

Project :
Code:
Date:
Version:
Page:

GNSS CALIBRATION REPORT KZ03 TRANSFER

Prepared by: Florian Heimbach (PTB) Time Dissemination Working Group

Approved by: Andreas Bauch (PTB) Head, Time Dissemination Working Group

Authorized by: BIPM

Project:KZ04_KZ03_TransferCode:1202-2021 addendumVersion:1.1Safe date:09.09.2022 09:41

KZ04_KZ03_Transfer 1202-2021 addendum 09/09/2022 1.1 2 of 13

TABLE OF CONTENTS

LIST OF TABLES AND FIGURES	3
REFERENCES	4
ACRONYMS	5
SUMMARY	6
1. RECEIVER SET-UP AT KZ	7
2. DETERMINATION OF KZ03 INT DELAYS AUGUST 2022	9
3. INT DLY UNCERTAINTY EVALUATION	.11
ANNEX: BIPM CALIBRATION INFORMATION SHEET	. 12

Version: Page:

 Project :
 K∠U4_N∠00_...

 Code:
 1202-2021 addendum

 09/09/2022
 1.13 of 13

LIST OF TABLES AND FIGURES

Table 2-1 INT DLY values in ns determined for receiver KZ03 in September 2022	10
Table 3-1: Uncertainty contributions for the GPS calibration of receiver delays	11
Figure 1-1: 1 PPS and 5 MHz signal distribution to KZ GNSS receivers	7
Figure 1-2: Measurement and output-signal generation scheme at KZ	8
Figure 2-1 RAW DIF values obtained for KZ03 against KZ04 and TDEV analysis for GPS signals	9

Figure 2-2 RAW DIF values obtained for KZ03 against KZ04 and TDEV analysis for Galileo signals.....9

REFERENCES

	REFERENCES				
RD01	BIPM report 2021 1001-2020_GPSP3C1-GALE3_Group1-trip_V1-2				
RD02	2 BIPM guidelines for GNSS calibration, V4.0, 05/08/2021				
RD03	J. Kouba, P. Heroux, 2002, " <i>Precise Point Positioning Using IGS Orbit and Clock Products,"</i> GPS Solutions, Vol 5, No. 2, 12-28				
RD04	D04 BIPM report 2021 1201-2021_GPSP3C1-KZ_V1-0				
RD05	BIPM Procedure for computing raw difference of GNSS code measurements for geodetic receivers, dclrinex software version 3.1, April 2021				

ACRONYMS

ACRONYMS				
BIPM	Bureau International de Poids et Mesures, Sèvres, France			
CGGTTS	CCTF Generic GNSS Time Transfer Standard			
DCLRINEX	Differential calibration software using the pseudoranges directly read from the RINEX files, software was provided by the BIPM			
EURAMET	The European Association of National Metrology Institutes			
GNSS	Global Navigation Satellite System			
IGS	International GNSS Service			
KZ	Kazakhstan Institute of Standardization and Metrology			
PPP	Precise Point Positioning			
РТВ	Physikalisch-Technische Bundesanstalt, Braunschweig, Germany			
RINEX	Receiver Independent Exchange Format			
R2CGGTTS	RINEX-to CGGTTS conversion software, provided by ORB / BIPM			
TDEV	Time deviation			
TIC	Time interval counter			
VNIIFTRI	Allrussisches Forschungsinstitut für physikalisch-technische und radiotechnische Messungen			

KZ04_KZ03_Transfer 1202-2021 addendum 09/09/2022 1.1 6 of 13

SUMMARY

As part of the support of the BIPM Time and Frequency Group by EURAMET G1 laboratories, PTB conducted a relative calibration of the GNSS receiver KZ03 from KZ with respect to their receiver KZ04. The latter was last calibrated in 2021 by VNIIFTRI [RD04]. This report describes the transfer of internal delays from KZ04 to KZ03. Results provided are the new receiver's internal delays for GPS P-code signals on the two frequencies L1 and L2 (INT DLY (P1), and INT DLY(P2)), on GPS C/A-code signals (INT DLY (L1C)), and Galileo E1 and E5a. The delays were determined using the DCLRINEX software, which was provided by the BIPM [RD05]. The results will be reported using Cal_Id 1202-2021 addendum.

The final delay values are reported in Table 2-1, the respective uncertainties are reported in lines 9a and 9b of Table 3-1. Note, that the uncertainty of the delay values of the reference receiver KZ04 is not included in the current uncertainty estimate. After an initial exercise using data from 59792 to 59795, the configuration of the receiver KZ03 was slightly changed, and the final results are based on a comparison during days MJD 59818 – 59821.

As a reminder: All uncertainty values reported in this document are $1-\sigma$ values. In the Annex the BIPM information table is added.

KZ04_KZ03_Transfer 1202-2021 addendum 09/09/2022 1.1 7 of 13

1. RECEIVER SET-UP AT KZ

The set-up of the receiver KZ03 in KZ is depicted in Figure 1-1 for 1 PPS signals and 5 MHz signals. Figure 1-2 depicts the set-up of the receiver KZ04. Details regarding the receivers can be found in the calibration information sheet in the annex.

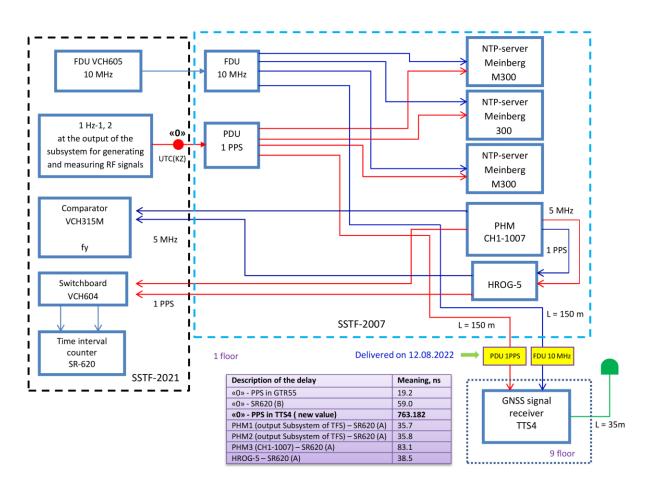


Figure 1-1: 1 PPS and 5 MHz signal distribution to KZ GNSS receivers

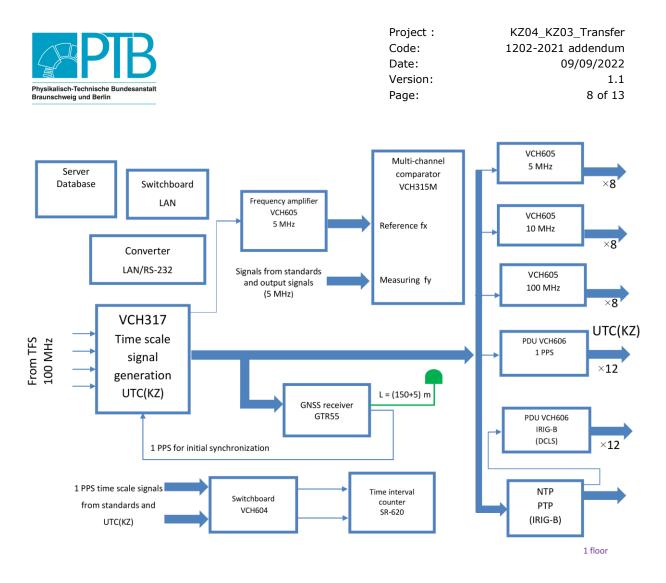


Figure 1-2: Measurement and output-signal generation scheme at KZ

 Project :
 KZ04_KZ03_Transfer

 Code:
 1202-2021 addendum

 Date:
 09/09/2022

 Version:
 1.1

 Page:
 9 of 13

2. DETERMINATION OF KZ03 INT DELAYS AUGUST 2022

The period 59818 to 59821 (4 days) was chosen to determine the KZ03 INT DLY values. KZ04 served as reference. The raw code differences (RAW DIF) between KZ03 and KZ04 were determined using the DCLRINEX software [RD05]. Figure 2-1 shows the raw code differences and TDEV analysis for GPS signals and Figure 2-2 for Galileo signals. The medians of the raw code differences are -1173.6 ns (P1), -1177.6 ns (P2), -1172.8 ns (C1), -1172.1 ns (E1) and -1177.8 ns (E5a).

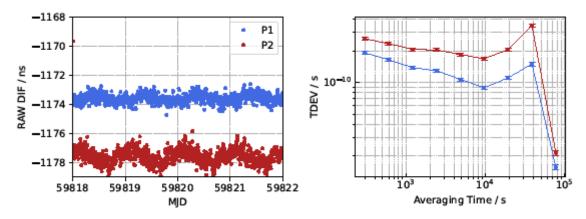


Figure 2-1 RAW DIF values obtained for KZ03 against KZ04 and TDEV analysis for GPS signals

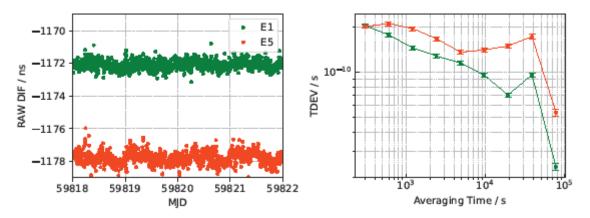


Figure 2-2 RAW DIF values obtained for KZ03 against KZ04 and TDEV analysis for Galileo signals

The INT DLY values of a new receiver can be determined from the raw code differences to a reference receiver as

$$INT DLY_{new}(f) = INT DLY_{ref}(f) + RAW DIF_{new-ref}(f) + REF DLY_{new} - REF DLY_{ref} + CAB DLY_{ref} - CAB DLY_{new},$$
(1)

with the reference delay values (REF DLY) and antenna cable delay values (CAB DLY) known for both receivers. These values are listed in the calibration information sheet in the Annex.

The results are given in Table 2-1.

 Project :
 KZ04_KZ03_Transfer

 Code:
 1202-2021 addendum

 Date:
 09/09/2022

 Version:
 1.1

 Page:
 10 of 13

Signal	Mean	Median	SigmaE	Nepoch
GPS P1	-36.0	-36.0	0.29	1152
GPS P2	-41.7	-41.7	0.54	1152
GPS L1C	-34.3	-34.3	0.33	1152
Galileo E1	-34.3	-34.4	0.29	1152
Galileo E5a	-40.1	-40.1	0.37	1152

Table 2-1 INT DLY values in ns determined for receiver KZ03 in September 2022

 Project :
 KZ04_KZ03_Transfer

 Code:
 1202-2021 addendum

 Date:
 09/09/2022

 Version:
 1.1

 Page:
 11 of 13

3. INT DLY UNCERTAINTY EVALUATION

The overall uncertainty of the INT DLY values obtained as a result of the calibration is given by

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$
, (6)

with the statistical uncertainty u_a and the systematic uncertainty u_b . The statistical uncertainty is derived from the TDEV at 50000 s. The systematic uncertainty is given by

$$u_{\rm b} = \sqrt{\sum_{n} u_{\rm b,n}} \,. \tag{7}$$

Values in column f3 are calculated according to $u(f3) = \sqrt{\{u(f1)^2 + (1.54 \times u(f1-f2))^2\}}$ for GPS and for the Galileo delays according to $\sqrt{\{u(f1)^2 + (1.26 \times u(f1-f2))^2\}}$.

	Uncertainty	Value f1 (ns)	Value f2 (ns)	Value f1-f2 (ns)	Value f3 (ns)	Description
1a	u _a (KZ, GPS)	0.25	0.25	0.35	0.60	CC measurement uncertainty at KZ for GPS, TDEV max
1b	u _a (KZ, Galileo)	0.14	0.14	0.20	0.29	CC measurement uncertainty at KZ for Galileo, TDEV max
2	U _{b,11}	0.2	0.2	0.28		Multipath at KZ
3	U _{b,12}	0.5	0.5	0		Uncertainty estimate for the KZ03 CAB DLY
4	U _{b,13}	0.5	0.5	0		Uncertainty estimate for the KZ04 CAB DLY
5	U _{b,21}	0.5	0.5	0		Connection of KZ03 to UTC(KZ) (REF DLY)
6	u _{b,22}	0.5	0.5	0		Connection of KZ04 to UTC(KZ) (REF DLY)
7	U _{b,23}	0.1	0.1	0		TIC nonlinearities at KZ
8a	u _{b,INT} (GPS)	1.0	1.0	0.3	1.1	
8b	u _{b,INT} (Galileo)	1.0	1.0	0.3	1.1	
9a	u _{CAL,0} (GPS)				1.3	
9b	u _{CAL,0} (Galileo)				1.1	

Project :
Code:
Date:
Version:
Page:

ANNEX: BIPM CALIBRATION INFORMATION SHEET

Laboratory:	кz
Date and hour of the beginning of measurements:	2022-08-27 0:00 UTC (MJD 59818)
Date and hour of the end of measurements:	2022-08-30 24:00 UTC (MJD 59822)
Information on the system	

information on the system				
	Reference:	Local:		
4-character BIPM code	КZ04	КZ03		
Receiver maker and type: Receiver serial number:	MESIT GTR55 S/N 2107240	PIKTIME TTS-4 S/N 0139		
1 PPS trigger level /V:	1	1		
Antenna cable maker and type: Phase stabilised cable (Y/N):	Andrew Heliax LDF4-50A Y	Andrew FSJ1-50A Y		
Length outside the building /m:	4	4		
Antenna maker and type: Antenna serial number:	NovAtel, NOV-850 NMLK20420025F	JAVAD, RingAnt-G3T 00636		
Temperature (if stabilised) /°C	N/A	N/A		

Measured delays /ns

	Reference:	Local:	
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	19.2	674.921	
dDelay from 1 PPS-in to internal Reference (if different): (X_0) / ns			
Antenna cable delay: (X _C) / ns	611.5	147.50	
Splitter delay (if any):			

Data used for the generation of CGGTTS files

Reference:	Local
17.9 (P1), 16.2 (18.8 (C1) (*)	P2), -36.27 (P1), -42.13 (P2), -34.65 (C1)
18.0 (E1), 18.0 ((**)	E5a) –37.64 (E1), -40.5 (E5a)
19.0	-46.65
611.5	147.50
19.2	674.921
ITRF	ITRF
1277097.41	1277096.77
3802828.26	3802827.04
4942471.08	4942472.20
	17.9 (P1), 16.2 (18.8 (C1) (*) 18.0 (E1), 18.0 ((**) 19.0 611.5 19.2 ITRF 1277097.41 3802828.26

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT, BRAUNSCHWEIG, SEPTEMBER 2022

□ Rise time of the local UTC pulse:	2.5 ns
□ Is the laboratory air conditioned:	Yes
Set temperature value and uncertainty:	22 °C ±1 °C, 40 % ±7 %

(*) values based on [RD04]

(**) values read from EZKZ4MJ.DDD files, likely determined by the manufacturer or by UFE (CZ)

(***) initially, no Galileo signal delays for KZ03 were known. In an early phase of the cooperation, we provided the Galileo delays reported here, based on comparison KZ03-KZ04 during MJD 59792 to 59795.

All coordinate values were checked using PPP NRCan and found correct within low single-digit cm.

KZ04_KZ03_Transfer 1202-2021 addendum 09/09/2022 1.1 14 of 13

END of DOCUMENT