

REPORT

Contact person

Gustav Jönsson

Division Safety and Transport
+46 10 516 51 53
gustav.jonsson@ri.se

Date Reference
2024-09-01 Calibration

Calibration report 2025:09

Page 1 (14)

BIPM

Relative calibration of a GNSS receiver at RISE

1. Description of equipment and operations

An internal relative calibration of two GNSS receivers has been performed with respect to a local reference receiver. The reference receiver (SP07) is previously calibrated within CAL_ID 1018-2022. The receivers under test (SP06 and SP08, BIPM codes) required re-calibration after a replacement of their common antenna.

The relative calibration was performed using differential measurements of the common-clock differences for each frequency band (GPS: L1 and L2 and GAL: E1 and E5a) between the calibrated receiver SP07 and SP06 and SP08 respectively. For GPS, pseudorange codes C1W on L1 and C2W on L2 was calibrated. For GAL pseudorange codes C1C on E1 and C5Q on E5a was calibrated. These pseudorange codes are given according to RINEX format version 3.04.

In the following (except for the figures in Annex A), the pseudorange codes C1W and C2W will be denoted P1 and P2, and C1C and C5Q will be denoted E1 and E5a, in order to follow the denotation of the 1018-2022 report.

Table 1 summarizes the receivers involved in the relative calibration as well as the measurement period.

Table 1. Summary information on the calibration

Institute	Status of equipment	MJD dates of measurements	Receiver type	BIPM code	RISE code	RINEX name
RISE	Calibrated 1018-2022	Reference	PolaRx5TR	SP07	SP07	RIT2
RISE	Calibration voided	60908-60915	PolaRx5TR	SP06	SP06	RIT1
RISE	Calibration voided	60908-60915	PolaRx5TR	SP08	SP08	RIT3

2. Receiver installations

Table 2 summarizes the receiver installations. The reference clock for all receivers is UTC(SP) 1-PPS and 10 MHz sinusoidal signals. All receivers are fed from the corresponding antenna via a power splitter indicated in the table by RISE internal names as given in the RISE equipment register. The antenna cable type is given for reference. The fixed antenna coordinates are used when creating CGGTTS data from RINEX data as explained in Section 3.

The mode of operation of both receivers is "auto-compensation OFF".

Table 2. Summary information on receiver installations

Receiver	RISE	Antenna type/	Antenna	Fixed antenna coordinates			
	monument name	Power splitter	cable type	X	Y	Z	
SP07	Pillar1	TRM159800.00 PS1	Andrew Heliax LDF2- 50A	3328984.40	761910.47	5369033.95	
SP06	Pillar 2	TOPCON 01- 070801-01 PS14	Andrew Heliax FSJ1-50A	3328988.29	761918.19	5369032.01	
SP08	Pillar 2	TOPCON 01- 070801-01 PS14	Andrew Heliax FSJ1-50A	3328988.29	761918.19	5369032.01	

3. Data used

Data from 2025-08-21 to 2025-08-28 (MJD 60908-60915) were used for the relative calibration. RINEX (ver. 3.04) data were calculated from raw data collected from each receiver with software SBF2RIN (ver. 15.6.1). CGGTTS data were calculated from RINEX data using the software RISEGNSS [1] developed at RISE.

4. Results of raw data processing

Table 3 summarizes the calculated common-clock differences based on CGGTTS data for receiver SP06 and SP08 relative to the calibrated reference receiver SP07. The results are based on applying the calibrated TOTDLY for SP07, according to CAL_ID 1018-2023, and by applying a zero delay, including INTDLY, REFDLY and CABDLY, for SP06 and SP08.

The results are presented as the (uncalibrated) mean common-clock difference (ΔCLKDIFF) for each frequency/code and are considered as an estimation of the TOTDLY for SP06 and SP08.

Annex A shows plots of raw data and Tdev analysis.

Table 3. Summary of the raw calibration results (all values in ns)

Pair	MJD date	ΔCLKDIFF GPS P1	ΔCLKDIFF GPS P2	
SP07-SP06	60908-60915	-272.6	-270.3	
SP07-SP08	60908-60915	-265.4	-265.6	
Pair	MJD date	ΔCLKDIFF GAL E1	ΔCLKDIFF GAL E5a	
SP07-SP06	60908-60915	-275.0	-272.9	
SP07-SP08	60908-60915	-267.9	-267.3	

5. Uncertainty estimation

Table 4 summarizes the calculated statistical uncertainty for Δ CLKDIFF listed in Table 3. The statistical uncertainty $\mathbf{u_a}$ is represented by the RMS of the raw data difference.

Table 4. Statistical uncertainty contributions (all values in ns)

Pair	U _{aP1}	U _{aP2}	Description
SP07-SP06	0.14	0.09	RMS of raw data difference
SP07-SP08	0.14	0.10	RMS of raw data difference
Pair	u _{aE1}	U _{aE5a}	Description
SP07-SP06	0.09	0.07	RMS of raw data difference
SP07-SP08	0.09	0.07	RIVIS OF raw data difference

Table 5 and Table 6 summarize the systematic uncertainty that is attributed to the calibration uncertainty of SP07 for GPS and GAL, respectively. The values are extracted from the report by OP "2023_G1-G2_Calibration-Report_1018-2022_V1_1-1". The aging contribution in nanoseconds is calculated as $(0.4 \cdot \sqrt{34} - 1)$ where 34 is the time in months since last calibration of SP07 in October 2022.

The total systematic uncertainty is calculated as

$$u_{b,T0T} = \sqrt{\sum_n u_{b,n}^2}$$

Table 5. Systematic uncertainty contributions for GPS (all values in ns)

Uncertainty	Value P1	Value P2	Value P3	Description
$u_{b,1}$	1.1	0.7	1.8	Uncertainty of SP07 (from OP report)
$u_{b,2}$	1.4	1.4	1.4	Aging of SP07 since 2022-10
иь,тот	1.8	1.5	2.3	

Table 6. Systematic uncertainty contributions for GAL (all values in ns)

b		Value E1	Value E5a	Value E3	Description
u _{b,}	1	1.1	0.7	2.2	Uncertainty of SP07 (from OP report)
u _{b,}	2	1.4	1.4	1.4	Aging of SP07 since 2022-10
u _{b,T}	от	1.8	1.5	2.6	

The combined uncertainty \mathbf{u}_{CAL} is calculated as

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$

but clearly dominated by \mathbf{u}_{b} and not listed here.

6. Calibration results

Table 7 summarizes the calibration results. For reference, the present calibration values from CAL ID 1018-2022 are given for SP07.

Since the systematic uncertainty is dominating, as calculated in the previous section, and considering that the combined (conventional) uncertainty according to the calculations in the OP-report for SP07 is 2.5 ns for GPS and 2.7 ns for GAL, it is suggested that SP06 and SP08 are both attributed to the same combined uncertainties as those of SP07.

Table 7. Summary of relative calibration results (all values in ns)

System	Cal_ID	Date	TOTDLY P1	TOTDLY P2	TOTDLY E1	TOTDLY E5a
SP07	1018-2022	2022-10	231.7	228.2	234.6	238.1
SP06		2025-08	272.6	270.3	275.0	272.9
SP08		2025-08	265.4	265.6	267.9	267.3

References

[1] K. Jaldehag, P. Jarlemark, and C. Rieck, "Further Evaluation of CGGTTS Time Transfer Software, "in Proc. of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, Florida, USA, 2019.

RISE Research Institutes of Sweden AB Measurement Science and Technology - Time and Optics

Performed by

Gustav Jönsson

ANNEX A: Plots of raw data and Tdev analysis

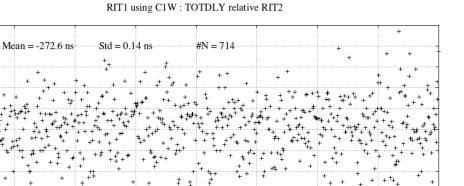
-272.1

-272.2

-272.3 -272.4

-272.5 -272.6 -272.7 -272.8 -272.9 -273.0

60908


60909

60910

60911

Delay Difference [ns]

SP07-SP06 P1/C1W

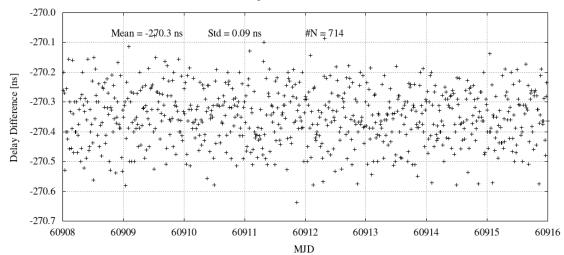


60913

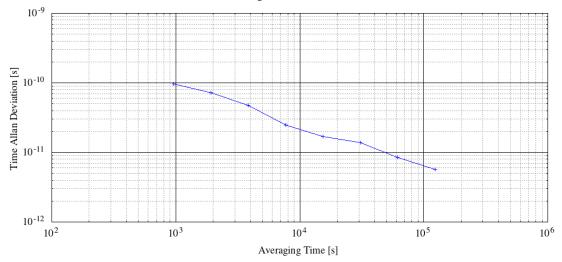
60914

60915

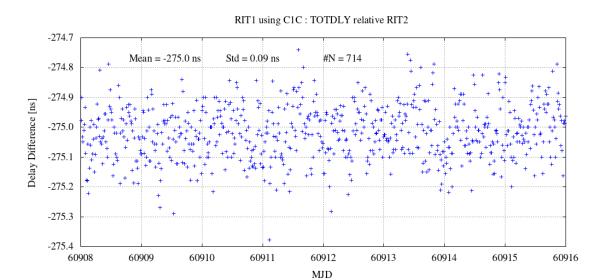
60916

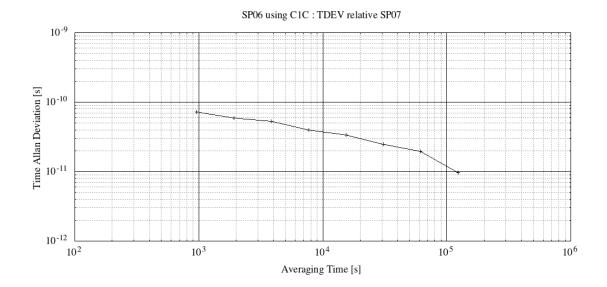


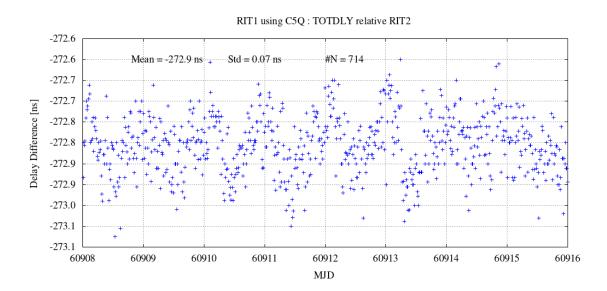
60912 MJD

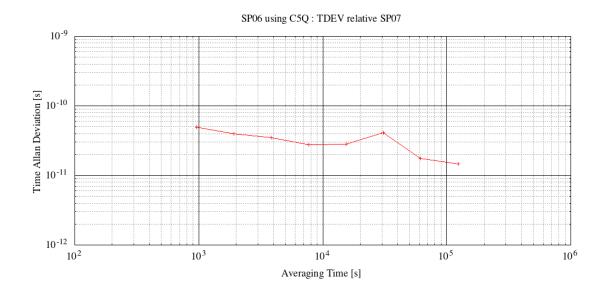


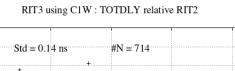
SP07-SP06 P2/C2W

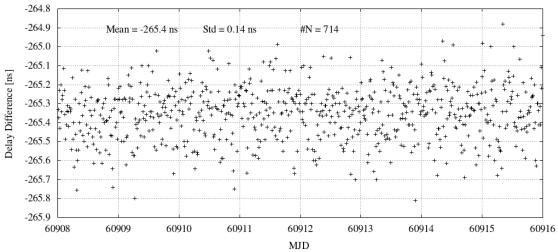


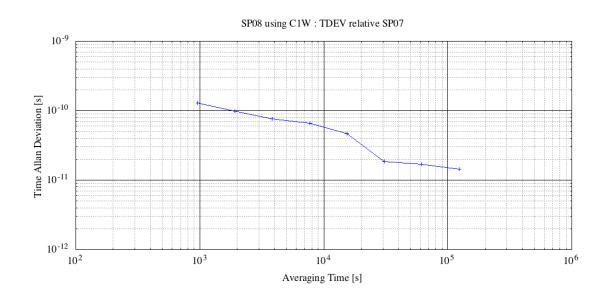

SP06 using C2W: TDEV relative SP07



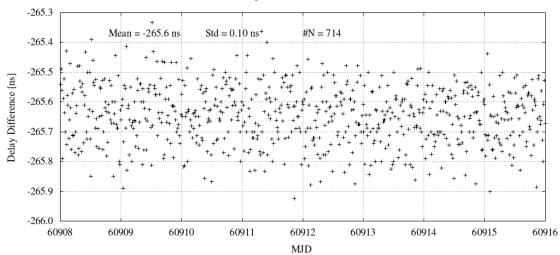

SP07-SP06 E1/C1C

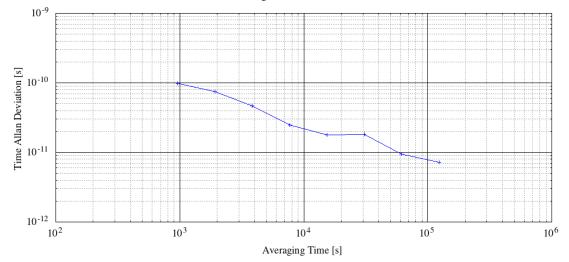



SP07-SP06 E5a/C5Q



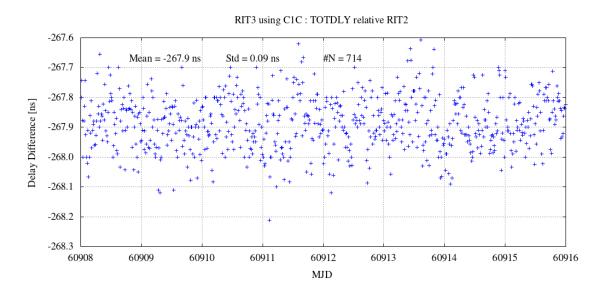
SP07-SP08 P1/C1W

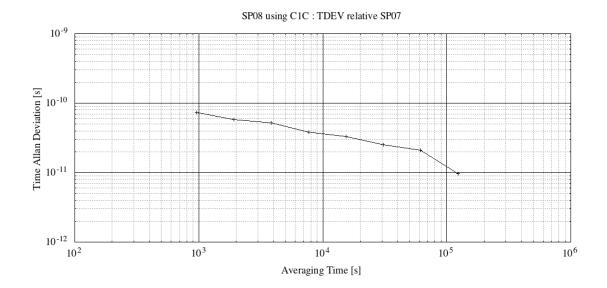


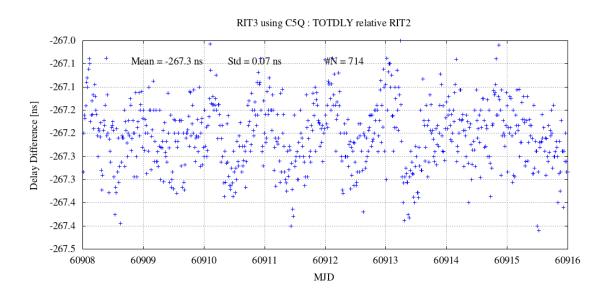


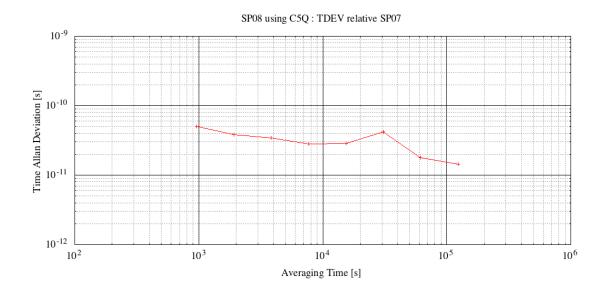
SP07-SP08 P2/C2W

RIT3 using C2W : TOTDLY relative RIT2




SP08 using C2W: TDEV relative SP07




SP07-SP08 E1/C1C

SP07-SP08 E5a/C5Q

