

Calibration Report Cal_Id 1012-2018

Calibration of GPS receiver at Bureau Luxembourgeois de Métrologie.

February 1, 2018 Issue 1

Prepared by: G. D. Rovera, P. Uhrich, B. Chupin daniele.rovera@obspm.fr pierre.uhrich@obspm.fr baptiste.chupin@obspm.fr

LNE-SYRTE

Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France

Contents

1	Summary. 1.1 General informations	2 2 2
2	Acronym list and Reference Documents. 2.1 Acronym list	2 2 3
3	Description of equipment and operations.	3
4	Data used.	4
5	Results of raw data processing.	4
6	Calibration results.6.1 Traveling system against reference system6.2 Visited systems with respect the traveling system6.3 Uncertainty estimation	5 5 6
7	Final results for the system to calibrate.	7
A	ppendix	
A	nnex A Information Sheet	A 1
A	nnex B Plots of raw data and TDEV analysis	В1
A	nnex C Uncertainty budget terms	C1

1 Summary.

1.1 General informations.

This Calibration Report released by LNE-SYRTE is about the relative calibration campaign of the GPS receiver located at Bureau Luxembourgeois de Métrologie (BLM, Esch-sur-Alzette, Luxembourg)

It is built according to the Annex 4 of the document "BIPM guidelines for GNSS equipment calibration", V3.2 15/02/2016, and contains all the required information, data, plots and results either required by BIPM in the frame of the CCTF Working Group on GNSS, or by BIPM and EURAMET in the frame of the Group1/Group2 calibration scheme. It also contains the uncertainty budget computation according to the Guidelines, which is showing whether the calibrated links used in the frame of the TAI computation would be in line with the conventional values.

1.2 Calibration report changes.

This is Issue 1 of the Calibration report

2 Acronym list and Reference Documents.

2.1 Acronym list.

ADEV: Allan deviation, square root of AVAR. AVAR: Allan variance or two-sample variance.

BIPM: Bureau International des Poids et Mesures, Sèvres, France.

CCTF: Consultative Committee on Time and Frequency. CCGTTS: CCTF Global GNSS Time Transfer Standard format.

CIPM: Comité International des Poids et Mesures.

GLONASS: Russian GNSS.

GNSS: Global Navigation Satellite System.
GPS: United States of America GNSS.

LNE: Laboratoire National de Métrologie et d'Essais, French NMI.

LNE-SYRTE: French designated laboratory in charge of Time and Frequency units.

MDEV: Modified Allan deviation, square root of MVAR.

MVAR: Modified Allan variance.

NIST: National Institute of Standards and Technology, United States NMI.

NMI: National Metrology Institute.
NRCan: National Ressources Canada.
OP: Observatoire de Paris, France.
PPP: Precise Point Positioning.

PPS: Pulse per second.

PTB: Physikalisch Technisches Bundesanstalt, German NMI. RINEX: Receiver International Exchange format for Geodesy.

SYRTE: Systèmes de Référence Temps-Espace, OP laboratory where LNE-SYRTE is located.

TDEV: Time Allan deviation, square root of TVAR.

TIC: Time Interval Counter.

TVAR: Time Allan variance derived from AVAR and MVAR.

2.2 Reference Documents.

[1] BIPM, "BIPM guidelines for GNSS calibration", V3.2 15/02/2016.

[2] Pierre Uhrich and David Valat, "GPS receiver relative calibration campaign preparation for Galileo In-Orbit Validation", Proc. of the 24th European Frequency and Time Forum (EFTF), Noordwijk, The Netherlands, April 2010 (CD-Rom).

[3] G.D. Rovera, J-M. Torre, R. Sherwood, M. Abgrall, C. Courde, M. Laas-Bourez and P. Uhrich, "Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties", Metrologia 51 (2014) 476-490.

3 Description of equipment and operations.

The relative calibration of the GPS receiver located at BLM was organized by LNE-SYRTE with the support of local Colleagues. The reference receiver for this measurement campaign is OP71, a Septentrio PolarX4 multichannel multi-frequencies receiver located in OP. This receiver was relatively calibrated by BIPM in the frame of a G1 calibration campaign during fall 2016 (#1001-2016).

The traveling equipment was made of two Septentrio PolaRx4 receivers called OPM7 and OPM3, together with a Choke-Ring Ashtech antenna and a 50 m antenna cable. In BLM, the receiver to calibrate was a Septentio PolaRx5TR multi-GNSS receiver called LU01.

All the involved equipment are described inside the BIPM information sheets provided in Annex A for all receivers and all locations. Table 1 presents a summary of the timetable and of the equipment.

Institute	Status of	MJD of	Receiver type	BIPM	RINEX
	equipment	measurement		code	name
OP	Traveling		Septentrio PolaRx4TR	OPM7	OPM7
OP	Traveling		Septentrio PolaRx4TR	OPM3	OPM3
OP	Group 1	58124 - 58133	Septentrio PolaRx4TR	OP71	OP71
	Reference				
OP	Group 1	58145 - 58150	Septentrio PolaRx4TR	OP71	OP71
	Reference				
LIIV	Croup 2	58135 - 58143	Soptontrio PolaRy5TR	T 1101	T 1101

Table 1: Summary information on the calibration trip.

4 Data used.

The OP71 collected raw data are transformed into RINEX 2.1 format by using the UNAVCO TEQC software. The same software is also used to convert the raw data of traveling receivers into RINEX 2.1 format. Local receiver RINEX 2.1 data are provided by BLM. The calibration is consisting in building differential pseudoranges for each code P1 and P2 between pairs of receivers, these differences being corrected by the known reference (REFDLY) and antenna cable (CABDLY) delays when available. For each location, the coordinates of the antenna phase centers are especially computed for the calibration period from RINEX files by using the NRCan PPP software. The geometric correction between pairs of antenna phase centers for receivers in common-clock set-up is computed by using BRDC files provided by IGS .

As conservative estimate, the noise of the P1 and P2 differences is obtained from the highest value of the one-sigma statistical uncertainty of the TDEV at 1 d. In the case there is not enough data to compute a TDEV at 1 d, the upper limit of the last error bar available is considered as noise of the raw differences. The noise of P3 data is issued from a similar TDEV analysis.

Reference delays are measured against the local UTC(k) physical reference point at the trigger level currently used in the involved laboratories. Antenna cable delay is either obtained from dedicated measurements or included in the P1 and P2 delays when no value is available for this parameter. In this latter case, the CABDLY value is set to 0 in the parameter file.

For validation purposes, P3 CGGTTS files are computed by using the R2CGGTTS software provided by P. Defraigne (ORB), and CV are built between pairs of receivers. This is more especially the case between the two traveling receivers in each location, in order to better assess the stability of this traveling ensemble all over the calibration campaign. We have decided to consider as overestimated value for the traveling equipment stability during the campaign the upper value between the highest misclosure between the start and the end of the campaign on one side and the highest mean offset between the two traveling receivers obtained from CV on the other side.

5 Results of raw data processing.

Table 2 provides a summary of the P1 and P2 delays computed from the raw differences between RINEX files, together with the REFDLY and CABDLY used for these computations. The REFDLY and CABDLY values were either measured on site or taken as known parameter for a given receiving chain. Table 2 also includes the P1 and P2 internal delays of traveling equipment as computed against OP71, in average between the start and the end of the campaign, with the related REFDLY when located in remote stations. From our point of view, this Table is the most comprehensive summary of the calibration campaign.

Receiver	Reference	MJD of	REFDLY	CABDLY	P1_DLY	TDEV	P2_DLY	TDEV
		measurement						
OP71	Ref	58124 - 58133	191.6	128.7	55.7		54.4	
OPM7	OP71	58124 - 58133	195.5	218.6	50.989	0.032	54.266	0.034
OPM3	OP71	58124 - 58133	195.3	218.6	49.830	0.026	53.571	0.029
OP71	Ref	58145 - 58150	191.6	128.7	55.7		54.4	
OPM7	OP71	58145 - 58150	202.5	218.6	50.714	0.037	54.157	0.037
OPM3	OP71	58145 - 58150	202.4	218.6	49.513	0.043	53.312	0.028
OPM7	Ref	58135 - 58143	141.3	215.8	50.852		54.212	
OPM3	Ref	58135 - 58143	161.0	215.8	49.671		53.441	
LU01	OPM7	58135 - 58143	53.7	118.0	25.845	0.060	22.517	0.066
LU01	OPM3	58135 - 58143	53.7	118.0	25.834	0.062	22.540	0.063

Table 2: Summary information on receivers delay (all values in ns).

In addition, the Table 3 is providing the RAWDIF values as required by reference [1]. All the plots of P1 and P2 computed delays and of the related TDEV analysis are provided in Annex B. The P3 CV

Pair	MJD of measurement	Rawdiff P1	TDEV	Rawdiff P2	TDEV
OPM7-OP71	58124 - 58133	-81.289	0.032	-85.866	0.032
OPM3-OP71	58124 - 58133	-80.33	0.026	-85.371	0.029
OPM7-OP71	58145 - 58150	-74.014	0.037	-78.757	0.037
OPM3-OP71	58145 - 58150	-72.913	0.043	-78.012	0.028
LU01-OPM7	58135 - 58143	-35.207	0.060	-41.895	0.066
LU01-OPM3	58135 - 58143	-14.337	0.062	-21.401	0.063

Table 3: Summary information on raw calibration results (all values in ns).

computed by using the results of the calibration and the related TDEV analysis are also made available in Annex B.

6 Calibration results.

6.1 Traveling system against reference system.

Table 4 is providing the computed internal delays INTDLY P1 and P2 for both traveling receivers OPM7 and OPM3 against the reference receiver OP71 at the start and at the end of the campaign. The mean values are the ones used for the computation of the visited equipment delays.

Table 4:	Traveling v	s. Reference	e system	(all values	in ns).

Pair	MJD of measurement	INTDLY P1	INTDLY P2	P1 -P2
OPM7-OP71	58124 - 58133	50.989	54.266	-3.277
OPM7-OP71	58145 - 58150	50.714	54.157	-3.443
misclosure		0.275	0.109	0.166
mean		50.8515	54.2115	-3.36
OPM3-OP71	58124 - 58133	49.830	53.571	-3.741
OPM3-OP71	58145 - 58150	49.513	53.312	-3.799
misclosure		0.317	0.259	0.058
mean		49.6715	53.4415	-3.77

6.2 Visited systems with respect the traveling system.

Table 5 is providing the computed internal delays INTDLY P1 and P2 for the visited systems by using OPM7 and OPM3 as reference systems. In addition, it also provides the differences between both traveling receivers, allowing for a monitoring of the stability of traveling equipment during the whole campaign.

Table 5: Traveling vs. Visited system (all values in ns).

Pair	MJD of measurement	INTDLY P1	INTDLY P2	P1 -P2
OPM7-LU01	58135 - 58143	25.845	22.517	3.328
OPM3-LU01	58135 - 58143	25.834	22.540	3.294
OPM7 to OPM3	58135 - 58143	0.011	0.023	0.034
mean		25.840	22.529	3.311

6.3 Uncertainty estimation.

We provide in this Section an estimation of the uncertainty of the differential calibration for the receiver at BLM. All the uncertainty budgets have been built according to the reference [1] in order to provide the required u_{CAL0} values. The details on the systematic uncertainties are provided in Annex C. Note that we have chosen as u_b for misclosure the upper values between the actual misclosure between the start and the end of the campaign and the offset between both traveling equipment.

Table 6: LU01 uncertainty contributions (all values in ns).

Uncertainty	Value P1	Value P2	Value	Value P3	Description
V			P1-P2		1
u _a (OPM7-OP71)	0.035	0.036	0.050	0.229	TDEV(1 d)
u _a (OPM3-OP71)	0.034	0.029	0.045	0.214	TDEV(1 d)
u _a T-R	0.035	0.033	0.048	0.222	Average trav-reference
u _a (OPM7-LU01)	0.060	0.066	0.089	0.130	TDEV(1 d)
u _a (OPM3-LU01)	0.062	0.063	0.088	0.144	TDEV(1 d)
u _a T-V	0.061	0.065	0.089	0.137	Average trav-visited
u_a	0.070	0.073	0.101	0.261	Visited-reference
Misclosure					
$u_{b,1}$	0.317	0.259	0.166	0.317	Observed Max misclosure
Systematic compone		RAWDIF			
$u_{b,11}$	0.20	0.20	0.20	0.20	Position error at reference
$u_{b,12}$	0.20	0.20	0.20	0.20	Position error at visited
$u_{\rm b,13}$	0.05	0.05	0.05	0.05	Multipaths at reference
$u_{b,14}$	0.05	0.05	0.05	0.05	Multipaths at visited
Link of the Traveling	g system to t	he local UT	C(k)		
$u_{b,21}$	0.220	0.220		0.220	REFDLY (at ref lab)
$u_{b,22}$	0.220	0.220		0.220	REFDLY (at visited lab)
$u_{b,TOT}$	0.531	0.499	0.335	0.531	
Link of the Reference	e system to i		C(k)		
$u_{b,31}$	0.220	0.220		0.220	REFDLY (at ref lab)
Link of the Visited s	ystem to its	local UTC(k			
$u_{\mathrm{b,32}}$	0.220	0.220		0.220	REFDLY (at visited lab)
Antenna cable delays	S				
$u_{\rm b,41}$	0.0	0.0		0.0	CABDLY reference
$u_{\mathrm{b,42}}$	0.5	0.5		0.5	CABDLY visit
$u_{ m b,SYS}$	0.793	0.772		0.793	Quadratic sum of u _b
u_{CAL0}	0.796	0.775		0.835	Composed of u_a and $u_{b,SYS}$

7 Final results for the system to calibrate.

Table 7 is providing the final results of this calibration campaign, by following the BIPM Guidelines. In addition, Table 8 is providing the computed conservative k=2 expanded uncertainties in order to be in line with EURAMET recommendations. The BLM calibrated link used in the frame of the TAI computation is in line with the conventional combined uncertainty of $2.5\,\mathrm{ns}$.

Table 7: Summary information on the calibration trip.

BIPM code	Rinex name	Cal Id	Date	${ m u_{CAL} \over (P3)/ns}$	INTDLY P1/ns	INTDLY P2/ns		
Reference sys	Reference system							
OP71	OP71	1001-2016	2016-12-1		55.7	54.4		
Visited system(s)								
LU01	LU01	1012-2018	2018.1	0.9	25.840	22.529		

Table 8: Conservative k=2 expanded uncertainties for all receivers with using OP71 as a reference following EURAMET standard (all values in ns).

BIPM code	Rinex name	u(P1)	u(P2)	u(P3)
LU01	LU01	1.6	1.6	1.7