Information Sheet

Laboratory:
Date and hour of the beginning of measurements:
Date and hour of the end of measurements:

SU
2021-11-20 00:00:00 UTC (MJD 59538)
2021-11-23 23:59:30 UTC (MJD 59541)

Information on the system				
	Local:	Travelling:		
4-character BIPM code	SU31	KZ04		
\bullet Receiver maker and type:	DICOM (MESIT) GTR51 Receiver serial number:	1604031		DICOM (MESIT)
:---				
GTR55				
1 PPS trigger level $/ \mathrm{V}:$				
Antenna cable maker and type:				
Phase stabilised cable (Y/N):				

Measured delays /ns (if needed fill box "Additional Information" below)		
	Local:	Travelling:
- Delay from local UTC to receiver 1 PPS-in:	193.8 ns	294.1 ns
Delay from 1 PPS-in to internal Reference (if different): (see section 2 for detais)	-	-
- Antenna cable delay:	143.2 ns	611.5 ns
Splitter delay (if any):	-	-
Additional cable delay (if any):	-	-

Data used for the generation of CGGTTS files

\bullet INT DLY (GPS) /ns:	-
\bullet INT DLY (Galileo) /ns:	-
\bullet INT DLY (GLONASS) /ns:	-
\bullet CAB DLY /ns:	-
\bullet REF DLY /ns:	-
\bullet Coordinates reference frame:	-
Latitude or X /m:	-
Longitude or Y/m:	-
Height or Z/m:	-

General information	
\bullet Rise time of the local UTC pulse:	2 ns
\bullet Is the laboratory air conditioned:	Y
Set temperature value and uncertainty:	$19.5^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
Set humidity value and uncertainty:	-

Diagram of the experiment setup

Reference delay measurements were carried out using Portable Hydrogen Maser (PHM) VCH-1007 and a TIC SR620 with typical measurement uncertainty of 0.5 ns (when connected to external reference frequency source). Each delay estimate includes two measurements:

- between laboratory reference source UTC(SU) and PHM;
- between 1 PPS input connector of a receiver and PHM.

KZ04 antenna cable delay was measured using Vector Network Analyzer Rohde \& Schwarz ZVB4. SU31 cable delay was taken from 1001-2018 calibration report.

Measured delays:

Delay type	Value, ns	
	MJD 59537	MJD 59542
Between laboratory reference source UTC(SU) and the 1 PPS input connector of the SU31 receiver	193.9	193.8
Between laboratory reference source UTC(SU) and the 1 PPS input connector of the KZ04 receiver	294.1	294.1
Antenna cable delay of SU31 receiver	143.2	-
Antenna cable delay of KZ04 receiver	611.5	-

KZ04 - SU31

COMPUTATION OF BASELINE

```
Number of codes to fit baseline and biases = 106871
Compute baseline with sin(elev) between 0.05 and 0.90
Apriori codes biases from 13475 high elev obs : 100.624 100.169
Iteration 0: Obs used = 187607; Huge residuals = 12; Large residuals = 193
Iteration 1: Obs used = 187608; Huge residuals =
Computed code bias (P1/P2)/m = 100.587 100.089
Computed baseline (X,Y,Z)/m = 2.442 -1.094 -1.133
RMS of residuals /m = 0.359
Number of phase differences to fit baseline
L1/L2 = 105841
L5 = 51161
A priori baseline (X,Y,Z)/m = 2.442 -1.094 -1.133
1 1 5 1 6 ~ c l o c k ~ j i t t e r s ~ c o m p u t e d ~ o u t ~ o f ~ 1 1 5 1 6 ~ i n t e r v a l s
AVE jitter /ps = -0.0 RMS jitter /ps = 5.0
Iter 1 Large residuals L1= 1
Iter 1 Large residuals L2= 0
Iter 1 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m = 0.031 0.030 0.095
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = 0.045 0.038 0.106
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = 0.035 0.029 0.107
RMS of residuals L5 /m = 0.004
Iter 2 Large residuals L1= 1
Iter 2 Large residuals L2= 0
Iter 2 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m = 0.031 0.030 0.095
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = 0.045 0.038 0.106
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = 0.035 0.029 0.107
RMS of residuals L5 /m = 0.004
New iteration of baseline
New apriori baseline (X,Y,Z)/m = 2.480 -1.060 -1.032
1 1 5 1 6 ~ c l o c k ~ j i t t e r s ~ c o m p u t e d ~ o u t ~ o f ~ 1 1 5 1 6 ~ i n t e r v a l s
AVE jitter /ps = -0.0 RMS jitter /ps = 0.2
Iter 3 Large residuals L1= 1
Iter 3 Large residuals L2= 0
Iter 3 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m = -0.006 -0.002 -0.002
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m= 0.008 0.006 0.008
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = -0.002 -0.004 0.010
RMS of residuals L5 /m = 0.004
```

Final baseline L1 (X,Y,Z)/m = 2.474 -1.062 -1.034
Final baseline L2 $(X, Y, Z) / m=12.488 \quad-1.053 \quad-1.023$
Final baseline L5 (X,Y,Z)/m $=\quad 2.478$-1.063 -1.022

COMPUTATION OF CODE DIFFERENCES

Total number of code differences = 107107
Global average of individual differences
Code \#pts, ave/ns, rms/ns
C1: $107040336.223 \quad 0.924$
C2: $74823 \quad 335.490 \quad 1.245$
P1: $106805 \quad 335.301 \quad 1.071$
P2: 106800333.5931 .290

D1:	0	NaN	NaN
D2:	0	NaN	NaN
R1:	0	NaN	NaN
R2:	0	NaN	NaN
E1:	0	NaN	NaN
E5:	0	NaN	NaN
B1:	0	NaN	NaN
B2:	0	NaN	NaN
BC:	0	NaN	NaN
B5:	0	NaN	NaN

Number of 300 s epochs in out file $=1152$
Code \#pts, median/ns, ave/ns, rms/ns

C1:	10706	336.275	336.214	0.675
C2:	7480	335.512	335.480	1.008
P1:	10683	335.327	335.291	0.753
P2:	10682	333.611	333.580	1.011
D1:	0	0.000	NaN	NaN
D2:	0	0.000	NaN	NaN
R1:	0	0.000	NaN	NaN
R2:	0	0.000	NaN	NaN
E1:	0	0.000	NaN	NaN
E5:	0	0.000	NaN	NaN
B1:	0	0.000	NaN	NaN
B2:	0	0.000	NaN	NaN
BC:	0	0.000	NaN	NaN
B5:	0	0.000	NaN	NaN

$66209 \mathrm{~s}: \mathrm{P} 2=125 \mathrm{ps}$ 33101 s: P1= 158 ps 33104 s:P2= 132 ps 16551 s: P1= 115 ps 16552 s: P2= 140 ps s:P1= 62 ps $8276 \mathrm{~s}: \mathrm{P} 2=145 \mathrm{ps}$ s:P1 $=68 \mathrm{ps} 4136 \mathrm{~s}: P 2=124 \mathrm{ps}$ 2069 s: P1= 77 ps 2069 s: P2= 131 ps 1034 s: P1= 111 ps $1035 \mathrm{~s}:$ P2= 149 ps 517 s : P2 $=184 \mathrm{ps}$ 129 s: P1 $=357$ ps 129 s:P2 490 ps $32 \mathrm{~s}: \mathrm{P} 1=668 \mathrm{ps} \quad 32 \mathrm{~s}: \mathrm{P} 2=932 \mathrm{ps}$

