker and type: Phase stabilized cable (Y/N):	ECOFL	EX15		LMF	R-400 (N)	
Length outside the building /m:	approx	x. 25		25		
Antenna maker and type: Antenna serial number:	LEICA 72633	AR25 3, Calib Geo++ 18.08.2	2015		vexperience 3G+C REF RE 0560	ERENC
Temperature (if stabilized) /°C						
Measured delays /ns						
	Local			Tra	veling:	
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	9.59 1	= 0.1 (#)		41.13		
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns	46.63	± 0.1 (#)		Determined automatically by receiver software		
Antenna cable delay: (X _C) / ns	205.7	± 0.1		264.9 ± 0.5		
Splitter delay (if any):	N/A					
Data used for the generation of (CGGTTS	5 files				
		LOCAL:			Traveling	
\Box INT DLY (or X _R +X _S) (GPS) /ns:		31.6 (P1), 29.3 (P2), 33.6 (C1)(*)			18.9 (P1) 17.1 (P2) (****) 0.0 (C1)	
□ INT DLY (or X _R +X _S) (GALILEO) /n	s:	33.6 (E1), 33.6 (E5a)	(*)		20.8 (E1), 17.9 (E5a) (***	
\Box CAB DLY (or X _c) /ns:		205.7		264.9		
\Box REF DLY (or X _P +X ₀) /ns:		54.3			41.13	
□ Coordinates reference frame:		ITRF (***)			ITRF (****)	
X /m:		+3844059.86 (***)			+3844062.56 (\$)	
Y /m:		+709661.56 (***)	Ma P1(+709659.49 (\$)	Mast P7
Z /m	+5023129.87 (***)		-	+5023127.88 (\$)		
General information						
□ Rise time of the local UTC pulse:		3 ns				
☐ Is the laboratory air conditioned:		Yes				
Set temperature value and uncertain	ntv:	23.0 °C, peak-to-peak variations 0.6° C				

Notes valid for CC1 – CC2:

(#) Local measurements repeated on occasion of campaign 1001-2020.
(\$) Coordinates of mast P7 (APC) were determined on 26.05.2020 using NRCan PPP
(*) values based on G1 CAL_ID 1001-2020 [RD01]]
(***) values provided by BIPM via Mail 2019-08-07
(****) PTBM INT DLY were adjusted so that PTBM – PT13 for GPS and Galileo were close to zero for convenience.

Names of files to be used in processing for site PTB Travelling receiver GZPTBMMJ.DDD, GMPTBMMJ.DDD, EZPTBMMJ.DDD Reference receiver GZPT13MJ.DDD, GMPT13MJ.DDD, EZPT13MJ.DDD

Project : G1G2_1019_2023 Code: 1019-2023 Date: 09/10/2023 Version: Page: 30 of 33

1.1

ANNEX B: PLOTS OF RAW DATA AND TDEV ANALYSIS

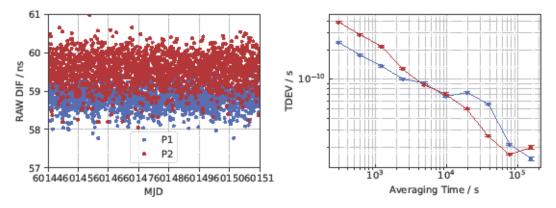


Figure B-1 Left: Raw code differences between T and G for GPS signals during CC1, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC1.

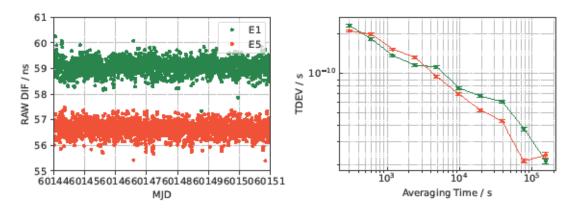


Figure B-2 Left: Raw code differences between T and G for Galileo signals during CC1, Δ E1 (green) and Δ E5a (orange) Right: TDEV of the raw code differences between T and G for Galileo signals during CC1.

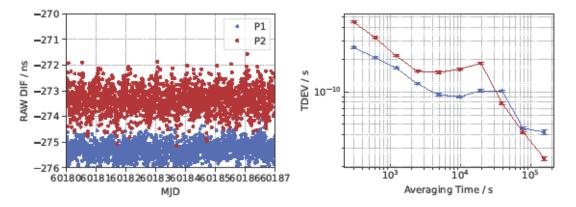


Figure B-3 Left: Left: Raw code differences between T and MI04 for GPS signals, Δ P1 (blue) and Δ P2 (red) Right: TDEV of the raw code differences between T and MI04 for GPS signals.

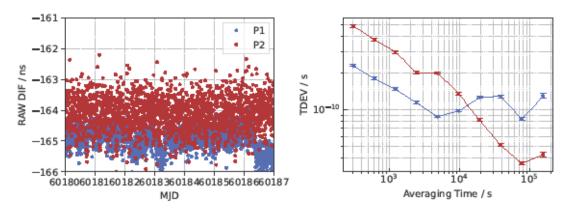


Figure B-4 Left: Left: Raw code differences between T and MI05 for GPS signals, △P1 (blue) and △P2 (red) Right: TDEV of the raw code differences between T and MI05 for GPS signals.

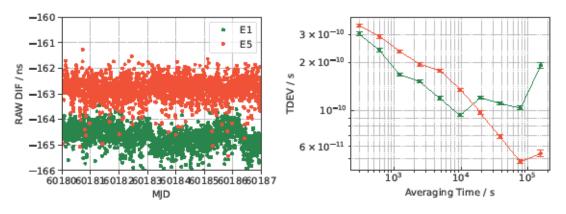


Figure B-5 Left: Raw code differences between T and MI05 for Galileo signals, ∆E1 (green) and ∆E5a (orange) Right: TDEV of the raw code differences between T and MI05 for Galileo signals.

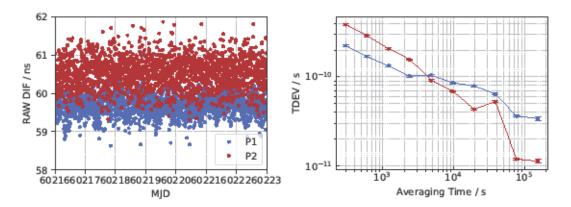


Figure B-6 Left: Raw code differences between T and G for GPS signals during CC2, △P1 (blue) and △P2 (red) Right: TDEV of the raw code differences between T and G for GPS signals during CC2.

Project :	G1G2_1019_2023
Code:	1019-2023
Date:	09/10/2023
Version:	1.1
Page:	32 of 33



Figure B-7 Left: Raw code differences between T and G for Galileo signals during CC2, Δ E1 (green) and Δ E5a (orange) Right: TDEV of the raw code differences between T and G for Galileo signals during CC2.

G1G2_1019_2023 1019-2023 09/10/2023 1.1 33 of 33

END of DOCUMENT