## **Local Differential Calibration Report**

Date: 21<sup>st</sup> Aug, 2019

**Introduction:** CSIR-NPL India (NPLI), have different GNSS receivers which had calibrated in year 2018 by NICT and BIPM using G2 calibrator (<u>NICT and BIPM Report</u>). Recently, we had GPS rollover issue in LIAA, LIAB and LIT4 receiver. Therefore, to overcome this issue we need to upgrade these receivers. Now, in upgraded LIAA and LIAB receivers Rinex files are uncorrected with delays. After upgrade, we calibrated the receivers with reference calibrated receiver. Here, we used LI2P receiver for local differential calibration of these three updated receivers.

**Procedure used:** The figure1 shows the setup for GNSS receivers. We used Rinex files of LI2P, LIAA, LIAB and LIT4 receivers for nine days (MJD58701 to MJD58709). The comparison made using DCLRINEX software for different pair of receivers (LI2P-LIAA, LI2P-LIAB and LI2P-LIT4).



Figure1: Practical Set-up for GNSS Rx

**Calculation and Measurement using DCLRINEX:** The figure2 to figure4 shows the results of DCLRINEX software. The calculation for IntDly of LIAA, LIAB and LIT4 receivers are as follows:

 $[IntDly]_{(b)}=IntDly_{(a)} - [Med(code) + (RefDly_{(a)} - RefDly_{(b)}) - (CabDly_{(a)} - CabDly_{(b)})] \_\_\_\_\_ (1)$ Where:

IntDly<sub>(a)</sub>, RefDly<sub>(a)</sub>, CabDly<sub>(a)</sub>: Delays of LI2P receiver

IntDly(b), RefDly(b), CabDly(b): Delays of LIAA, LIAB and LIT4 receiver

Med(code): Median value by DCLRINEX software



Figure2: C1, P1 and P2 measurement and Allan deviation for LI2P-LIAA for duration of MJD58701-58709

| Table1 |
|--------|
|        |

| Receiver ID | RefDly, ns  | CabDly, ns | IntDly, ns |       |       |
|-------------|-------------|------------|------------|-------|-------|
| Receiver ID | KeiDiy, lis |            | C1         | P1    | P2    |
| LI2P        | 284.1*      | 150.0      | 52.9       | 53.1  | 58.3  |
| LIAA        | 96.7        | 132.9      | 0.0        | 0.0   | 0.0   |
| LIAB        | 96.5        | 132.2      | 0.0        | 0.0   | 0.0   |
| LIT4        | 15.1**      | 142.2      | -24.6      | -26.7 | -26.6 |

Note: \*RefDly (284.1 ns) is the resultant of (a) UTC(NPLI) to receiver input delay (96.1 ns) and receiver input to output delay (188.0 ns).

\*\*RefDly (15.1 ns) is the resultant of (a) UTC(NPLI) to receiver input delay (96.5 ns), (b) 1PPS-frequency correction delay (-6.4 ns), (c) firmware correction delay (-75.0 ns).



Figure3: C1, P1 and P2 measurement and Allan deviation for LI2P-LIAB for duration of MJD58701-58709

Table2

| Receiver ID | Reference Receiver LI2P |          |          | IntDly <sub>(b)</sub> , ns |       |       |
|-------------|-------------------------|----------|----------|----------------------------|-------|-------|
| Receiver ID | Medc1                   | Medp1    | Medp2    | C1                         | P1    | P2    |
| LIAA        | -153.506                | -152.398 | -144.917 | 36.1                       | 35.2  | 32.9  |
| LIAB        | -153.237                | -152.197 | -143.795 | 36.3                       | 35.5  | 32.3  |
| LIT4        | -183.851                | -181.559 | -175.956 | -24.4                      | -26.5 | -26.9 |



Figure4: C1, P1 and P2 measurement and Allan deviation for LI2P-LIT4 for duration of MJD58701-58709

**Conclusion:** We made local differential calibration of LIAA, LIAB and LIT4 with respect to LI2P.Table1 shows the present delays in the receivers. The value of  $IntDly_{(b)}$  in Table2 shows the calculated values of LIAA, LIAB and LIT4 after calibration using equation (1).

Acknowledgement: We thank to BIPM for DCLRINEX software by which we made calibration and their kind support.