

2017 Group 2 GPS Calibration Trip Cal_ID: 1013-2017

Yi-Jiun Huang, Tzi-Yu Chiu, Huang-Tien Lin and Chia-Shu Liao

National Time and Frequency Standard Lab

Telecommunication Laboratories, Chunghwa Telecom Co., Ltd.

dongua@cht.com.tw

Summary

The calibration trip is conducted by TL, started from January and ended in June 2017. This trip covered one G1 lab, TL, and three G2 labs, NIMT, NMIM and VMI. The report describes the details of the calibration. The annexes contain supplement information. During this campaign, NMIA provided technical supports and many valuable advices for the report.

1. Description of equipment and operations

1.1 Traveling equipment

In Fig. 1, the traveling system is the TL traveling equipment TRVL. The receiver in this system is a Topcon Euro 80 HE_GD. This dual-frequency receiver reports carrier phase measurements but cannot be referenced to an external 1 PPS or 5/10 MHz input signal. Hence, a time interval counter is used to reference the GPS receiver to the laboratory time standard. In this campaign, a dedicated PPS cable was supplied as parts of TRVL. If the cable is connected to UTC(k), the REFDLY of TRVL will be considered to zero; otherwise, the time difference between the reference point of TRVL and the local UTC(k) should be reported by visited labs.

Fig. 1. Diagram of the TRVL. The REF IN is connected to 10 MHz with arbitrary coaxial cable. A dedicated cable is supplied to connect 1PPS and the start port of the counter inside.

The data processing chain we used generates a RINEX observation file with C1, P1 and P2 observations referenced to the external clock via the counter measurements. A modified version of r2cggtts then generates a CGGTTS file for a C1/P1/P2 observation. Precise antenna co-ordinates are obtained via a separate RINEX observation file which contains code and carrier phase observations, but not referenced to the external time standard.

According to the BIPM guidelines, the receiver must demonstrate sufficient stability over a time period comparable with the campaign. Due to external constraints, the campaign had to be completed within a strict timeframe which meant that the stability demonstration could not be undertaken for the anticipated duration of the campaign.

However, we do have data spanning about 13 years for this receiver (albeit with two long gaps), showing ± 1 ns scatter:

Draft

MJD	53000	53092	53195	53240	53284	53342	53524	53539	53630	53995	55009	57605
C1	42.3	42.3	43.6	44.3	44.2	42.7	43.4	43.5	43.7	43.6	44.6	42.1
delay												
(ns)												

The reference receiver for these measurements was AU01, the NMIA primary receiver up until 2010. Uncertainties are at the ± 0.5 ns level, due to a single cable delay measurement. Note that the AU01 C1 delay in these data has not been corrected to the BIPM-provided value.

1.2 Visited equipment

See the summary in Table 1. Detailed information on the set-up and on the measurements performed is given in the Annex.

•				5.001	DDUEW
Institute	Status of equipment	Dates of measurement	Receiver type	BIPM	RINEX
				code	name
TL	Traveling	57745 – 57758,	NMIA Topcon/Javad Euro-80 HE_GD	TRVL	TRVL
		57897 - 57910			
TL	G1 reference	57745 – 57758,	Ashtech Z12T	TLT1	TLT1
		57897 - 57910			
NIMT	G2 reference	57783 - 57819	NMIA Topcon/Javad Euro-80	MTTO	-
NMIM	G2 reference	57836 - 57854	NMIA Topcon/Javad Euro-80	LSM1	-
NMIM	G2 backup	57836 - 57854	Septentrio PolaRx2e TR	LS2P	LS2P
VMI	G2 reference	57867 - 57881	NMIA Topcon/Javad Euro-80	VM	-
VMI	G2 backup	57867 - 57881	Septentrio Polarx3e TR	VM12	VN3P

Table 1. Summary information on the calibration trip

2. Data used

The CGGTTS data are used for all analyses.

3. Results of raw data processing

The raw difference of a particular code is denoted by RAWDIF(code). The RAWDIF of the pairs is obtained from CGGTTS data. To meet the requirements in the BIPM guidelines, we define the RAW values as the uncorrected measurement, expressed as

for each station, each PRN, and each time stamp. The values shown on the right side are the readings in the CGGTTS data. The RAWDIF of the pair A-B is defined by

RAWDIF = median(RAW value of A - RAW value of B)

The inferred average value, is denoted RAWDIF, and its uncertainty from the statistical analysis. For each pair, plots of the data differences and of the statistical analysis (TDEV) are in Annex 1; The inferred RAWDIF(P1), RAWDIF(P2) and RAWDIF(C1) are taken as the median of the raw differences. The associated uncertainties are taken as the floor of the TDEV values, with a minimum of 0.1 ns. The results are summarized in Table 2.1 and Table 2.2.

Pair	Date	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc	RAWDIF(C1)	Unc
TRVL-TLT1	57745 - 57758	-241.03	0.1	-238.48	0.1	-238.22	0.1
TRVL-TLT1	57897 - 57910	-241.70	0.1	-239.53	0.1	-238.33	0.1

Table 2.2 Raw differential results for all pairs (Traveling – Visited) (ns)

Table 2.1 Raw differential results for all pairs (Traveling – Reference) (ns)

				1 `	U	, , ,	
Pair	Date	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc	RAWDIF(C1)	Unc
TRVL-MTTO	57792 - 57822	-	-	-	-	-12.86	0.3
TRVL-LSM1	57836 - 57854	-	-	-	-	-2.92	0.1
TRVL- LS2P	57836 - 57854	56.15	0.1	66.87	0.1	55.90	0.1
TRVL-VM	57867 - 57881	-	0.1	-	-	-81.43	-
TRVL-VM12	57867 - 57881	225.32	0.1	234.33	0.3	228.42	0.1

4. Calibration results

In the first step, we compute Δ SYSDLY, the differences of SYSDLY for all pairs (Traveling - Reference) and (Traveling-Visited), from

$$\Delta SYSDLY_{A-B}(Code) = RAWDIF_{A-B}(Code) + REFDLY_A - REFDLY_B$$
(1)

where RAWDIF(Code) is read from Table 2 and where the values REFDLY are in Annex 1.

The Δ SYSDLY values are reported in Table 3 for the pairs Traveling-Reference (section 4.1) and in Table 4 for the pairs Traveling-Visited (section 4.2).

In the second step we compute Δ SYSDLY (Visited-Reference) for all visited systems.

$$\Delta SYSDLY_{V-R} = \Delta SYSDLY_{T-R} - \Delta SYSDLY_{T-V}$$
(2)

We can compute Δ INTDLY (Visited - Reference) for all visited systems.

$$\Delta INTDLY_{V-R} = \Delta SYSDLY_{V-R} - CABDLY_V + CABDLY_R$$
(3)

where the values CABDLY are taken from Annex 1;

Tables 5 reports the Δ INTDLY_{V-R} results for the pairs Visited-Reference (section 4.3). Using assumed INTDLY_R values for the Reference system, Table 7 then reports INTDLY_V for all visited systems (section 5).

4.1. Traveling system with respect to the reference system

	Tuble 5. Huvening vs. Reference system (un values in its)								
Pair	Date	REFDLYT	REFDLY _R	P1	P1	P2	P2	C1	C1
				RAWDIF	$\Delta SYSDLY_{T-R}$	RAWDIF	$\Delta SYSDLY_{T-R}$	RAWDIF	$\Delta SYSDLY_{T-R}$
TRVL-TLT1	57745 -	0.0	0.0	-241.03	-241.03	-238.48	-238.48	-238.22	-238.22
	57758								
TRVL-TLT1	57897 –	0.0	0.0	-241.70	-241.70	-239.53	-239.53	-238.33	-238.33
	57911								
Misclosure				-0.67	-0.67	-1.05	-1.05	-0.11	-0.11
Mean				-241.37	-241.37	-239.01	-239.01	-238.28	-238.28

 Table 3. Traveling vs. Reference system (all values in ns)

4.2. Traveling system with respect to the visited systems

Pair	Date	REFDLYT	REFDLYv	P1	P1	P2	P2	C1	C1
				RAWDIF	$\Delta SYSDLY_{T-V}$	RAWDIF	$\Delta SYSDLY_{T-V}$	RAWDIF	$\Delta SYSDLY_{T-V}$
TRVL-MTTO	57792 -	0.0	7.07	-	-	-	-	-12.86	-19.93
	57822								
TRVL-LSM1	57836 -	0.0	10.85	-	-	-	-	-2.92	-13.77
	57854								
TRVL- LS2P	57836 -	0.0	259.1	56.15	-202.95	66.87	-192.24	55.90	-203.20
	57854								
TRVL-VM	57867 –	19.0 *	33.9	-	-	-	-	-81.43	-96.33
	57881								
TRVL-VM12	57867 –	19.0 *	243.94	225.32	0.38	234.33	9.39	228.42	3.48
	57881								

 Table 4. Traveling vs. Visited systems (all values in ns)

* The PPS used for traveling equipment had a +19 ns delay against UTC(VMI).

4.3. Visited systems with respect to reference system

Table 5 provides the values obtained by differencing Table 3 and Table 4. CABDLY values are

taken from Annex 1.

							,		
Pair	Date	CABDLY _v	CABDLY _R	P1	P1	P2	P2	C1	C1
				$\Delta SYSDLY_{V\text{-}R}$	$\Delta INTDLY_{V-R}$	$\Delta SYSDLY_{V-R}$	$\Delta INTDLY_{V-R}$	$\Delta SYSDLY_{V-R}$	$\Delta INTDLY_{V-R}$
MTTO-TLT1	57746 -	165.4	0.0	-	-	-	-	-218.37	-383.77
	57757								
LSM1-TLT1	57836 -	155.4	0.0	-	-	-	-	-224.54	-379.94
	57854								
LS2P-TLT1	57836 -	157.53	0.0	-38.39	-195.92	-46.57	-204.10	-35.10	-192.63
	57854								
VMTLT1	57867 –	256.8	0.0	-	-	-	-	-141.95	-398.75
	57881								
VM12-TLT1	57867 –	124.3	0.0	-241.72	-366.02	-248.20	-372.49	-241.78	-366.08
	57881								

Table 5. Visited vs. Reference (all values in ns)

4.4. Uncertainty estimation

In this section, we determine the uncertainty of the differential calibration process i.e. we estimate all components that can affect the accuracy. We determine a value u_{CAL} that is to be used as the accuracy of all P3/PPP links (Visited – Reference) at the epoch of calibration.

$$u_{CAL} = \sqrt{u_a^2 + u_b^2}$$

with the statistical uncertainty u_a and the systematic uncertainty u_b . (all are 1-sigma).

The statistical uncertainty u_a originates from RAWDIF (see section 3) and is given by the statistical analysis of the raw code differences for "Traveling-Reference" and "Traveling-Visited". In Annex. 1, some values are very good for all codes, but some are poor for C1. We find the minimum for each TDEV curve, and then we choose the largest one among the minimums as the u_a . The systematic uncertainty is given by

$$u_b = \sqrt{\sum_n u_{b,n}^2}$$

where all possible terms to be considered in the sum are to be listed in Table 6 and some detail on their estimation should be provided in Annex 1. Values appear separately for each frequency (C1/P1 and P2) so as to compute a value u_{CAL} applicable to P3 links. We choose to compute u_{CAL} using for u_b the uncertainty $u_{b,SYS}$ of Δ SYSDLY_{V-R} from equation (2). Table 6 presents all components of the uncertainty budget along with the uncertainty $u_{b,SYS}$ of Δ SYSDLY_{V-R} from equation (2) and the resulting uncertainty value u_{CAL} .

Unc.	Value	Value	Value	Value	Description
	C1/P1 (ns)	P2 (ns)	P1-P2 (ns)	P3 (ns)	
u _a (T–V)	0.3	0.3	-	-	RAWDIF (traveling – visited)
u _a (T–R)	0.1	0.1	-	-	RAWDIF (traveling – reference)
u _a	0.3	0.3	-	0.9	
Misclosure					
u _{b,1}	0.7	1.1	0.4	-	observed misclosure
Systematic compo	nents related to F	RAWDIF			
u _{b,11}	0.1	0.1	0.1	-	Position error at reference
u _{b,12}	0.1	0.1	0.1	-	Position error at visited
u _{b,13}	0.3	0.3	0.4	-	Multipaths at reference
u _{b,14}	0.3	0.3	0.4	-	Multipaths at visited
Link of the Traveli	ng system to the	local UTC(k)			
u _{b,21}	0.5	0.5	0.0	-	REFDLY _T (at ref lab)
u _{b,22}	0.5	0.5	0.0	-	REFDLY _T (at visited lab)
u _{b,TOT}	1.1	1.4	0.7	1.5	
Link of the Referen	nce system to its	local UTC(k)			
u _{b,31}	0.5	0.5	0.0	-	REFDLY _R (at ref lab)
Link of the Visited	system to its loc	al UTC(k)			
u _{b,32}	0.5	0.5	0.0	-	REFDLY _V (at visited lab)
u _{b,SYS}	1.3	1.6	0.7	1.7	Components of equation (2)
u _{CAL}	-	-	-	1.9	Composed of u _a and u _{b,SYS}

Table 6. Uncertainty contributions. Values P3 are	e computed as	2.545 × P1 -	$- 1.545 \times P2$	for u_a and
P1 + 1.545 ×	(P1 - P2) fo	or u _b		

The components in Table 6 are separated into several categories:

- u_{b,1} accounts for possible variation of the delays of the traveling system during the trip. This is evaluated by the observed misclosure (0.7 ns for P1, 1.1 ns for P2, and 0.4 ns for P1-P2). See Table 3.
- $u_{b,11}$ and $u_{b,12}$ account for errors in the differential position (Travel Local). In general they are estimated to be 3.0 cm (0.1 ns) because the standard uncertainty of the differential positioning obtained with the data used for calibration is typically at or below this level.
- u_{b,13} and u_{b,14} account for multipath. This is difficult to estimate and a conservative estimate of 0.3 ns is conventionally used.
- $u_{b,21}$ and $u_{b,22}$ account for the measurement between the reference point of the traveling system

and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns.

• $u_{b,31}$ and $u_{b,32}$ account similarly for the measurement between the reference point of the local system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns.

5. Final results for the visited systems

Using the $INTDLY_R$ values reported in 1001-2016 for the Reference system TLT1 (transferred from the BIPM reference BP0R), Table 7 then reports INTDLY for all visited systems (section 4.4).

Final results are presented for each visited system as they need to be entered to produce timing data in the CGGTTS format, i.e. in the form of INTDLY (or SYSDLY if the antenna cable delays are not available).

The value $u_{CAL}(Code)$ is obtained from Table 6. It is used by the BIPM to assign the value u_b which will apply to all links (Code) to which the system participates.

Reference	Cal_Id	Date		INTDLY	INTDLY	INTDLY
system				P1 /ns	P2 /ns	C1 /ns
TLT1	1001-2016	Feb. 10, 2017		415.0	424.1	414.9
Visited	Cal_Id	Date	u _{CAL} (P3) /ns	INTDLY	INTDLY	INTDLY
systems				P1 /ns	P2 /ns	C1 /ns
MTTO	1013-2017	Sep. 30, 2017	-	-	-	31.2
LSM1	1013-2017	Sep. 30, 2017	-	-	-	35.1
LS2P	1013-2017	Sep. 30, 2017	1.9	219.1	220.0	222.4
VM	1013-2017	Sep. 30, 2017	-	-	-	16.2
VM12	1013-2017	Sep. 30, 2017	1.9	49.0	51.6	48.9

Table 7. Summary of final results

As a cross-check, we have supplementary data from previous calibrations of the three Topcon systems. These systems were built at NMIA and calibrated against receivers there. Table 8 summarizes these calibrations, including those of the reference receivers. The new C1 delay calibrations agree satisfactorily with those obtained previously.

Receiver	Reference receiver	Date	C1 INTDLY (ns)	New C1 INTDLY (ns)
AU01	BP0N (BIPM calibration)	53337	37.5 ± 4.0	-
MTTO	AU01	53058	33.9 ± 4.5 †	31.2
LSM1	TRVL	53240	38.1 ± 3.3 †	35.1

Table 8. Comparison with previous calibrations of Topcon receivers

VM	AU01	53837	32.9 ± 4.5 †	16.2
			13.9 ± 4.5 *	

[†] A nominal uncertainty of 2 ns is assumed, and then added in quadrature with the uncertainty of the calibration of the reference receiver.

* A correction of 19 ns must be made because of the choice of REF DLY.

Annex 1. Information provided by each visited laboratory and the RAWDIF results

Information sheets ((to be repeated for each calibrated system)	
miormation sheets (to be repetited for each earbrailed by stern)	

Laboratory:	TL
Date and hour of the beginning of measurements:	Dec. 24, 2016 (MJD 57746) 0 h UTC
Date and hour of the end of measurements:	Jun. 6, 2017 (MJD 57910) 23 h UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	TLT1	TRVL
Receiver maker and type:	Ashtech Z-XII3T Metronome	NMIA Topcon/Javad Euro-80 HE_GD
Receiver serial number:	RT919994504	
1 PPS trigger level /V:	1 V	0.5 V
Antenna cable maker and type:	Andrew FSJ1-50A	LMR-400
Phase stabilized cable (Y/N):		
Length outside the building /m:	~ 30 m	~ 40 m
Antenna maker and type:	SEPCHOKE_B3E6 SPKE	Hemisphere A45
Antenna serial number:	5006	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to	0.0 ns	0.0 ns
receiver 1 PPS-in:		
from 1 PPS-in to internal reference (if		
different)		
Antenna cable delay:	0.0 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

Data used for the generation of CGGTTS files

INT DLY (GPS) /ns:	C1: 414.95, P1: 415.05, P2: 424.48
INT DLY (GLONASS) /ns:	
CAB DLY /ns:	0.0
REF DLY /ns:	0.0
Coordinates reference frame:	WGS84
Latitude or X /m:	-2994425.48
Longitude or Y /m:	4951311.89
Height or Z /m:	2674498.36

General information

Rise time of the local UTC pulse:	3 ns
Is the laboratory air conditioned?	Yes
Set temperature value and uncertainty:	$23 \pm 1 \ ^{\circ}C$
Set humidity value and uncertainty:	

Information sheets (to be repeated for each calibrated system)

Laboratory:	NIMT
Date and hour of the beginning of measurements:	Jan. 30, 2017 (MJD 57783) 0 h UTC
Date and hour of the end of measurements:	Mar. 7, 2017 (MJD 57819) 23 h UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	NIMT	TRVL
Receiver maker and type:	NMIA Topcon/Javad Euro-80	NMIA Topcon/Javad Euro-80
Receiver serial number:		
1 PPS trigger level /V:	1 V	0.5 V
Antenna cable maker and type:	LMR-400	LMR-400
Phase stabilized cable (Y/N):		
Length outside the building /m:	~ 30 m	~ 40 m
Antenna maker and type:	Javad L1/L2	Hemisphere A45
Antenna serial number:	00141	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to	7.07 ns	0.0 ns
receiver 1 PPS-in:		
from 1 PPS-in to internal reference (if		
different)		
Antenna cable delay:	165.52 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

INT DLY (GPS) /ns:	C1: 42.9	
INT DLY (GLONASS) /ns:		
CAB DLY /ns:	165.4	
REF DLY /ns:	7.07	
Coordinates reference frame:	ITRF2000 on 2005/08/26	
Latitude or X /m:	-1150489.200	
Longitude or Y /m:	6080853.999	
Height or Z /m:	1537597.843	
General information		
Rise time of the local UTC pulse:	6 ns	
Is the laboratory air conditioned?	Yes	

Set temperature value and uncertainty:	$23 \pm 2 \ ^{\circ}\mathrm{C}$
Set humidity value and uncertainty:	50 ± 15 % RH

Information sheets	(to be repeated for each calibrated s	system)
mornation sheets	(to be repeated for each calibrated)	system)

Laboratory:	National Metrology Institute of Malaysia (NMIM)
Date and hour of the beginning of measurements:	31 March 2017 (MJD 57843) / 00:00 UTC
Date and hour of the end of measurements:	10 April 2017 (MJD 57853) / 23:59 UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	LSM1	TRVL
Receiver maker and type:	NMIA Topcon Javad Euro-80	NMIA Topcon/Javad Euro-80
Receiver serial number:	JAVAD-01/CSIRO2001	
1 PPS trigger level /V:	0.5 V	0.5 V
Antenna cable maker and type:	Rojone Pty Ltd, PH 02 9829 1555 LOT	LMR-400
Phase stabilized cable (Y/N):	2001/06	
Length outside the building /m:	~ 30 m	~ 40 m
Antenna maker and type:	Topcon Javad Choke Ring	Hemisphere A45
Antenna serial number:	00147	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to receiver 1 PPS-in:	10.85 ns	0.0 ns
from 1 PPS-in to internal reference (if		
different)		
Antenna cable delay:	155.4 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

Data used for the generation of CGGTTS files

INT DLY (GPS) /ns:	C1: 19.4
INT DLY (GLONASS) /ns:	
CAB DLY /ns:	10.85
REF DLY /ns:	155.4
Coordinates reference frame:	
Latitude or X /m:	- 1295535.614
Longitude or Y /m:	+ 6237440.812
Height or Z/m:	+ 310809.199

General information

Rise time of the local UTC pulse:	5 ns
Is the laboratory air conditioned?	Yes
Set temperature value and uncertainty:	$(24.5 \pm 1.5)^{\circ} C$

1015-2017

 $(57.5 \pm 8.5) \% RH$

Information sheets (to be repeated for each calibrated system)

Laboratory:	National Metrology Institute of Malaysia (NMIM)
Date and hour of the beginning of measurements:	31 March 2017 (MJD 57843) / 00:00 UTC
Date and hour of the end of measurements:	10 April 2017 (MJD 57853) / 23:59 UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	LS2P	TRVL
Receiver maker and type:	Septentrio PolaRx2eTR (firmware ver. 3.2.2)	NMIA Topcon/Javad Euro-80
Receiver serial number:	3345	
1 PPS trigger level /V:		0.5 V
Antenna cable maker and type:	Belden-8219	LMR-400
Phase stabilized cable (Y/N):		
Length outside the building /m:	~ 30 m	~ 40 m
Antenna maker and type:	Leica Geosystem AG	Hemisphere A45
Antenna serial number:	200355	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to receiver 1 PPS-in:	$26.90\pm0.26\ ns$	0.0 ns
from 1 PPS-in to internal reference (if different)	223.5 + 8.7 ± 0.2 ns *	
Antenna cable delay:	157.53 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

* According to the Annex 1 in "BIPM guidelines for GNSS calibration", the delay between the internal measurement latching and the 1 PPS output connector for receiver firmware 3.2.2 is -8.7 ns.

INT DLY (GPS) /ns:	C1: 0.0, P1: 0.0, P2: 0.0	
INT DLY (GLONASS) /ns:		
CAB DLY /ns:	157.53	
REF DLY /ns:	259.1	
Coordinates reference frame:		
Latitude or X /m:	-1295538.5281	
Longitude or Y /m:	+6237440.1403	
Height or Z/m:	+310809.1973	
General information		
Rise time of the local UTC pulse:	5 ns	
Is the laboratory air conditioned?	Yes	

1013-2017	Draft	V1.3/20170926
Set temperature value and uncertainty:	$(24.5 \pm 1.5)^{\circ} \text{ C}$	
Set humidity value and uncertainty:	(57.5 ± 8.5) % RH	

VMI Information sheets

Laboratory:	VMI
Date and hour of the beginning of measurements:	April. 25, 2017 (MJD 57868) 0 h UTC
Date and hour of the end of measurements:	May. 7, 2017 (MJD 57881) 23 h UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	VM	TRVL
Receiver maker and type:	NMIA Topcon/Javad Euro-80	NMIA Topcon/Javad Euro-80
Receiver serial number:	0409088	
1 PPS trigger level /V:	0.5 V	0.5 V
Antenna cable maker and type:		LMR-400
Phase stabilized cable (Y/N):		
Length outside the building /m:	~ 40 m	~ 40 m
Antenna maker and type:	Javad L1/L2	Hemisphere A45
Antenna serial number:	3699	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to	33.9 ns	19.0 ns
receiver 1 PPS-in:		
from 1 PPS-in to internal reference (if		
different)		
Antenna cable delay:	256.8 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

INT DLY (GPS) /ns:	C1: 41.9	
INT DLY (GLONASS) /ns:		
CAB DLY /ns:	256.8	
REF DLY /ns:	33.9	
Coordinates reference frame:		
Latitude or X /m:	-1621749.664 m	
Longitude or Y /m:	+5730124.407 m	
Height or Z /m:	+2276255.083 m	
General information		
Rise time of the local UTC pulse:	2 ns	
Is the laboratory air conditioned?	Yes	

Set temperature value and uncertainty:	(23± 3) °C
Set humidity value and uncertainty:	<60 %RH

VMI Information sheets

Laboratory:	VMI
Date and hour of the beginning of measurements:	April. 25, 2017 (MJD 57868) 0 h UTC
Date and hour of the end of measurements:	May. 7, 2017 (MJD 57881) 23 h UTC

Information on the system

	Local:	Travelling:
4-character BIPM code	VN3P	TRVL
Receiver maker and type:	Septentrio PolaRx3eTR	NMIA Topcon/Javad Euro-80
Receiver serial number:	2001088	
1 PPS trigger level /V:		0.5 V
Antenna cable maker and type:	Belden, Inc. MRG213 MIL-C-17 10/08	LMR-400
Phase stabilized cable (Y/N):		
Length outside the building /m:	~ 25 m	~ 40 m
Antenna maker and type:	PolaNt_G	Hemisphere A45
Antenna serial number:	5025	A452401000003
Temperature (if stabilised) /°C		

Measured delays /ns if needed fill box "Additional Information" further below)

	Local:	Travelling:
Delay from local UTC to	32.8 ns	19.0 ns
receiver 1 PPS-in:		
from 1 PPS-in to internal reference (if	211.14 ns	
different)		
Antenna cable delay:	124.3 ns	0.0 ns
Splitter delay (if any):		
Additional cable delay (if any):		

INT DLY (GPS) /ns:	C1: 0.0, P1: 0.0, P2: 0.0	
INT DLY (GLONASS) /ns:		
CAB DLY /ns:	124.3	
REF DLY /ns:	243.94	
Coordinates reference frame:		
Latitude or X /m:	-1621745.9813	
Longitude or Y /m:	+5730123.5317	
Height or Z/m:	+2276254.1556	
General information		
Rise time of the local UTC pulse:	2 ns	
Is the laboratory air conditioned?	Yes	

Set temperature value and uncertainty:	(23± 3) °C
Set humidity value and uncertainty:	<60 %RH

Annex 2. Contact Information

NMI	Contact information
TL	Mr. Yi-Jiun Huang
	dongua@cht.com.tw
	National Time and Frequency Standard Lab
	Telecommunication Laboratories (TL), Chunghwa Telecom Co., Ltd.
	99, Dianyan Rd., Yangmei Dist., Taoyuan City, 32661 Taiwan
	Tel: +886 3 424 4783
	Fax: +886 3 424 5474
NIMT	Dr. Thayathip Thongtan
	thayathip@nimt.or.th
	National Institute of Metrology (Thailand)
	3/4-5 Moo 3, Klong 5, Klong Luang, Pathumthani 12120 Thailand
	Tel: +66(0)25775100 extension 1335
	Fax: +66(0)25773658
NMIM	1. Dr. Mohd Nasir Zainal Abidin
	Email :drnasir@sirim.my
	2. Ahmad Sahar bin Omar
	Tel: +60387781651 / +60194518801
	National Metrology Institute of Malaysia
	SIRIM Berhad
	Lot PT 4803, Bandar Baru Salak Tinggi, 43900 Sepang, Selangor, Malaysia
	Tel: 603-87781600 (General)
VMI	Dr. Trieu Viet Phuong,
	Time and Frequency Laboratory
	Vietnam Metrology Institute (VMI)
	No 8, Hoang Quoc Viet Rd, Cau Giay Dist, Hanoi, Vietnam
	Mobile: +84 912863677
	Tel: (+8424)38361135 Fax: (+8424) 37564260
	E.mail: phuongtv@vmi.gov.vn / phuongtv.work@gmail.com