

Calibration Report Cal_Id 1015-2018

Calibration of GPS receivers at Centre National d'Études

Spatiales (CNES)

April 25, 2019 Issue 1.0

Prepared by: G. D. Rovera, P. Uhrich, B. Chupin, F. Riedel daniele.rovera@obspm.fr pierre.uhrich@obspm.fr baptiste.chupin@obspm.fr franziska.riedel@obspm.fr

LNE-SYRTE Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France Values BIRMO108/2019 Values BIRMO108/2019 Values BIRMO108/2019 Values Val

Contents

1	Summary 1.1 General informations 1.2 Calibration report changes	2 2 2
2	Acronym list and Reference Documents 2.1 Acronym list 2.2 Reference Documents	2 2 3
3	Description of equipment and operations	3
4	Data used	3
5	Results of raw data processing	4
6	Calibration results 6.1 Traveling system against reference system 6.2 Visited systems with respect the traveling system 6.3 Uncertainty estimation	4 4 6 7
7	Final results for the system to calibrate	9
$\mathbf{A}_{\mathbf{j}}$	ppendix	

Annex A Information Sheet	A 1
Annex B Plots of raw data and TDEV analysis	B1
Annex C Uncertainty budget terms	C1

1 Summary

1.1 General informations

This Calibration Report released by LNE-SYRTE is about the relative calibration campaign of GPS receivers located at Centre National d'Études Spatiales.

It is built according to the Annex 4 of the document "BIPM guidelines for GNSS equipment calibration", V3.2 15/02/2016, and contains all the required information, data, plots and results either required by BIPM in the frame of the CCTF Working Group on GNSS, or by BIPM and EURAMET in the frame of the Group1/Group2 calibration scheme. It also contains the uncertainty budget computation according to the Guidelines, which is showing whether the calibrated links used in the frame of the TAI computation would be in line with the conventional values.

1.2 Calibration report changes

This is Issue 1.0 of the calibration report.

2 Acronym list	and Reference Documents
2.1 Acronym list	al2019 values value
AVAR: Allan BIPM: Bure	deviation. Quare ray of AVAR C variance or two sample variance whternational des Polys et Mesures, Sèvres, France litation Committee on Time and Frequency
CGGTTS:	Committee of Time and Frequency
LIU	CONTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

CIPM:	Comité International des Poids et Mesures
CNES:	Centre National d'Études Spatiales
GFZ:	Geoforschungszentrum
GLONASS:	Russian GNSS
GNSS:	Global Navigation Satellite System
GPS:	United States of America GNSS
LNE:	Laboratoire National de Métrologie et d'Essais, French NMI
LNE-SYRTE:	French designated laboratory in charge of Time and Frequency units
MDEV:	Modified Allan deviation, square root of MVAR
MVAR:	Modified Allan variance
NMI:	National Metrology Institute
NRCan:	National Ressources Canada
OP:	Observatoire de Paris, France
PPP:	Precise Point Positioning
PPS:	Pulse per second
PTB:	Physikalisch-Technische Bundesanstalt, German NMI
RINEX:	Receiver International Exchange format for Geodesy
SYRTE:	Systèmes de Référence Temps-Espace, OP laboratory where LNE-SYRTE is located
TDEV:	Time Allan deviation, square root of TVAR
TIC:	Time Interval Counter
TVAR:	Time Allan variance derived from AVAR and MVAR

Page 3 of 9

2.2**Reference Documents**

1015-2018

[1] BIPM, "BIPM guidelines for GNSS calibration", V3.2 15/02/2016.

[2] Pierre Uhrich and David Valat, "GPS receiver relative calibration campaign preparation for Galileo In-Orbit Validation", Proc. of the 24th European Frequency and Time Forum (EFTF), Noordwijk, The Netherlands, April 2010 (CD-Rom).

[3] G.D. Rovera, J-M. Torre, R. Sherwood, M. Abgrall, C. Courde, M. Laas-Bourez and P. Uhrich, "Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties", Metrologia 51 (2014) 476-490.

3 Description of equipment and operations

The relative calibration of the GPS receiver located at CNES was organized by LNE-SYRTE with the support of local Colleagues. The reference receiver for this measurement campaign is OP71, a Septentrio PolaRx4 multichannel multi-frequencies receiver located in OP. This receiver was relatively calibrated by BIPM in the frame of a G1 calibration campaign during fall $2016 \ (\#1001-2016)$.

The traveling equipment was made of two Septentrio PolaRx4 receivers called OPM7 and OPM3, together with a Choke-Ring Ashtech antenna and a 50 m antenna cable. In CNES, the receivers to calibrate were two Septentio PolaRx4TR multi-GNSS receiver called CS21 and CS22, respectively.

All the involved equipment are described inside the BIPM information sheets provided in Annex A for all receivers and all locations. Table 1 presents a summary of the timetable and of the equipment.

CALIBRATION OF GPS RECEIVERS AT CNES

Issue 1.0. April 25, 2019

4 Data used The OP71 collected raw data are transformed into RINEX 2.11 Strata by using the UNAVCO TEQC software. The same software is also used to consert the resolution of traveling receivers into RINEX 2.11 format. Local receiver RINEX 3.03 data are provided by CNES, and converted into RINEX 2.11 format by using a software provided by GHZ. The canoration consisting in building differential pseudoranges for each code P1 and F2 between parts of receivers, these differences being corrected by the known reference (REFDLY) and antenna dable (CABDLY) delays when available. For each location, the coordinates of the antenna phase centers are especially computed for the calibration period from RINEX files by using the NRCA PPP software. The geometric correction between pairs of antenna phase centers for receivers in common-took set-up is computed by using BRDC files provided by IGS.

Institute	Status of	MJD of	Receiver type	BIPM	RINEX
	equipment	measurement		code	name
OP	Traveling		Septentrio PolaRx4TR	OPM7	OPM7
OP	Traveling		Septentrio PolaRx4TR	OPM3	OPM3
OP	Group 1	58260 - 58266	Septentrio PolaRx4TR	OP71	OP71
	Reference				
OP	Group 1	58315 - 58322	Septentrio PolaRx4TR	OP71	OP71
	Reference				
CNES	Group 2	58284 - 58298	Septentrio PolaRx4TR	CS21	CS21
CNES	Group 2	58284 - 58298	Septentrio PolaRx4TR	CS22	CS22

Table 1: Summary information on the calibration trip.

As conservative estimate, the noise of the P1 and P2 differences is obtained from the highest value of the one-sigma statistical uncertainty of the TDEV at 1 d. In the case there is not enough data to compute a TDEV at 1 d, the upper limit of the last error bar available is considered as noise of the raw differences. The noise of P3 data is issued from a similar TDEV analysis.

Reference delays are measured against the local UTC(k) physical reference point at the trigger level currently used in the involved laboratories. Antenna cable delay is either obtained from dedicated measurements or included in the P1 and P2 delays when no value is available for this parameter. In this latter case, the CABDLY value is set to 0 in the parameter file.

For validation purposes, P3 CGGTTS files are computed by using the R2CGGTTS software provided by P. Defraigne (ORB), and CV are built between pairs of receivers. This is more especially the case between the two traveling receivers in each location, in order to better assess the stability of this traveling ensemble all over the calibration campaign. We have decided to consider as overestimated value for the traveling equipment stability during the campaign the upper value between the highest misclosure between the start and the end of the campaign on one side and the highest mean offset between the two traveling receivers obtained from CV on the other side.

Results of raw data processing 5

Table 2 provides a summary of the P1 and P2 delays computed from the raw differences between RINEX files, together with the REFDLY and CABDLY used for these computations. The REFDLY and CABDLY values were either measured on site or taken as known parameter for a given receiving chain. Table 2 also includes the P1 and P2 internal delays of traveling equipment as computed against OP71, in average between the start and the end of the campaign, with the related REFDLY when located in remote stations. From our point of view, this table is the most comprehensive summary of the calibration campaign.

In addition, the Table 3 is providing the raw difference (Rawdiff) values as required by reference [1]. All the plots of P1 and P2 computed delays and of the related TDEV analysis are provided in Annex B. The P3 CV computed by using the results of the calibration and the related DEV analysis are also made available in Annex B.

6 Calibration results

6.1

Traveling system against reference system M3 against thereference teceine ire the ones used form Table 4 is providing the Outputed integral delays WTDLY P1 and P2 for both traveling receivers OPM7 and OPM3 against the end of the campaign. The mean values are the ones used for the computation of the visited equipment delays.

Receiver	Reference	MJD of	REFDLY	CABDLY	P1_DLY	TDEV	P2_DLY	TDEV
		measurement						
OP71	Ref	58260 - 58266	191.6	128.7	55.7		54.4	
OPM7	OP71	58260 - 58266	242.7	218.6	49.917	0.035	53.406	0.025
OPM3	OP71	58260 - 58266	242.5	218.6	49.302	0.037	53.206	0.022
OP71	Ref	58315 - 58322	191.6	128.7	55.7		54.4	
OPM7	OP71	58315 - 58322	242.9	218.6	50.128	0.022	53.538	0.025
OPM3	OP71	58315 - 58322	242.6	218.6	49.448	0.021	53.217	0.025
OPM7	Ref	58284 - 58298	145.1	218.6	50.023		53.472	
OPM3	Ref	58284 - 58298	144.9	218.6	49.375		53.212	
CS21	OPM7	58284 - 58298	149.0	166.2	58.585	0.088	56.682	0.039
CS21	OPM3	58284 - 58298	149.0	166.2	58.509	0.086	56.581	0.038
CS22	OPM7	58284 - 58298	149.0	176.1	57.949	0.033	56.097	0.032
CS22	OPM3	58284 - 58298	149.0	176.1	57.872	0.032	55.996	0.032

Table 2: Summary information on receivers delay (all values in ns).

Table 3: Summary information on raw calibration results (all values in ns).

Pair	MJD of measurement	Rawdiff P1	TDEV	Rawdiff P2	TDEV
OPM7-OP71	58260 - 58266	-33.017	0.035	-37.806	0.035
OPM3-OP71	58260 - 58266	-32.602	0.037	-37.806	0.022
OPM7-OP71	58315 - 58322	-33.028	0.022	-37.738	0.022
OPM3-OP71	58315 - 58322	-32.648	0.021	-37.717	0.025
CS21-OPM7	58284 - 58298	-47.738	0.088	-53.09	0.039
CS21-OPM3	58284 - 58298	-47.366	0.086	-53.131	0.038
CS22-OPM7	58284 - 58298	-38.474	0.033	-43.775	0.032
CS22-OPM3	58284 - 58298	-38.103	0.032	-43.816	0.032

Table 4: Traveling vs. Reference system (all values in ns).

Pair	MJD of measurement	INTDLY P1	INTDLY P	P1 -P2				
OPM7-OP71	58260 - 58266	49.917	53.406	-3.489				
OPM7-OP71	58315 - 58322	50.128	58 538	-3.41				
misclosure		0.211	20 .132	0.079				
mean		50.0225	53.472	-3.4495				
OPM3-OP71	58260 - 58266	49.312	53.206	-3.904				
OPM3-OP71	58315 - 58322	49.448	53.217	-3.769				
misclosure		0.146	0.011	0.135				
mean		3 375	53.2115	-3.8365				
misclosure 0.011 0.135 mean 0.000 0.0375 53.2115 -3.8365 BIR Meri Cal De 10.0375 53.2115 -3.8365								

6.2 Visited systems with respect the traveling system

Table 5 is providing the computed internal delays INTDLY P1 and P2 for the visited systems by using OPM7 and OPM3 as reference systems. In addition, it also provides the differences between both traveling receivers, allowing for a monitoring of the stability of traveling equipment during the whole campaign.

When applying these delays for computing CGGTTS P3 CV between CS21, respectively CS22, and OPM3 and OPM7, we note an unexpected diurnal term of significant amplitude. In addition the diurnal of CS21 seems larger by a factor of about 2 compared to the diurnal of CS22.

Pair	MJD of measurement	INTDLY P1	INTDLY P2	P1 -P2
OPM7-CS21	58284 - 58298	58.585	56.682	1.903
OPM3-CS21	58284 - 58298	58.509	56.581	1.928
OPM7 to OPM3	58284 - 58298	0.076	0.101	0.025
mean		58.547	56.632	1.915
OPM7-CS22	58284 - 58298	57.949	56.097	1.852
OPM3-CS22	58284 - 58298	57.872	55.996	1.876
OPM7 to OPM3	58284 - 58298	0.077	0.101	0.024
mean		57.910	56.047	1.863

Table 5: Traveling vs. Visited system (all values in ns).

BIRMONICAL DE FINALIZED UNDERICA DE FINALIZED EXEMPLO LECTE, Observatoire de Paris, Université FSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

6.3 Uncertainty estimation

We provide in this section an estimation of the uncertainty of the differential calibration for the receivers at CNES. All the uncertainty budgets have been built according to the reference [1] in order to provide the required u_{CAL0} values. The details on the systematic uncertainties are provided in Annex C. Note that we have chosen as u_b for misclosure the upper values between the actual misclosure between the start and the end of the campaign and the offset between both traveling equipment.

Uncertainty	Value P1	Value P2	Value	Value P3	Description
			P1-P2		
$u_a(OPM7-OP71)$	0.029	0.025	0.038	0.073	TDEV(1 d)
u _a (OPM3-OP71)	0.029	0.024	0.038	0.073	TDEV(1 d)
u _a T-R	0.029	0.025	0.038	0.073	Average trav-reference
$u_a(OPM7-CS21)$	0.088	0.039	0.096	0.194	TDEV(1 d)
$u_a(OPM3-CS21)$	0.086	0.038	0.094	0.189	TDEV(1 d)
u _a T-V	0.087	0.038	0.095	0.192	Average trav-visited
u _a	0.092	0.045	0.102	0.205	Visited-reference
Misclosure		-		-	
u _{b,1}	0.211	0.132	0.135	0.211	Observed Max misclosure
Systematic compone	nts related to	D RAWDIF		•	
u _{b,11}	0.20	0.20	0.20	0.20	Position error at reference
u _{b,12}	0.20	0.20	0.20	0.20	Position error at visited
u _{b,13}	0.20	0.20	0.20	0.20	Multipaths at reference
u _{b,14}	0.20	0.20	0.20	0.20	Multipaths at visited
Link of the Traveling	g system to t	he local UTO	C(k)	•	
u _{b,21}	0.220	0.220		0.220	REFDLY (at ref lab)
u _{b,22}	0.220	0.220		0.220	REFDLY (at visited lab)
u _{b,TOT}	0.549	0.524	0.422	0.549	
Link of the Reference	e system to i	ts local UTC	Č(k)	•	
u _{b,31}	0.220	0.220		0.220	REFDLY (at ref lab)
Link of the Visited s	ystem to its	local UTC(k	()	•	
u _{b,32}	0.220	0.220		0.220	REFDLY (at visited lab)
Antenna cable delays	S				
u _{b,41}	0.0	0.0		0.0	CABDLY reference
u _{b,42}	0.300	0.300		0.300	CABDLY visit
u _{b,SYS}	0.699	0.679		0.699	Quadratic sum of U _b
u _{CAL0}	0.705	0.685		0.728	Composed of u_a and $u_{b,SYS}$

Table 6: CS21 uncertainty contributions (all values in ns).

BIRMO1108/2019 Values Validated BIRMO1108/2019 Values Validated Numerical delay valized Numerical be finalized

Uncertainty	Value P1	Value P2	Value	Value P3	Description
Oncertainty	Value 1 1	value 1 2	P1-P2	value 1 0	Description
u _a (OPM7-OP71)	0.029	0.025	0.038	0.073	TDEV(1 d)
u _a (OPM3-OP71)	0.029	0.024	0.038	0.073	TDEV(1 d)
u _a T-R	0.029	0.025	0.038	0.073	Average trav-reference
$u_a(OPM7-CS22)$	0.033	0.032	0.046	0.081	TDEV(1 d)
$u_a(OPM3-CS22)$	0.032	0.032	0.045	0.089	TDEV(1 d)
u _a T-V	0.033	0.032	0.046	0.085	Average trav-visited
u _a	0.044	0.041	0.060	0.112	Visited-reference
Misclosure	•	-		•	
u _{b,1}	0.211	0.132	0.135	0.211	Observed Max misclosure
Systematic compon	ents related t	o RAWDIF			
u _{b,11}	0.20	0.20	0.20	0.20	Position error at reference
$u_{b,12}$	0.20	0.20	0.20	0.20	Position error at visited
u _{b,13}	0.20	0.20	0.20	0.20	Multipaths at reference
u _{b,14}	0.20	0.20	0.20	0.20	Multipaths at visited
Link of the Traveli	ng system to t	the local UT	C(k)		
u _{b,21}	0.220	0.220		0.220	REFDLY (at ref lab)
$u_{b,22}$	0.220	0.220		0.220	REFDLY (at visited lab)
$u_{b,TOT}$	0.549	0.524	0.422	0.549	
Link of the Referen	ce system to	its local UT	C(k)		
u _{b,31}	0.220	0.220		0.220	REFDLY (at ref lab)
Link of the Visited	system to its	local UTC(k	r)		
u _{b,32}	0.220	0.220		0.220	REFDLY (at visited lab)
Antenna cable dela	ys				
$u_{b,41}$	0.0	0.0		0.0	CABDLY reference
u _{b,42}	0.300	0.300		0.300	CABDLY visit
u _{b,SYS}	0.699	0.679		0.699	Quadratic sum of u_b
u _{CAL0}	0.700	0.680		0.708	Composed of u_a and $u_{b,SYS}$

Table 7: CS22 uncertainty contributions (all values in ns).

EREMET, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France

7 Final results for the system to calibrate

Table 8 is providing the final results of this calibration campaign, by following the BIPM Guidelines. In addition, Table 9 is providing the computed conservative k = 2 expanded uncertainties in order to be in line with EURAMET recommendations. The CNES calibrated link used in the frame of the TAI computation is in line with the conventional combined uncertainty of 2.5 ns.

BIPM	Rinex	Cal Id	Date	u _{CAL}	INTDLY	INTDLY	
code	name			(P3)/ns	P1/ns	P2/ns	
Reference sys	Reference system						
OP71	OP71	1001-2016	2016-12-1		55.7	54.4	
Visited syste	em(s)				-		
CS21	CS21	1015-2018	2018.6	0.8	58.547	56.632	
CS22	CS22	1015-2018	2018.6	0.8	57.910	56.047	
OPM3	OPM3	1015-2018	2018.6		49.375	53.212	

Table 8: Summary information on the calibration trip.

Table 9: Conservative k=2 expanded uncertainties for all receivers with using OP71 as a reference following EURAMET standard (all values in ns).

BIPM code	Rinex name	u(P1)	u(P2)	u(P3)
CS21	CS21	1.5	1.4	1.5
CS22	CS22	1.4	1.4	1.5
OPM3	OPM3			