1. Laboratory: SU

Information Sheet

Laboratory:		SU	
Date and hour of the beginning of measurements:		2021-09-18 00:00:00 UTC (MJD 59475)	
Date and hour of the end of measurements:		2021-09-22 12:28:00 UTC (MJD 59479)	
Information on the system			
	Local:		Travelling:
4-character BIPM code	SU31		SU05
- Receiver maker and type: Receiver serial number:	DICOM (ME GTR51 1604031		DICOM (MESIT) GTR51 1907005
1 PPS trigger level/V:	1.0 V		1.0 V
- Antenna cable maker and type: Phase stabilised cable (Y/N):	Andrew FSJY		Andrew FSJ-1 Y
Length outside the building /m:	Approx. 15 m		Approx. 15 m
- Antenna maker and type: Antenna serial number:	Leica Geosys LEIAR25.R4 726435	LEIT	NovAtel NOV850 NONE NMLK19250012J
Temperature (if stabilised) ${ }^{\circ} \mathrm{C}$	$45.0{ }^{\circ} \mathrm{C}$		$45.0{ }^{\circ} \mathrm{C}$

Measured delays /ns (if needed fill box "Additional Information" below)		
	Local:	Travelling:
• Delay from local UTC to receiver 1 PPS-in:	193.8 ns	193.8 ns
Delay from 1 PPS-in to internal Reference (if different): (see section 2 for detais)	-	-
- Antenna cable delay:	143.2 ns	98.6 ns
Splitter delay (if any):	-	-
Additional cable delay (if any):	-	-

Data used for the generation of CGGTTS files

\bullet INT DLY (GPS) /ns:	-
\bullet INT DLY (Galileo) /ns:	-
\bullet INT DLY (GLONASS) /ns:	-
\bullet CAB DLY /ns:	-
\bullet REF DLY /ns:	-
\bullet Coordinates reference frame:	-
Latitude or X /m:	-
Longitude or Y/m:	-
Height or Z /m:	-

General information	
• Rise time of the local UTC pulse:	2 ns
\bullet Is the laboratory air conditioned:	Y
Set temperature value and uncertainty:	$19.5^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
Set humidity value and uncertainty:	-

Diagram of the experiment setup

COMPUTATION OF BASELINE

```
Number of codes to fit baseline and biases = 115574
Compute baseline with sin(elev) between 0.05 and 0.90
Apriori codes biases from 14602 high elev obs : -17.449 -19.362
Iteration 0: Obs used = 202935; Huge residuals = 7; Large residuals = 255
Iteration 1: Obs used = 202935; Huge residuals = 0; Large residuals = 248
Computed code bias (P1/P2)/m = -18.105 -20.049
Computed baseline (X,Y,Z)/m= 6.390 3.449 -5.302
RMS of residuals /m = 0.381
Number of phase differences to fit baseline
L1/L2 = 114365
L5 = 55856
A priori baseline (X,Y,Z)/m = 6.390 3.449 -5.302
1 2 7 2 3 ~ c l o c k ~ j i t t e r s ~ c o m p u t e d ~ o u t ~ o f ~ 1 2 7 2 3 ~ i n t e r v a l s
AVE jitter /ps = -0.2 RMS jitter /ps = 9.8
Iter 1 Large residuals L1= 2
Iter 1 Large residuals L2= 1
Iter 1 Large residuals L5= 3
Computed baseline L1 (X,Y,Z)/m = 0.320 0.235 0.714
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = 0.327 0.237 0.722
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = 0.327 0.232 0.714
RMS of residuals L5 /m = 0.004
Iter 2 Large residuals L1= 2
Iter 2 Large residuals L2= 1
Iter 2 Large residuals L5= 3
Computed baseline L1 (X,Y,Z)/m= 0.320 0.235 0.714
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = 0.327 0.237 0.722
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = 0.327 0.232 0.714
RMS of residuals L5 /m = 0.004
New iteration of baseline
New apriori baseline (X,Y,Z)/m = 6.713 3.685 -4.584
12723 clock jitters computed out of 12723 intervals
AVE jitter /ps = 0.1 RMS jitter /ps = 1.3
Iter 3 Large residuals L1= 2
Iter 3 Large residuals L2= 1
Iter 3 Large residuals L5= 3
Computed baseline L1 (X,Y,Z)/m = 0.012 0.009 0.021
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = 0.019 0.012 0.028
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = 0.021 0.006 0.025
RMS of residuals L5 /m = 0.004
```

Final baseline L1 (X,Y,Z)/m =
$6.725 \quad 3.695-4.563$
Final baseline L2 (X,Y,Z)/m= $\begin{array}{llll}6.732 & 3.697 & -4.556\end{array}$
Final baseline L5 (X,Y,Z)/m =
$\begin{array}{lll}6.734 & 3.691 & -4.559\end{array}$

COMPUTATION OF CODE DIFFERENCES
Total number of code differences = 116015
Global average of individual differences
Code \#pts, ave/ns, rms/ns

C1: 115820	-61.862	1.029
C2:	82189	-66.938
P1:	115491	-62.082
P2: 115482	-68.582	1.137

Number of 300 s epochs in out file $=1277$
Code \#pts, median/ns, ave/ns, rms/ns

C1:	11580	-61.876	-61.862	0.679
C2:	8216	-66.938	-66.941	0.585
P1:	11537	-62.103	-62.085	0.728
P2:	11537	-68.596	-68.588	0.608

2. Laboratory BY

Information Sheet (BY46)

Laboratory:	BY	
Date and hour of the beginning of measurements:	2021-09-24 11:23:00 UTC (MJD 59481)	
Date and hour of the end of measurements:	2021-09-28 13:23:00 UTC (MJD 59485)	
Information on the System		
	Local:	Travelling:
4-character BIPM code	BY46	SU05
\bullet Receiver maker and type:	Piktime	DICOM (MESIT)
	TTS-4	GTR51
Receiver serial number:	0146	1907005
1 PPS trigger level /V:	1.0 V	1.0 V
\bullet Antenna cable maker and type:	Andrew FSJ-1	Andrew FSJ-1
Phase stabilised cable (Y/N):	Y	Ypprox. 25 m
Length outside the building $/ \mathrm{m}:$	Approx. 5 m	NovAtel
\bullet Antenna maker and type:	Javad GNSS	NOV850
Antenna serial number:	JAV_RINGANT_G3T JAVC	NMLK19250012J
Temperature (if stabilised) $/{ }^{\circ} \mathrm{C}$	00646	$45.0^{\circ} \mathrm{C}$

Measured delays /nS (if needed fill box "Additional Information" below)		
	Local:	Travelling:
\bullet • Delay from local UTC to receiver 1 PPS-in:	51.48 ns	193.8 ns
Delay from 1 PPS-in to internal Reference (if different):	minus 10.76 ns	-
• Antenna cable delay:	144.14 ns	98.6 ns
Splitter delay (if any):	-	-
Additional cable delay (if any):	-	-

Data used for the generation of CGGTTS files

\bullet INT DLY (GPS) /ns:	-
\bullet INT DLY (Galileo) /ns:	-
\bullet INT DLY (GLONASS) /ns:	-
\bullet CAB DLY /ns:	-
\bullet REF DLY /ns:	-
\bullet Coordinates reference frame:	-
Latitude or X /m:	-
Longitude or Y/m:	-
Height or Z /m:	-

General information	
\bullet Rise time of the local UTC pulse:	1 ns
\bullet Is the laboratory air conditioned:	Y
Set temperature value and uncertainty:	$20^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Set humidity value and uncertainty:	-

Diagram of the experiment setup

Set-up at BY was changed after the arrival of VNIIFTRI staff. Current set-up is presented on the figure above.
All delay measurements were carried out using TIC Keysight 52230A with typical measurement uncertainty of 0.5 ns (when connected to external reference frequency source). TTS-4 (BY46) and TTS-5 (BY14) delays were measured with the full accordance to BIPM recommendations (Annex C of Operational procedures for a visit of the traveling equipment).
RF cable delay was taken from manufacturer certificate.
BY46 delays:

Delay type	Value, ns	
	MJD 59481	MJD 59485
Between laboratory reference source UTC(BY) and the 1 PPS input connector of the receiver	51.48	51.49
Between the 1 PPS input connector and the 10 MHz input connector	76.74	76.82
1 PPS - frequency correction (after measured delays being input into TTS)	-10.76	-10.68
Total reference delay (REF)	40.72	40.81

Mean REF $=40.77$

BY46 - SU05

COMPUTATION OF BASELINE

Number of codes to fit baseline and biases $=101467$
Compute baseline with sin(elev) between 0.05 and 0.90
Apriori codes biases from 14447 high elev obs : 2.364 5.172
Iteration 0: Obs used $=172761$; Huge residuals $=$ 48; Large residuals $=2279$
Iteration 1: Obs used $=172769$; Huge residuals $=0$; Large residuals $=2207$
Computed code bias (P1/P2)/m = 4.447 .614
Computed baseline $(X, Y, Z) / m=\quad-2.709 \quad-5.466$
2.327

RMS of residuals $/ \mathrm{m}=0.626$

Number of phase differences to fit baseline
$\mathrm{L} 1 / \mathrm{L} 2=100387$
$\mathrm{L} 5=49610$
$\begin{array}{lllll}\text { A priori baseline }(X, Y, Z) / m= & -2.709 & -5.466 & 2.327\end{array}$
11736 clock jitters computed out of 11739 intervals
AVE jitter $/ \mathrm{ps}=0.3 \mathrm{RMS}$ jitter $/ \mathrm{ps}=4.8$

Iter 1 Large residuals L1= 0
Iter 1 Large residuals L2= 0
Iter 1 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m = \quad-1.032 $\quad-0.506 \quad-1.959$
RMS of residuals L1 /m = 0.004
Computed baseline L2 (X,Y,Z)/m = $\quad-1.033 \quad-0.504 \quad-1.963$
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = -1.054 -0.504 -1.941
RMS of residuals L5 $/ \mathrm{m}=0.003$

New iteration of baseline
$\begin{array}{lllll}\text { New apriori baseline }(X, Y, Z) / m= & -3.741 & -5.971 & 0.366\end{array}$
11736 clock jitters computed out of 11739 intervals
AVE jitter $/ \mathrm{ps}=-0.2 \mathrm{RMS}$ jitter $/ \mathrm{ps}=3.2$

Iter 2 Large residuals L1= 0
Iter 2 Large residuals L2= 0
Iter 2 Large residuals L5= 0
RMS of residuals L1 /m = 0.003
Computed baseline L2 (X,Y,Z)/m = $\quad-0.043 \quad-0.009 \quad-0.055$
RMS of residuals L2 /m = 0.004
Computed baseline L5 (X,Y,Z)/m = $\quad-0.046 \quad-0.007 \quad$-0.056
RMS of residuals L5 /m=0.003

| Final baseline L1 $(X, Y, Z) / m=$ | -3.782 | -5.981 | 0.316 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Final baseline L2 $(X, Y, Z) / m=$ | -3.783 | -5.979 | 0.312 |
| Final baseline L5 $(X, Y, Z) / m=$ | -3.787 | -5.978 | 0.310 |

COMPUTATION OF CODE DIFFERENCES

Total number of code differences = 103031

Global average of individual differences
Code \#pts, ave/ns, rms/ns

C1:	102898	20.970	1.687
C2:	73208	24.082	1.803
P1:	100331	19.683	1.588
P2:	94521	22.871	1.733

Number of 300 s epochs in out file $=1176$
Code \#pts, median/ns, ave/ns, rms/ns

C1:	10273	20.971	20.973	1.079
C2:	7307	24.095	24.094	1.062
P1:	10031	19.777	19.685	1.039
P2:	9441	22.932	22.881	1.042

2021-10-22 by46su0521267_5

2021-10-22 by46su0521267_5

$70280 \mathrm{~s}:$ C1= $35 \mathrm{ps} 98812 \mathrm{~s}:$ C2= 25 ps $35140 \mathrm{~s}: \mathrm{C} 1=115 \mathrm{ps} 49406 \mathrm{~s}:$ C2= 50 ps $17570 \mathrm{~s}: \mathrm{C} 1=83 \mathrm{ps} 24703 \mathrm{~s}: \mathrm{C} 2=136 \mathrm{ps}$ $8785 \mathrm{~s}: \mathrm{C} 1=102 \mathrm{ps} \quad 12351 \mathrm{~s}: \mathrm{C} 2=143 \mathrm{ps}$ 4393 s:C1= 118 ps $6176 \mathrm{~s}:$ C2= 104 ps $2196 \mathrm{~s}: \mathrm{C} 1=121 \mathrm{ps} \quad 3088 \mathrm{~s}: \mathrm{C} 2=131 \mathrm{ps}$ $1098 \mathrm{~s}: \mathrm{C} 1=164 \mathrm{ps} \quad 1544 \mathrm{~s}: \mathrm{C} 2=169 \mathrm{ps}$ $549 \mathrm{~s}: \mathrm{C} 1=218 \mathrm{ps} \quad 772 \mathrm{~s}: \mathrm{C} 2=220 \mathrm{ps}$ 275 s:C1= 289 ps 386 s:C2= 282 ps $137 \mathrm{~s}: \mathrm{C} 1=554 \mathrm{ps} \quad 193 \mathrm{~s}: \mathrm{C} 2=469 \mathrm{ps}$ $69 \mathrm{~s}: \mathrm{C} 1=790 \mathrm{ps} \quad 96 \mathrm{~s}: \mathrm{C} 2=754 \mathrm{ps}$ $34 \mathrm{~s}:$ C1 $=1101 \mathrm{ps} \quad 48 \mathrm{~s}: C 2=1130 \mathrm{ps}$

71976 s: P1= 28 ps $76475 \mathrm{~s}:$ P2 $=31$ ps
$35988 \mathrm{~s}: \mathrm{P} 1=80 \mathrm{ps} 38237 \mathrm{~s}: \mathrm{P} 2=53 \mathrm{ps}$ $17994 \mathrm{~s}:$ P1 $=106$ ps $19119 \mathrm{~s}: P 2=151 \mathrm{ps}$ 8997 s: P1= 106 ps $9559 \mathrm{~s}:$ P2= 104 ps 4498 s: P1= 125 ps $4780 \mathrm{~s}: \mathrm{P} 2=115 \mathrm{ps}$ 2249 s: P1= 130 ps 2390 s: P2= 136 ps $1125 \mathrm{~s}: \mathrm{P} 1=158 \mathrm{ps} 1195 \mathrm{~s}: \mathrm{P} 2=168 \mathrm{ps}$ $597 \mathrm{~s}: \mathrm{P} 2=211 \mathrm{ps}$ 299 s: P2 $=269 \mathrm{ps}$ $149 \mathrm{~s}:$ P2 $=537 \mathrm{ps}$ $75 \mathrm{~s}:$ P2 $=733 \mathrm{ps}$ $37 \mathrm{~s}:$ P2 $=1081 \mathrm{ps}$

Information Sheet (BY14)

Laboratory:	BY
Date and hour of the beginning of measurements:	2021-09-24 11:23:00 UTC (MJD 59481)
Date and hour of the end of measurements:	$\mathbf{2 0 2 1 - 0 9 - 2 8 ~ 1 3 : 2 3 : 0 0 ~ U T C ~ (M J D ~ 5 9 4 8 5) ~}$

Information on the system		
	Local:	Travelling:
4-character BIPM code	BY14	SU05
\bullet Receiver maker and type:	Piktime	DICOM (MESIT)
Receiver serial number:	TTS-5	
	1014	1907005
1 PPS trigger level /V:	1.0 V	1.0 V
• Antenna cable maker and type:	Andrew FSJ-1	Andrew FSJ-1
Phase stabilised cable (Y/N):	Y	Y
Length outside the building /m:	Approx. 5 m	Approx. 25 m
\bullet Antenna maker and type:	Leica Geosystems	NovAtel
Antenna serial number:	LEIAR25.R4	NOV850
Temperature (if stabilised) $/{ }^{\circ} \mathrm{C}$	-	NMLK19250012J

Measured delays /ns (if needed fill box "Additional Information" below)		
	Local:	Travelling:
- Delay from local UTC to receiver 1 PPS-in:	43.22 ns	193.8 ns
Delay from 1 PPS-in to internal Reference (if different):	minus 2.98 ns	-
- Antenna cable delay:	140.59 ns	98.6 ns
Splitter delay (if any):	-	-
Additional cable delay (if any):	-	-
Data used for the generation of CGGTTS files		
- INT DLY (GPS) /ns:		-
- INT DLY (Galileo) /ns:		-
- INT DLY (GLONASS) /ns:		-
- CAB DLY /ns:		-
- REF DLY /ns:		-
- Coordinates reference frame:		-
Latitude or X / m :		-
Longitude or Y/m:		-
Height or Z /m:		-
General information		
- Rise time of the local UTC pulse:		1 ns
- Is the laboratory air conditioned:		Y
Set temperature value and uncertainty		$20^{\circ} \mathrm{C} \pm 3{ }^{\circ} \mathrm{C}$
Set humidity value and uncertainty:		-

COMMENTS

All delay measurements were carried out using TIC Keysight 52230A with typical measurement uncertainty of 0.5 ns (when connected to external reference frequency source).
TTS-4 (BY46) and TTS-5 (BY14) delays were measured with the full accordance to
BIPM recommendations (Annex C of Operational procedures for a visit of the traveling equipment).
RF cable delay was taken from manufacturer certificate.

BY14 delays:

Delay type	Value, ns	
	MJD 59481	MJD 59485
Between laboratory reference source UTC(BY) and the 1 PPS input connector of the receiver	43.22	43.25
Between the 1 PPS input connector and the 10 MHz input connector	84.52	84.62
1 PPS - frequency correction (after measured delays being input into TTS)	-2.98	-2.88
Total reference delay (REF)	40.24	40.37

Mean REF $=40.31$

Number of codes to fit baseline and biases = 102074
Compute baseline with sin(elev) between 0.05 and 0.90
Apriori codes biases from 14547 high elev obs : 7.408 7.501
Iteration 0: Obs used = 174853; Huge residuals $=\quad 0$; Large residuals $=1213$
Iteration 1: Obs used = 174853; Huge residuals = 0 ; Large residuals = 1213
Computed code bias (P1/P2)/m= 9.341 9.548
Computed baseline (X,Y,Z)/m = -3.950 -4.129 3.132
RMS of residuals /m = 0.673
Number of phase differences to fit baseline
L1/L2 = 101310
L5 = 49868
$\begin{array}{llll}\text { A priori baseline }(X, Y, Z) / m= & -3.950 & -4.129 & 3.132\end{array}$
11730 clock jitters computed out of 11730 intervals
AVE jitter /ps = 0.3 RMS jitter /ps = 4.9
Iter 1 Large residuals L1= 0
Iter 1 Large residuals L2= 0
Iter 1 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m = -1.143 -0.574 -2.429
RMS of residuals L1 $/ \mathrm{m}=0.003$
Computed baseline L2 (X,Y,Z)/m = -1.152 -0.577 -2.440
RMS of residuals L2 /m = 0.003
Computed baseline L5 (X,Y,Z)/m= $\begin{array}{llll}-1.166 & -0.578 & -2.408\end{array}$
RMS of residuals L5 /m = 0.003
New iteration of baseline
New apriori baseline $(X, Y, Z) / m=\quad-5.097 \quad-4.704 \quad 0.697$
11730 clock jitters computed out of 11730 intervals
AVE jitter /ps = -0.3 RMS jitter /ps = 3.8
Iter 2 Large residuals L1= 0
Iter 2 Large residuals L2= 0
Iter 2 Large residuals L5= 0
Computed baseline L1 (X,Y,Z)/m= $\begin{array}{llll}-0.041 & -0.008 & -0.058\end{array}$
RMS of residuals L1 $/ \mathrm{m}=0.003$
$\begin{array}{lllll}\text { Computed baseline L2 }(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}= & -0.050 & -0.011 & -0.068 \\ \mathrm{RMS} \text { of residuals L2 } / \mathrm{m}= & 0.003 & & & \end{array}$
Computed baseline L5 (X,Y,Z)/m= $\quad-0.049 \quad-0.010 \quad-0.065$
RMS of residuals $\mathrm{L} 5 / \mathrm{m}=0.003$

| Final baseline L1 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | -5.139 | -4.713 | 0.640 |
| :--- | :--- | :--- | :--- | :--- |
| Final baseline L2 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | -5.147 | -4.716 | 0.629 |
| Final baseline L5 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | -5.146 | -4.715 | 0.632 |

COMPUTATION OF CODE DIFFERENCES
Total number of code differences = 103024

Global average of individual differences
Code \#pts, ave/ns, rms/ns

C1: 102902	37.827	1.622
C2:	73198	38.288
P1: 101950	36.809	1.497
P2: 101946	37.524	1.136

Number of 300 s epochs in out file $=1176$
Code \#pts, median/ns, ave/ns, rms/ns

C1:	10274	37.812	37.832	1.029
C2:	7307	38.285	38.299	0.909
P1:	10186	36.809	36.814	0.907
P2:	10186	37.553	37.527	0.677

MJD

3. Laboratory: SU

Information Sheet

Laboratory:		SU	
Date and hour of the beginning of measurements:		2021-09-29 12:02:00 UTC (MJD 59486)	
Date and hour of the end of measurements:		2021-10-03 23:59:30 UTC (MJD 59490)	
Information on the system			
	Local:		Travelling:
4-character BIPM code	SU31		SU05
- Receiver maker and type: Receiver serial number:	DICOM (ME GTR51 1604031		DICOM (MESIT) GTR51 1907005
1 PPS trigger level/V:	1.0 V		1.0 V
- Antenna cable maker and type: Phase stabilised cable (Y/N):	Andrew FSJY		Andrew FSJ-1 Y
Length outside the building /m:	Approx. 15 m		Approx. 15 m
- Antenna maker and type: Antenna serial number:	Leica Geosys LEIAR25.R4 726435	LEIT	NovAtel NOV850 NONE NMLK19250012J
Temperature (if stabilised) $/{ }^{\circ} \mathrm{C}$	$45.0{ }^{\circ} \mathrm{C}$		$45.0{ }^{\circ} \mathrm{C}$

Measured delays /ns (if needed fill box "Additional Information" below)			
	Local:	Travelling:	
- Delay from local UTC to receiver 1 PPS-in:	193.8 ns	193.8 ns	
Delay from 1 PPS-in to internal Reference (if different): (see section 2 for detais)	-	-	
- Antenna cable delay:	143.2 ns	98.6 ns	
Splitter delay (if any):	-	-	
Additional cable delay (if any):	-	-	

Data used for the generation of CGGTTS files

\bullet INT DLY (GPS) /ns:	-
\bullet INT DLY (Galileo) /ns:	-
\bullet INT DLY (GLONASS) /ns:	-
\bullet CAB DLY /ns:	-
\bullet REF DLY /ns:	-
\bullet Coordinates reference frame:	-
Latitude or X /m:	-
Longitude or Y/m:	-
Height or Z/m:	-

General information	
• Rise time of the local UTC pulse:	2 ns
\bullet Is the laboratory air conditioned:	Y
Set temperature value and uncertainty:	$19.5^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
Set humidity value and uncertainty:	-

COMPUTATION OF BASELINE

Number of codes to fit baseline and biases $=121023$
Compute baseline with sin(elev) between 0.05 and 0.90
Apriori codes biases from 15277 high elev obs : -17.469 -19.357
Iteration 0: Obs used = 212477; Huge residuals = 12; Large residuals = 291
Iteration 1: Obs used = 212479; Huge residuals $=\quad 0$; Large residuals = 277
Computed code bias (P1/P2)/m = -18.108 -20.044
Computed baseline (X,Y,Z)/m = $6.400 \quad 3.453 \quad$-5.293
RMS of residuals $/ \mathrm{m}=0.385$
Number of phase differences to fit baseline
L1/L2 = 119903
L5 = 57375
A priori baseline ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) /m = $6.400 \quad 3.453 \quad-5.293$
12955 clock jitters computed out of 12955 intervals
AVE jitter $/ \mathrm{ps}=-0.1 \mathrm{RMS}$ jitter $/ \mathrm{ps}=3.9$
Iter 1 Large residuals L1= 3
Iter 1 Large residuals L2= 3
Iter 1 Large residuals L5= 1
$\begin{array}{lllll}\text { Computed baseline L1 (X,Y,Z)/m }= & 0.312 \quad 0.226 & 0.710\end{array}$
RMS of residuals L1 $/ \mathrm{m}=0.004$
$\begin{array}{lllll}\text { Computed baseline L2 (X,Y,Z) } / \mathrm{m}= & 0.323 & 0.226 & 0.715\end{array}$
RMS of residuals $\mathrm{L} 2 / \mathrm{m}=0.004$
$\begin{array}{lllll}\text { Computed baseline L5 (X,Y,Z)/m }= & 0.323 & 0.223 & 0.703\end{array}$
RMS of residuals L5 $/ \mathrm{m}=0.004$
Iter 2 Large residuals L1= 3
Iter 2 Large residuals L2= 3
Iter 2 Large residuals L5= 1
$\begin{array}{lllll}\text { Computed baseline L1 (X,Y,Z) } / \mathrm{m}= & 0.312 & 0.226 & 0.710\end{array}$
RMS of residuals L1 /m = 0.004
$\begin{array}{lllll}\text { Computed baseline L2 (X,Y,Z) } / \mathrm{m}= & 0.323 & 0.226 & 0.715\end{array}$
RMS of residuals L2 $/ \mathrm{m}=0.004$
$\begin{array}{lllll}\text { Computed baseline L5 }(X, Y, Z) / m= & 0.323 & 0.223 & 0.703\end{array}$
RMS of residuals L5 /m = 0.004
New iteration of baseline
$\begin{array}{lllll}\text { New apriori baseline }(X, Y, Z) / m= & 6.718 & 3.679 & -4.580\end{array}$
12955 clock jitters computed out of 12955 intervals
AVE jitter $/ \mathrm{ps}=0.1 \mathrm{RMS}$ jitter $/ \mathrm{ps}=1.2$
Iter 3 Large residuals L1= 3
Iter 3 Large residuals L2= 3
Iter 3 Large residuals L5= 1
$\begin{array}{llllll}\text { Computed baseline L1 (X,Y,Z)/m }= & 0.008 & 0.011 & 0.020\end{array}$
RMS of residuals L1 /m $=0.004$
$\begin{array}{lllll}\text { Computed baseline L2 (X,Y,Z) } / \mathrm{m}= & 0.019 & 0.012 & 0.025\end{array}$
RMS of residuals L2 $/ \mathrm{m}=0.004$
$\begin{array}{lllll}\text { Computed baseline L5 (X,Y,Z)/m = } 0.0019 & 0.005 & 0.021\end{array}$
RMS of residuals L5 /m = 0.004

| Final baseline L1 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | 6.726 | 3.691 | -4.560 |
| :--- | :--- | :--- | :--- | :--- |
| Final baseline L2 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | 6.737 | 3.691 | -4.555 |
| Final baseline L5 $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) / \mathrm{m}=$ | 6.737 | 3.685 | -4.559 |

COMPUTATION OF CODE DIFFERENCES

Total number of code differences = 121367
Global average of individual differences
Code \#pts, ave/ns, rms/ns

C1: 121258	-61.818	1.034
C2:	84172	-66.907
P1:	120943	-62.056
P2: 120938	-68.528	1.158

C1:	12118	-61.833	-61.820	0.681
C2:	8414	-66.896	-66.910	0.577
P1:	12086	-62.069	-62.062	0.734
P2:	12085	-68.549	-68.534	0.609

2021-10-22 su05su3121272_5

2021-10-22 su05su3121272_5

 32832 s: C1= 71 ps $16416 \mathrm{~s}: \mathrm{C} 1=64 \mathrm{ps}$ 8208 s:C1 $=80$ ps 4104 s: C1= 62 ps 2052 s:C1= 67 ps $1026 \mathrm{~s}: \mathrm{C} 1=99 \mathrm{ps}$ $513 \mathrm{~s}: \mathrm{C} 1=139 \mathrm{ps}$ 256 s:C1= 190 ps 128 s : C1 $=365 \mathrm{ps}$ $64 \mathrm{~s}: \mathrm{C} 1=481 \mathrm{ps}$ $32 \mathrm{~s}: \mathrm{C} 1=692 \mathrm{ps}$ 47287 s: C2= 63 ps $23643 \mathrm{~s}: \mathrm{C} 2=80 \mathrm{ps}$ 11822 s : C2 $=90 \mathrm{ps}$ 5911 s : C2 $=84 \mathrm{ps}$ 2955 s:C2= 84 ps 1478 s:C2= 91 ps $739 \mathrm{~s}:$ C2 $=125 \mathrm{ps}$ $369 \mathrm{~s}:$ C2= 173 ps 185 s : C2 $=280 \mathrm{ps}$ $92 \mathrm{~s}: \mathrm{C} 2=417 \mathrm{ps}$ $46 \mathrm{~s}:$ C2 $=566 \mathrm{ps}$

$65838 \mathrm{~s}: \mathrm{P} 1=24 \mathrm{ps}$	$65843 \mathrm{~s}: \mathrm{P} 2=24 \mathrm{ps}$
$32919 \mathrm{~s}: \mathrm{P} 1=89 \mathrm{ps}$	$32922 \mathrm{~s}: \mathrm{P} 2=79 \mathrm{ps}$
$16459 \mathrm{~s}: \mathrm{P} 1=84 \mathrm{ps}$	$16461 \mathrm{~s}: \mathrm{P} 2=66 \mathrm{ps}$
$8230 \mathrm{~s}: \mathrm{P} 1=90 \mathrm{ps}$	$8230 \mathrm{~s}: \mathrm{P} 2=70 \mathrm{ps}$
$4115 \mathrm{~s}: \mathrm{P} 1=64 \mathrm{ps}$	$4115 \mathrm{~s}: \mathrm{P} 2=84 \mathrm{ps}$
$2057 \mathrm{~s}: \mathrm{P} 1=67 \mathrm{ps}$	$2058 \mathrm{~s}: \mathrm{P} 2=76 \mathrm{ps}$
$1029 \mathrm{~s}: \mathrm{P} 1=108 \mathrm{ps}$	$1029 \mathrm{~s}: \mathrm{P} 2=102 \mathrm{ps}$
$514 \mathrm{~s}: \mathrm{P} 1=146 \mathrm{ps}$	$514 \mathrm{~s}: \mathrm{P} 2=134 \mathrm{ps}$
$257 \mathrm{~s}: \mathrm{P} 1=205 \mathrm{ps}$	$257 \mathrm{~s}: \mathrm{P} 2=185 \mathrm{ps}$
$129 \mathrm{~s}: \mathrm{P} 1=404 \mathrm{ps}$	$129 \mathrm{~s}: \mathrm{P} 2=304 \mathrm{ps}$
$64 \mathrm{~s}: \mathrm{P} 1=517 \mathrm{ps}$	$64 \mathrm{~s}: \mathrm{P} 2=439 \mathrm{ps}$
$32 \mathrm{~s}: \mathrm{P}=738 \mathrm{ps}$	$32 \mathrm{~s}: \mathrm{P} 2=603 \mathrm{ps}$

