

Project :
Code:
Date:
Version:
Page:

EURAMET_PTB_G1G2 1015_2017 28/07/2017 1.1

GNSS CALIBRATION REPORT G1G2_1015_2017

Prepared by: Andreas Bauch (PTB) Head, Time Dissemination Working Group

Approved by: Jürgen Becker (PTB) QM-representative of Time and Frequency Department of PTB

Authorized by: BIPM

 Project:
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Version:
 1.1

 Safe date:
 2017-07-25 13:00

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT, BRAUNSCHWEIG, AUGUST 2017

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 2 of 35

TABLE OF CONTENTS

LIST OF TABLES AND FIGURES	3
REFERENCES	4
ACRONYMS	5
EXECUTIVE SUMMARY	6
1. CONTENTS OF THE REPORT	7
2. PARTICIPANTS AND SCHEDULE	8
3. CALIBRATION PROCEDURE	9
4. CHARACTERIZATION OF PTB EQUIPMENT	12
5. RESULTS OF COMMON-CLOCK SET-UP IN PTB: PERIOD 1	16
6. OPERATION OF PTBT AT DTAG, FRANKFURT	17
7. OPERATION OF PTBT AT PTB: SECOND PERIOD	21
7.1. SUMMARY	22
8. INT DLY UNCERTAINTY EVALUATION	23
9. FINAL RESULTS	26
ANNEX: BIPM CALIBRATION INFORMATION SHEETS	27

LIST OF TABLES AND FIGURES

Table 2-1: List of participants	8
Table 2-2: Schedule of the campaign	8
Table 6-1: Δ INT DLY(Pi) values and statistical properties (in ns) obtained initially1	9
Table 6-2: Time instability of the Δ Pi-values obtained for the DTAG receivers with reference to receiver PTBT	0
Table 7-1: Result of common clock measurements at PTB PTB	2
Table 8-1: Uncertainty contributions for the calibration of receiver delays	3
Table 9-1. Results of the Calibration Campaign G1G2_1015_2017, all values in ns	6
Figure 4-1: Common-clock common-view comparison between PTBT and PT02 at PTB, daily mean values (yellow) and 16-min avg data (grey), time differences (upper graph) and standard deviation (lower graph)1	2
Figure 4-2: UTC(PTB) reference point and 1 PPS signal distribution to PT02, PT03 and PTBT1	3
Figure 4-3: UTC(PTB) signal distribution (5 MHz, 10 MHz, 20 MHz) to PT02, PT03 and PTBT1	3
Figure 4-4: Installation of GNSS antennas at PTB1	4
Figure 4-5: Daily mean time difference ΔT between the two PTB receivers, PT03 – PT02, during the period of the calibration campaign1	5
Figure 5-1: Δ P1 (dark blue) and Δ P2 (light blue) values obtained during the first common-clock set-u in PTB.	р 6
Figure 5-2: TDEV obtained for the two data sets shown in, Δ P1 left, Δ P2 right	6
Figure 6-1: Scheme of the installation of the GNSS receivers at DTAG	7
Figure 6-2: Antenna installation on the rooftop of the DTAG building: Horst Ender fixing the PTBT antenne (3G+C), and the two DTAG Leica AR2511	8
Figure 6-3: Raw Δ Pi-values recorded between PTBT and DT04 and DT05 at DTAG1	9
Figure 7-1. ΔPi values obtained during the second common-clock set-up in PTB	1
Figure 7-2. TDEV obtained for the two data sets shown in, Δ P1 left, Δ P2 right	1

REFERENCES

	REFERENCES
RD01	BIPM report 1001-2016, 2016 Group 1 GPS calibration trip BV 1.1 2017-01-18
RD02	BIPM guidelines for GNSS calibration, V3.0, 02/04/2015
RD03	BIPM TM.212 (G. Petit), Nov. 2012
RD04	J. Kouba, P. Heroux, 2002, <i>"Precise Point Positioning Using IGS Orbit and Clock Products,"</i> GPS Solutions, Vol 5, No. 2, 12-28
RD05	W. Lewandowski, C. Thomas, 1991, "GPS Time transfers," Proc. IEEE, Vol. 79, No. 7, 991-1000
RD06	PTB GNSS calibration report G1G2_1012_2016
RD07	P. Defraigne and G. Petit, "CGGTTS-Version 2E: an extended standard for GNSS time transfer, Metrologia 52 (2015) G1

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 5 of 35

ACRONYMS

	ACRONYMS
BIPM	Bureau International de Poids et Mesures, Sèvres, France
CGGTTS	CCTF Generic GNSS Time Transfer Standard
DTAG	Deutsche Telekom AG
EURAMET	The European Association of National Metrology Institutes
IGS	International GNSS Service
GNSS	Global Navigation Satellite System
ORB	Observatoire Royal Belgique
PPP	Precise Point Positioning
РТВ	Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
RINEX	Receiver Independent Exchange Format
R2CGGTTS	RINEX-to CGGTTS conversion software, provided by ORB / BIPM
TDEV	Time deviation
тіс	Time interval counter

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 6 of 35

EXECUTIVE SUMMARY

As part of the support of the BIPM Time and Frequency Group by EURAMET, PTB conducted a relative calibration of the GNSS equipment of DTAG with respect to the calibration of PTB receiver PT02, whose last calibration was reported with Cal_Id=1001-2016 [RD01]. PTB provided its receiver PTBT for the purpose as travelling equipment.

The current campaign followed as much as possible the BIPM Guide [RD02] and results will be reported using Cal_Id 1015_2017. Results provided are the visited receivers' internal delays for GPS P-code signals on the two frequencies L1 and L2 (INT DLY (P1), and INT DLY(P2)). The delays for the C/A-code signals on L1 and for GLONASS signals were not determined during this campaign.

The final results are included in Table 9-1. The internal delays of 2 receivers were determined with an uncertainty of about 1 ns for P1 and P2, respectively. The uncertainty for P3 time transfer links to PTB is of the order 1.4 ns.

As a reminder: All uncertainty values reported in this document are $1-\sigma$ values.

1. CONTENTS OF THE REPORT

As part of the support of BIPM Time and Frequency Group by EURAMET, PTB conducted a relative calibration of the GNSS equipment of DTAG with respect to the calibration of receiver PT02, whose last calibration was reported with Cal_Id=1001-2016 [RD01]. PTB provided its receiver PTBT for the purpose as travelling equipment. This report documents the installation, data taking and evaluation during the campaign.

The determination of the internal delay values of the receivers at the visited site is a three-step process.

At first (Common-Clock 1, CC1) the travelling receiver, PTBT, is compared to the "golden" receiver, PT02, and the offset between the actual and the assumed PTBT delay values is determined.

After that, the receiver is installed at DTAG and the internal delay values of the devices under test and their statistical properties are determined.

Finally, the stability of the PTBT delay is assessed by a second Common-Clock measurement (CC2) in PTB. Based thereon, the "final" INT DLY values of the visited receivers and their uncertainty values are calculated.

The structure of this report follows this sequence of work. After presentation of the participants and schedule, a general section follows that contains the (mathematical) calibration procedure, followed by a report of data collection at PTB and DTAG. The final results and the uncertainty discussion close the report. In the Annex the BIPM information tables are reproduced.

2. PARTICIPANTS AND SCHEDULE

Table 2-1: List of participants

Institute	Point of contact	Site address
РТВ	Thomas Polewka Tel +49 531 592 4418 Thomas.polewka@ptb.de	PTB, AG 4.42 Bundesallee 100 38116 Braunschweig, Germany
DTAG	Horst Ender Tel: +49 951 885177 Mail: <u>Horst.Ender@telekom.de</u>	Deutsche Telekom Technik GmbH NSO-NTCC Raimundstraße 48-54 60431 Frankfurt am Main

Table 2-2: Schedule of the campaign

Date	Institute	Action	Remarks
2017-05-25 until 2017-05-31	РТВ	First common-clock comparison between PTBT and PT02	7 days used for evaluation, MJD 57898 – 57904 (incl.)
2017-06-21 Until 2017-07-01	DTAG	Operation of PTBT and two GNSS receivers in parallel	10 days used for evaluation, MJD 57925-57934 (incl.)
Starting 2017-07-19 - 2017- 07-23	РТВ	Operation of PTBT after return	4.5 days used for evaluation, MJD 57953 - 57957 (incl.)

Information on the receivers at each site is contained in individual information tables which can be found in the Annex.

3. CALIBRATION PROCEDURE

The calculation of INT DLY values for the receiver to be calibrated follows the description given in BIPM TM.212 [RD03] and has been coded in software routine cv.py written by Julia Leute of PTB. The following text piece that describes its function is generated via copy-paste from [RD03] with small changes of the designation of quantities.

When dealing with G1G2 calibrations, in principal we distinguish receivers V, T, and G: V for visited, T for travelling, and G for golden_reference. G1 labs committed to ship their T to the other sites. In the current campaign, PT02 (named PTBB when referred to as IGS station) serves as the reference receiver G, its internal delays were recently determined by BIPM in the second G1 campaign with the identifier Cal_Id=1001-2016. PTBT served as the travelling receiver T.

Conventionally, the receiver delay D is considered as the sum of different terms that are defined subsequently:

(1) INT DLY

The sum $X_R + X_S$ represents the "INT DLY" field in the CGGTTS header:

 X_R represents the receiver hardware delay, between a reference point whose definition depends on the receiver type and the internal time reference of the measurements. X_S represents the antenna delay, between the phase center and the antenna cable connector at the antenna body. We distinguish the two quantities for the two frequencies, 1 and 2.

INT DLY(P1) and INT DLY(P2) of receiver V are the basic quantities that are determined during the relative calibration. For calculating ionosphere—free observation data, INT DLY(P3) is calculated as 2.54×INT DLY(P1) - 1.54×INT DLY(P2).

The following terms are considered frequency independent, i. e. no distinction is made for P1 and P2 and other signal frequencies.

(2) CAB DLY

The sum $X_C + X_D$ represents the "CAB DLY" field in the CGGTTS header.

 X_C corresponds to the delay of the long cable from the antenna to the input connector at either the antenna splitter or the receiver body directly. If a splitter is installed, X_D corresponds to the delay of the splitter and the small cable up to the receiver body. For a simple set-up with just an antenna cable, $X_D = 0$.

(3) REF DLY

The sum $X_P + X_O$ represents the "REF DLY" field in the CGGTTS header.

 X_P corresponds to the delay of the cable between the laboratory reference point for local UTC and the 1 PPS-in connector of the receiver.

 X_0 corresponds to the delay between the 1PPS-in connector and the receiver internal reference point, the latter depending on the receiver type:

 Project :
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Date:
 31/08/2017

 Version:
 1.1

 Page:
 10 of 35

- For Ashtech Z12-T: The first positive zero crossing of the inverted 20 MHz-in following the 1PPS-in, delayed by 15.8 ns,
- For Septentrio PolaRx2: The 1PPS-out, delayed by 8.7 ns,
- For Septentrio PolaRx4: The 1 PPS-out, no further correction
- For DICOM GTR50 and GTR51: The 1PPS-in, i.e. $X_0 = 0$,
- For Javad/Topcon: The first positive zero crossing of the 5/10 MHz-in following the 1PPS-in.
- For TTS-4: RD02, Section 2.3.2, and Annex G specify the procedure for TTS-4, which in detail depends on the software version.

Details of the measurement procedures for the Ashtech Z12-T are given in the BIPM calibration guideline [RD02], but the parameters of PT02 were not determined again on occasion of the current campaign.

The distinction of the individual components of the receiver delay reflects the fact that two of them, 2 and 3, can in principle be measured with standard laboratory equipment. Changes of the receiver installation typically affect cabling and thus such delays. As an alternative, the sum of the three terms CAB DLY + INT DLY – REF DLY is designated as TOT DLY (frequency dependent) and reported instead of the individual terms.

The quantity to be determined by the relative calibration is INT DLY: INT DLY of the device under test is determined in such a way that the common-clock differences obtained between the device under test and the reference are zero on average. The INT DLY of T may need to be adjusted so that T and G match, but in practice the small correction needed is taken into account only when INT DLY of V is adjusted to G, using T as intermediate for the measurements made at the different sites.

In the process followed by PTB, valid CGGTTS files with dual frequency observation (L3P) data (including correct, accurate antenna coordinates) are needed. As a reminder,

 $REFGPS(k) = [REFGPS_{RAW}(k) - CAB DLY_F - INT DLY(P3) + REF DLY_F],$ or $REFGPS(k) = [REFGPS_{RAW}(k) - TOT DLY(P3)_F],$ (1b)

where REFGPS(k) is reported in column 10 of the standard CGGTTS files, REFGPS_{RAW} designates the uncorrected measurement values, INT DLY(P3) is calculated as $2.54 \times INT DLY(P1)_F - 1.54 \times INT DLY (P2)_F$, and the values designated as "Q_F" are reported in the CGGTTS file header.

The software cv.py in calibration mode is used to calculate:

 $\begin{aligned} \mathsf{REFGPS}_{\mathsf{P1}}(j) &= \mathsf{REFGPS}(j) + \mathsf{MDIO}(j) \end{aligned} \tag{2a} \\ \mathsf{REFGPS}_{\mathsf{P2}}(j) &= \mathsf{REFGPS}(j) + \mathsf{MDIO}(j) + ((f_1/f_2)^2 - 1) \times \mathsf{MSIO}(j), \end{aligned} \tag{2b}$

 Project :
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Date:
 31/08/2017

 Version:
 1.1

 Page:
 11 of 35

where $(f_1/f_2)^2 = 1.647$ for GPS for each satellite observation j and REFGPS(j), MDIO(j), and MSIO(j) are from the line in the CGGTTS file that reports the observation j. Eq. 2a and 2b build on the rules how CGGTTS L3P data lines are generated.

If the common-view condition is fulfilled for the observations with T and G, the differences

$$\Delta Pi: = REFGPS_{Pi}(T) - REFGPS_{Pi}(G)$$
(3)

are calculated. The example here involves G and T; equivalent relations hold for the pair of receivers T and V.

cv.py at the end of the computation edits the median value of all individual observations ΔPi for P1 and P2, and the number of data points used. In addition cv.py generates a file deltap_stats that contains observation epoch (MJD.frakt) and the average $\Delta P1$, $\Delta P2$ of all satellite observations at that epoch. Such values are plotted throughout the report in the various figures.

The calculation of the INT DLY values comprises two steps:

Step 1: INT DLY(Pi)_T_corr =
$$\Delta Pi(T,G)$$
 + INT DLY(Pi)_T_F, (4)

where the last summand $>_F$ < is the value reported in the CGGTTS file.

Step 2: The final results for receiver V is to be calculated as

$$INT DLY(Pi)_V_new = \Delta Pi(V,T) + \langle \Delta Pi(T,G) \rangle + INT DLY(Pi)_V_F,$$
(5)

where $<\Delta Pi(T,G)>$ is the mean value obtained during CC1 and CC2. Another option would have been to adjust the INT DLY of receiver T after CC1, but this was not done.

The third summand in (5) on the right represents the INT DLY value that was reported previously in the CGGTTS file of receiver V. This value may be reported initially as zero, in case of the DTAG receivers values from a factory calibration were provided.

4. CHARACTERIZATION OF PTB EQUIPMENT

The receiver PTBT was functionally tested before transport to DTAG. The comparison results against PT02 are shown in Figure 4-1. The installation of the receivers in PTB is depicted in Figure 4-2 for 1 PPS signals and in Figure 4-3 for 5 MHz signals. The PT02 and PT03 receivers are supplied with 20 MHz from a times 4 multiplier.

Figure 4-1: Common-clock common-view comparison between PTBT and PTO2 at PTB, daily mean values (yellow) and 16-min avg data (grey), time differences (upper graph) and standard deviation (lower graph)

We note from Figure 4-1 that PTBT and PT02 had been almost perfectly aligned. The correct PTBT INT DLY(Pi) values to be used in the calculation of INT DLY of receivers V is determined using eq. (5) as explained before.

Figure 4-2: UTC(PTB) reference point and 1 PPS signal distribution to PT02, PT03 and PTBT

Figure 4-3: UTC(PTB) signal distribution (5 MHz, 10 MHz, 20 MHz) to PT02, PT03 and PTBT

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 14 of 35

Figure 4-4: Installation of GNSS antennas at PTB

Figure 4-4 illustrates the installation of GNSS antennas on the roof of the PTB time laboratory (clock hall). The two Ashtech SNOW antennas (with dome) belong to PT03 (background) and PT02 (middle). The PTBT antenna was mounted on the mast in the forefront and replaced the choke-ring antenna that was mounted at the time when the picture was taken.

The campaign after all lasted about 60 days. In Figure 4-5 the common-view common-clock time differences between PT03 and PT02 during this period is shown. We note a very smooth operation, different from occasional previous experience.

 Project :
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Date:
 31/08/2017

 Version:
 1.1

 Page:
 15 of 35

Figure 4-5: Daily mean time difference ΔT between the two PTB receivers, PT03 – PT02, during the period of the calibration campaign.

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 16 of 35

5. RESULTS OF COMMON-CLOCK SET-UP IN PTB: PERIOD 1

The period 57898 to 57904 (7 days) was chosen to determine the initial PTBT INT DLY values (CC1). The result of comparison with PT02 as the reference are shown in Figure 5-1 illustrating in total 616 Δ Pi (see eq. 3) values obtained as mean over all common view observations at a given epoch. The time instability (TDEV) plots for the two data sets follow as Figure 5-2. The numerical results are given in the Summary sub-section at the end of the report on CC2 in PTB.

Figure 5-1: Δ P1 (dark blue) and Δ P2 (light blue) values obtained during the first common-clock set-up in PTB.

Figure 5-2: TDEV obtained for the two data sets shown in, $\Delta P1$ left, $\Delta P2$ right.

The INT DLY(Pi) of PTBT have not been corrected for the offsets shown in Figure 5-1 before shipment. Instead, the individual value found for the visited receivers will be corrected for the mean value obtained after the second common-clock set-up (see eq. 5)).

6. OPERATION OF PTBT AT DTAG, FRANKFURT

PTBT was in the hands of DTAG for 5 weeks, but only the ten days between MJD 57925 and 57934 (2017-06-21 – 2017-07-01) were used for the data analysis. In parallel, 2 local GNSS receivers of type GTR51 made by MESIT were operated. There designations are DT04, and DT05. Details on the receivers and their installation are given in the Annex.

As the antenna installation was completely new, in a first step the antenna coordinates of DT04 and DT05 were determined using the NRCann PPP software. After transport and installation of PTBT on 2017-06-14 operation was started with an estimated antenna position, and accurate coordinates were determined using NRCan PPP and observations of two days. In the Annex the final coordinates are given.

The installation of the receivers in the DTAG time laboratory is illustrated in Figure 6-1. The mounting of the antennas is shown in Figure 6-2. A set of fixed LMR400 antenna cables connect the laboratory in the ground floor to the rooftop of the 15-store building. The PTBT was installed using one of these, whose signal delay had been determined previously by the installation company.

Figure 6-1: Scheme of the installation of the GNSS receivers at DTAG

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 18 of 35

Figure 6-2: Antenna installation on the rooftop of the DTAG building: Horst Ender fixing the PTBT antenne (3G+C), and the two DTAG Leica AR25

 Project :
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Date:
 31/08/2017

 Version:
 1.1

 Page:
 19 of 35

Figure 6-3: Raw Δ Pi-values recorded between PTBT and DT04 and DT05 at DTAG.

In Figure 6-3, the ΔPi (3) derived from the raw data are depicted and the result are summarized in Table 6-1, including their statistical uncertainty. The corresponding TDEV plots are shown in Table 6-2. As a statistical measurement uncertainty the value of TDEV at τ equal to about one tenth of the total measurement time (about 80 000 s) is chosen, cum grano salis, to be not too optimistic. The corresponding TDEV plots are collected in Table 6-2.

∆INT DLY (Pi) for receivers at DTAG	Mean / ns	Median / ns	Std. Dev. / ns	TDEV / ns	Number of 16-min epochs
DT04 P1	-2.82	-2.80	0.39	0.1	831
DT04 P2	2.73	2.72	0.63	0.25	831
DT05 P1	-4.61	-4.62	0.43	0.15	831
DT05 P2	-2.57	-2.58	0.65	0.25	831

Table 6-1: Δ INT DLY(Pi) values and statistical properties (in ns) obtained initial	Table 6-1: ∆INT DLY(values and statistica	I properties (in ns)) obtained initially.
--	----------------------	--------------------------------	----------------------	-----------------------

It turns out that the data collected at DTAG, particularly those of PTBT, contain quite a few gross outliers per day that are removed by an outlier detection procedure implemented in the software. This may be related to the fact that the GPS-signal attenuation by even one of the best rf-cables, LMR400, at the given length (about 510 ns delay) is substantial, so that the tracking by the receiver might be difficult. As a result the number of useful 16-min data is well below the maximum of 890, but still sufficiently large.

 Project :
 EURAMET_PTB_G1G2

 Code:
 1015_2017

 Date:
 31/08/2017

 Version:
 1.1

 Page:
 20 of 35

Table 6-2: Time instability of the ΔPi values obtained for the DTAG receivers with reference to receiver PTBT

Project : EURAMET_PTB_G1G2 Code: Date: Version: Page:

1015_2017

31/08/2017

21 of 35

1.1

7. OPERATION OF PTBT AT PTB: SECOND PERIOD

The period 57953 to 57957(4.5 days) was chosen to determine PTBT INT DLY values during the common clock period CC2. The result of comparison with PT02 as the reference are shown in Figure 7-1 illustrating in total 392 Δ Pi (see eq. 3) values obtained as mean over all common view observations at a given epoch. The time instability (TDEV) plots for the two data sets follow as Figure 7-2. The mean values obtained for CC1 and CC2 differ by 0.73 ns (P1) and 0.33 ns (P2).

Figure 7-1. △Pi values obtained during the second common-clock set-up in PTB.

Figure 7-2. TDEV obtained for the two data sets shown in, $\Delta P1$ left, $\Delta P2$ right.

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 22 of 35

7.1. SUMMARY

The numerical result of the two common-clock campaigns at PTB are given in Table 7-1. The largest change noted between CC1 and CC2 amounts to 0.44 ns for Δ P1. For the evaluation of the delays of the visited receivers the mean values for Δ P1, Δ P2 are used. The estimate of the uncertainty contribution is given in Section 8.

Quantity	Median (ns)	Sigma (ns)	TDEV (ns)
ΔP1 (CC1)	0.52 ns	0.29 ns	0.1 ns
∆P2 (CC1)	0.80 ns	0.37 ns	0.1 ns
ΔP3 (CC1)	0.1 ns		
ΔP1 (CC2)	0.96 ns	0.36 ns	0.15 ns
∆P2 (CC2)	1.22 ns	0.34 ns	0.1 ns
δP3 (CC2)	0.56		
Mean values	used for evaluation of	DTxx internal delays /	total delays
ΔΡ1	0.74 ns		
ΔΡ2	1.01 ns		

Table 7.4 December 4		
Table 7-1: Result of	r common clock measurem	ients at PIB

8. INT DLY UNCERTAINTY EVALUATION

The overall uncertainty of the INT DLY values obtained as a result of the calibration is given by

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$
, (6)

with the statistical uncertainty u_a and the systematic uncertainty u_b . The statistical uncertainty is related to the instability of the common clock data collected at DTAG and PTB, respectively. The systematic uncertainty is given by

$$u_{b} = \sqrt{\sum_{n} u_{b,n}} \,. \tag{7}$$

The contributions to the sum (7) are listed and explained subsequently. In the table, extra lines (a, b,) are introduced for the different receivers calibrated at DTAG. Note that the uncertainty of the INT DLY values of PTB's fixed receiver PT02 (G) which served as the reference is not included.

	Uncertainty	Value P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description	
1	ua (PTB)	0.10	0.15	0.18	0.35	CC measurement uncertainty at PTB, TDEV at $\tau = 5 \times 10^4$ s, max. of the two CC campaigns	
2a	u₀(DTAG)	0.1	0.25	0.27	0.35	CC measurement uncertainty, receiver DT04	
2b	u₁(DTAG)	0.15	0.25	0.29	0.40	CC measurement uncertainty, receiver DT05	
	Uncertainty	Value P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description	
	Result of closure measurement at PTB						
		F	Result of c	losure mea	surement	at PTB	
3	U _{b,1}	R 0.31	Result of c	losure mea	surement	at PTB Misclosure, see Table 7-1	
3	Ub,1	R 0.31 System	Result of c 0.30 atic comp	losure mea	surement 0.62 to anten	at PTB Misclosure, see Table 7-1 na installation	
3	Ub,1 Ub,11	6.31 System 0.1	Result of c 0.30 atic compo 0.1	osure mea onents due 0.1	surement 0.62 to anten 0.25	at PTB Misclosure, see Table 7-1 na installation Position error at PTB	
3 4 5a	U _{b,1} U _{b,11} U _{b,12} (DTAG)	6.31 System 0.1 0.1	Result of c 0.30 atic compo 0.1 0.1	osure mea onents due 0.1 0.1	surement 0.62 to anten 0.25 0.25	at PTB Misclosure, see Table 7-1 na installation Position error at PTB Position error at DTAG	
3 4 5a 6	U _{b,1} U _{b,11} U _{b,12} (DTAG) U _{b,13}	0.31 System 0.1 0.1 0.1	Result of c 0.30 atic compo 0.1 0.1 0.1	onents due 0.1 0.1 0.14	surement 0.62 to anten 0.25 0.25 0.24	at PTB Misclosure, see Table 7-1 na installation Position error at PTB Position error at DTAG Multipath at PTB	
3 4 5a 6 7	Ub,11 Ub,11 Ub,12(DTAG) Ub,13 Ub,14	0.31 System 0.1 0.1 0.1 0.1	Result of c 0.30 atic compo 0.1 0.1 0.1 0.1	onents due 0.1 0.1 0.14 0.14	surement 0.62 to anten 0.25 0.25 0.24 0.24	at PTBMisclosure, see Table 7-1na installationPosition error at PTBPosition error at DTAGMultipath at PTBMultipath at DTAG	
3 4 5a 6 7	Ub,11 Ub,11 Ub,12(DTAG) Ub,13 Ub,14	0.31 System 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result of c 0.30 atic compo 0.1 0.1 0.1 0.1 stallation	onents due 0.1 0.1 0.14 0.14 0.14 of PTBT an	surement 0.62 to anten 0.25 0.25 0.24 0.24 d visited	at PTB Misclosure, see Table 7-1 na installation Position error at PTB Position error at DTAG Multipath at PTB Multipath at DTAG receivers	

Table 8-1: Uncertainty contributions for the calibration of receiver delays

9	Ub,22	0.2	0.2	0	0.2	Connection of PTBT to UTC(DTAG) (REF DLY)			
10	U _{b,23}	0.2	0.2	0	0.2	Connection of receivers at DTAG UTC(DTAG) (REF DEL) (* s explanations below)			
11	U b,24	0.1	0.1	0	0.1	TIC nonlinearities at PTB			
12	U b,25	0.1	0.1	0	0.1	TIC nonlinearities at DTAG			
	Antenna cable delay								
13	u _{b,31} (PTB)	0.5	0.5	0	0.5	Uncertainty estimate for the PTB CAB DLY when installed at PTB			
14	u _{b,32} (DTAG)	0.5	0.5	0	0.5	Uncertainty estimate provided by DTAG for the PTBT CAB DLY used at DTAG			
15	u _{b,33} (DTAG)	0.5	0.5	0	0.5	Uncertainty estimate provided by DTAG for the DTxx CAB DLY (*)			

The uncertainty contribution $u_{b,1}$ is based on the difference between the two common clock campaigns in the following way. The standard deviation of the two values around the mean value is considered as measure for the uncertainty, and they are treated as statistically independent contributions.

For the generation of the CGGTTS data the PTBT antenna position is manually entered into the processing software in ITRF coordinates before the CCD measurements. These positions could in principle differ from the "true" positions in a different way in each laboratory. This is taken into account by the contributions u_{b,11} and u_{b,12}. In the current campaign it was confirmed that the antenna coordinates were determined for all masts involved consistently and the contribution is 0.1 ns at maximum. As a matter of fact, a position error in general could even affect the P1 and P2 delays in a slightly different way, if the distinction between Antenna Reference Point (ARP) and Antenna Phase Centre (APC) is not accurately made. It has been reported that the difference between the two quantities is different for each antenna type but in addition also for the two frequencies received. To be on the safe side, u_{b,11} and u_{b,12} are very conservatively estimated. For other entries, where a frequency dependence can be safely excluded, the entry for P1-P2 is set to zero.

An uncertainty contribution due to potential multipath disturbance is added as u_{b,13 and} u_{b,14}. If at a given epoch in time the recorded time differences REFSYS would be biased by multipath, this might change with time due to the change in the satellite constellation geometry. [RD05] gives an estimate that has often been referred to. It was agreed at the 2017 meeting of the CCTF WG on GNSS that the multipath error need not be considered more significant than reported here.

The uncertainties of the connection of the receivers to the local time scales $(u_{b,21}, u_{b,22}, u_{b,23})$ are equal but of different origin. As the same counter is employed for the PTBT REF DLY measurements at all sites, the counter's internal measurement uncertainty for time interval need not be considered. $u_{b,21}$ was estimated by PTB: The cable connecting UTC(PTB) to PTBT is repeatedly controlled and has been used in many calibration exercises. DTAG stated the uncertainty of the connection of PTBT and the local receivers to the local time scale, and this is reflected in $u_{b,22}$, $u_{b,23}$. The term $u_{b,23}$, marked by (*) need not be considered in case that only TOT DLY is stated.

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 25 of 35

The uncertainty contributions $u_{b,24}$ and $u_{b,25}$ are related to imperfections in the TIC in conjunction with the relationship between the zero-crossings of the external reference frequency and the 1 PPS signals. This "nonlinearity" is probably caused by the internal interpolation process. By connecting the travelling TIC successively to 5 MHz and 10 MHz generated by different clocks (masers, commercial caesium clocks), respectively, the effect was estimated to be at most 0.1 ns if 1 PPS signals with a slew rate of approximately 0.5 V/ns are used.

The measurement of antenna cable delays causes contributions $u_{b,31} u_{b,32}$ and $u_{b,33}$. It is made with different methods in timing laboratories. On PTB side, the same antenna cable(s) were repeatedly measured using 1 PPS signals from different sources – but using the same counter – and an uncertainty of 0.5 ns is estimated. The PTBT antenna cable could not be used at DTAG, and instead a fixed cable was connecting antenna and receiver. All DTAG antenna cable delays were determined using a vector-network-analyser previously by the installation company, and DTAG estimated the uncertainty as 0.5 ns. The term $u_{b,33}$ need not be considered when only TOT DLY is stated.

Note anyway that this uncertainty contribution $u_{b,33}$ a priori has no impact on the uncertainty of the time transfer link between PTB and the visited institutes. If the started CAB DLY for the DTAG fixed receivers would be erroneous, this would be absorbed in the INT DLY values produced as a result of the campaign.

EURAMET_PTB_G1G2 1015_2017 28/07/2017 1.1

9. FINAL RESULTS

The results of the calibration campaign G1G2_1019_2016 are summarized in Table 9-1. It contains the designation of visited receiver, the INT DLY values hitherto used, the offsets $\Delta Pi(V,T)$ and $\Delta Pi(T,G)$ (see Section 5, (5)), the new INT DLY values to be used with consent by BIPM, and the uncertainty with which the new values were determined. For calculation, the respective entries from Table 8-1, individually for P1, P2, and combined for P3, were used. Intermediate delays and uncertainties are reported here with two decimal points. According to [RD07], in CGGTTS V2E file headers all delays should be reported with one decimal only, so the final results to be reported are rounded to one decimal.

Receiver	INT DLY(P1), old	INT DLY(P2); old	∆P1 (V,T)	∆P2 (V,T)	∆P1 (T,G)	∆(P2) (T,G)	INT DLY(P1), new	u _{cal} , P1	INT DLY(P2), new	u _{cal} , P2	u _{cal} , P3
DTAG, DT04	-33.5	-38.0	-2.80	2.73	0.74	1.01	-35.6	1.02	-34.3	1.10	1.4
DTAG, DT05	-34.3	-34.5	-4.61	-2.57	0.74	1.01	-38.2	1.02	-36.1	1.10	1.4

Table 9-1. Results of the Calibration Campaign G1G2_1015_2017, all values in ns

Project :
Code:
Date:
Version:
Page:

ANNEX: BIPM CALIBRATION INFORMATION SHEETS

First common clock measurement at PTB

Laboratory:	РТВ						
Date and hour of the beginning of	2017-05-25 0:00 UTC (MJD 57898)						
Date and hour of the end of measure	ements:	2017-06-01 24:00 UTC (MJD 57904)					
Information on the system							
	:	Tra	avelling:				
4-character BIPM code PTBB			PT	РТВТ			
Receiver maker and type:	ASHTE	ECH Z-XII3T		Dicom GTR50			
Receiver serial number:	(S/N R	RT820013901)	070	0708522 1.7.7			
1 PPS trigger level /V:	1		1	1			
Antenna cable maker and type: Phase stabilised cable (Y/N):	Nokia	RG214	And	Andrews FSJ-1 (N)			
Length outside the building /m:	approx	k. 25	25				
Antenna maker and type: Antenna serial number:	Ashteo (S/N C	ch ASH700936 SNOW CR15930)	Nav NA	Navexperience 3G+C NA0164			
Temperature (if stabilised) /°C							
Measured delays ∕ns							
	:		Travelling:				
Delay from local UTC to receiver $19.9 = 1 \text{ PPS-in } (X_P) / \text{ ns}$		± 0.1 (**)		59.6 ± 0.1			
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns		2 ± 0.1 (**) + 15.8		N/A			
Antenna cable delay: (X _C) / ns	301.7		205	5.0 ± 0.1			
Splitter delay (if any):	N/A						
Additional cable delay (if any):	N/A						
Data used for the generation of C	GGTTS	files					
		LOCAL:		Travelling			
INT DLY (or X _R +X _S) (GPS) /ns:		304.5 (P1), 319.8 (P2)	(**)	-42.6 (P1) -49.1 (P2) (***)			
INT DLY (or X _R +X _S) (GLONASS) /r							
CAB DLY (or X _c) /ns:	301.7		205.0				
REF DLY (or X _P +X ₀) /ns:	73.9 (**)		59.6				
Coordinates reference frame:	ITRF (*)		ITRF (***)				
X /m:		+3844059.89 (*)		+3844056.64 (***)			
Y /m:		+709661.48 (*)	P10	+709664.25 (***) P13			
Z /m		+5023129.73 (*)	-	+5023131.88 (***)			

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT, BRAUNSCHWEIG, AUGUST 2017

General information							
Rise time of the local UTC pulse:	3 ns						
Is the laboratory air conditioned:	Yes						
Set temperature value and uncertainty:	23.0 °C, peakt-to-peak variations 0.6 °C						

Notes:

(*) values provided by BIPM as part of coordinate alignment 2014 and G1 calibration Cal_Id=1001-2014

(**) values provided by BIPM Cal_Id 1001-2016 / local measurements not repeated (***) BIPM campaign 1001-2014 provided new INT DLY values for PTB receiver PT02. Subsequently PTBT INT DLY were adjusted so that PTBT – PT02 were close to zero for convenience. Coordinates of mast P13 were interpolated from BIPM results provided for neighbouring masts.

Names of files to be used in processing for site PTB CC1 Local receiver: GZPT02MJ.DDD Travelling receiver GZPTBTMJ.DDD

PTBT operation at DTAG: Receiver DT04

Laboratory:	DTAG					
Date and hour of the beginning of m	2017- 06 - 20 00:00:00 UTC (57808)					
Date and hour of the end of measure	ements:	2017- 07 -				
Information on the system						
	Local:		Travel	ling:		
4-character BIPM code	DTO4		РТВТ			
Receiver maker and type:	Mesit GTR51		Dicom GTR50			
Receiver serial number:	1609096		070852	0708522 1.7.4		
1 PPS trigger level /V:	1.0		1.0			
Antenna cable maker and type: Phase stabilised cable (Y/N):	N-Type, LMR400	0	N-type	N-type, LMR400		
Length outside the building /m:	5 m		5 m			
Antenna maker and type: Antenna serial number:	Leica AR25.4 726132		Navexp NA016	perience 3G+C 4		
Temperature (if stabilised) /°C						
Measured delays /ns						
	Local:	Travel		ling:		
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	25.3		22.5	22.5		
Delay from 1 PPS-in to internal Reference (if different): $(X_0) / ns$			N/A			
Antenna cable delay: (X _c) / ns	506.1		519.0			
Splitter delay (if any):	N/A		N/A			
Additional cable delay (if any):	N/A	N/A				
Data used for the generation of (CGGTTS files					
		LOCAL:		Travelling		
INT DLY (or X _R +X _S) (GPS) /ns:		-33.5 (P1) , -38.0 (P2)		-42.6 (P1) -49.1 (P2)		
INT DLY (or X _R +X _S) (GLONASS) /I	ns:	N/A		N/A		
CAB DLY (or X _c) /ns:		506.1		519.0		
REF DLY (or X _P +X ₀) /ns:		25.3		22.5		
Coordinates reference frame:		ITRF		ITRF		
X /m:		+4049233.7		4049234.93		
Y /m:		+616576.6		616575.61		
Z /m		+4873107.4		4873106.31		
General information						
Rise time of the local UTC pulse:		1 ns				
Is the laboratory air conditioned:		Yes				
Set temperature value and uncertair	nty:					

Names of files to be used in processing for site DTAG:

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT, BRAUNSCHWEIG, AUGUST 2017

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 30 of 35

Local receiver: GZDT04MJ.DDD Travelling receiver GZPTBTMJ.DDD

Notes:

All coordinates determined consistently using NRCan PPP immediately before the period of data taking

PTBT operation at DTAG: Receiver DT05

Laboratory:	DTAG					
Date and hour of the beginning of m	2017- 06 – 20 00:00:00 UTC (57808)					
Date and hour of the end of measur	2017- 07 -					
Information on the system						
	Local:		Travel	ling:		
4-character BIPM code	DT05		РТВТ			
Receiver maker and type:	Mesit GTR51		Dicom GTR50			
Receiver serial number:	1510236		070852	0708522 1.7.4		
1 PPS trigger level /V:	1.0		1.0			
Antenna cable maker and type: Phase stabilised cable (Y/N):	N-Type, LMR40	0	N-type	N-type, LMR400		
Length outside the building /m:						
Antenna maker and type: Antenna serial number:	LEICA AR25.4 726130		Navexp NA016	perience 3G+C 4		
Temperature (if stabilised) /°C						
Measured delays /ns			•			
	Local:	Travel		ling:		
Delay from local UTC to receiver 1 PPS-in (X _P) / ns	25.3		22.5			
Delay from 1 PPS-in to internal Reference (if different): $(X_0) / ns$			N/A			
Antenna cable delay: (X _c) / ns	530.7		519.0			
Splitter delay (if any):	N/A		N/A			
Additional cable delay (if any):	N/A	N/A				
Data used for the generation of (CGGTTS files					
		LOCAL:		Travelling		
INT DLY (or X _R +X _S) (GPS) /ns:		-34.3 (P1) , -34.5 (P2)		-42.6 (P1) -49.1 (P2)		
INT DLY (or X _R +X _S) (GLONASS) /	ns:	N/A		N/A		
CAB DLY (or X _c) /ns:		530.7		519.0		
REF DLY (or X _P +X ₀) /ns:		25.3		22.5		
Coordinates reference frame:		ITRF		ITRF		
X /m:		4049230.5		4049234.93		
۲ /m:		616579.1		616575.61		
Z /m		4873109.7		4873106.31		
General information						
Rise time of the local UTC pulse:	1 ns					
Is the laboratory air conditioned:		Yes				
Set temperature value and uncertain	nty:					

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 32 of 35

Names of files to be used in processing for site DTAG

Local receiver: GZDT05MJ.DDD Travelling receiver GZPTBTMJ.DDD

Notes:

All coordinates determined consistently using NRCan PPP immediately before the period of data taking

1.1

33 of 35

Second common clock measurement at PTB

Laboratory:	РТВ					
Date and hour of the beginning of m	2017-07-19 13:00 UTC (MJD 55953)					
Date and hour of the end of measur	2017-07- 23 23:55 UTC (MJD 55957)					
Information on the system						
	Local:		Travell	ing:		
4-character BIPM code	РТВВ		ртвт			
Receiver maker and type:	ASHTECH Z-XII	3T	Dicom GTR50			
Receiver serial number:	(S/N RT820013	901)	0708522 1.7.4			
1 PPS trigger level /V:	1 V		1 V			
Antenna cable maker and type: Phase stabilised cable (Y/N):	Nokia RG214		Andrews FSJ-1 (N)			
Length outside the building /m:	approx. 25 m		25 m			
Antenna maker and type: Antenna serial number:	Ashtech ASH700 (S/N CR15930)	0936 SNOW	Navexp NA0164	erience 3G+C		
Temperature (if stabilised) /°C						
Measured delays /ns	ł					
	Local:		Travell	ing:		
Delay from local UTC to receiver 19.9 ± 0.1 (**) 1 PPS-in (X _P) / ns		59.6 ±		0.1		
Delay from 1 PPS-in to internal Reference (if different): (X ₀) / ns 38.2 ± 0.1 (**)		+ 15.8 N/A				
Antenna cable delay: (Xc) / ns 301.7			205.5 ±	0.1		
Splitter delay (if any):	N/A					
Additional cable delay (if any):	N/A					
Data used for the generation of (CGGTTS files					
		LOCAL:		Travelling		
INT DLY (or X_R+X_S) (GPS) /ns:		304.5 (P1), 319.8 (P2) (**)		-42.6 (P1) -49.1 (P2) (***)		
INT DLY (or X _R +X _S) (GLONASS) /	ns:					
CAB DLY (or X _c) /ns:		301.7		205.5		
REF DLY (or X _P +X ₀) /ns:		73.9 (**)		59.6		
Coordinates reference frame:		ITRF (*)		ITRF (***)		
X /m:		+3844059.89 (*)		+3844056.64		
Y /m:	Y /m:		Mast	+709664.25 (***)	Mast	
Z /m		+5023129.73 (*)	P10	+5023131.88 (***)	P13	
General information						
Rise time of the local UTC pulse:		3 ns				
Is the laboratory air conditioned:		yes				
Set temperature value and uncertain	nty:					

Project : EURAMET_PTB_G1G2 Code: 1015_2017 Date: 31/08/2017 Version: Page: 34 of 35

1.1

Notes:

(*) values provided by BIPM as part of coordinate alignment 2014 and G1 calibration Cal_Id=1001-2014

(**) values provided by BIPM Cal_Id 1001-2016 / local measurements not repeated (***) BIPM campaign 1001-2014 provided new INT DLY values for PTB receiver PT02. Subsequently PTBT INT DLY were adjusted so that PTBT – PT02 were close to zero for convenience. Coordinates of mast P13 were interpolated from BIPM results provided for neighbouring masts.

Names of files to be used in processing for site PTB CC2 Local receiver: GZPT02MJ.DDD Travelling receiver GZPTBTMJ.DDD

EURAMET_PTB_G1G2 1015_2017 31/08/2017 1.1 35 of 35

END of DOCUMENT