Report of calibration of NMISA equipment at the BIPM (Cal_Id 1102-2016)

Prepared by: G. Petit BIPM

Version history V1.1 2016/09/16:

In August 2016, GNSS equipment owned by the National Metrology Institute of South Africa (UTC acronym ZA) was installed at the BIPM and calibrated against three BIPM permanently installed reference receivers, including BPOR which is included in the Group1 ensemble of reference systems. The method of calibration is the "golden system calibration" which comprises just one period of data taking at the BIPM.

1. Description of equipment and operations

The detailed information on the involved equipment, the installation set-up and the performed measurements is found in the report of operations 1102-2016-cv.pdf. See a summary in Table 1.

The long term stability of the BIPM reference systems is described in the <u>BIPM Technical</u> <u>Memorandum 204</u>.

Institute	Status of	Dates of	BIPM RINEX		Receiver type
	equipment	measurement	code	name	
BIPM	BIPM reference	57630-57637	BPOR	BPOR	Septentrio PolaRx2eTR
BIPM	BIPM backup ref	5763 <mark>0-57</mark> 637	BP1J	BP1J	Septentrio PolaRx4TRpro
BIPM	BIPM backup ref	576 <mark>30</mark> -57637	BP1X	BP1X	Dicom GTR51
		•			
NMISA	Under test	57630-57637	ZA02	ZA02	Septentrio PolaRx4TRpro

Table 1. Summary information on phase 3 of the calibration trip 1001-2014

2. Data used

Rinex files have been obtained from all participating receivers.

3. Results of raw data processing

• The raw code differences have been generated by the DCLRINEX procedure (see <u>Guidelines</u> Annex 3).

During this processing, we noted that the phase measurements of BP0R are corrupted and could not be used to compute the baseline BP0R-ZA02 needed to compute the code differences. To overcome this

- 1. we used two other receivers (BP1J and BP1X), which have previously been compared to BP0R, as additional references;
- 2. the baseline BP0R-ZA02 was determined as the sum BP0R-BP1J/X (known previously) + BP1J/X-ZA02 (from step 1) and fixed in the DCLRINEX procedure.

• For each pair (BIPM reference – ZA02):

- Plots of the data differences and of the statistical analysis (Tdev) are in the report of operations $\underline{1102-2016\text{-}cv.pdf}$

- The inferred RAWDIF(P1) and RAWDIF(P2) are taken as the median of the raw differences and shown in Table 2. The associated uncertainties are taken as the floor of the Tdev values, with a minimum of 0.1 ns.

Labo	Date	Pair	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc
BIPM	57630-57637	BPOR-ZA02	62.95	0.1	61.19	0.1
BIPM	57634-57637	BP1J-ZA02	-22.04	0.1	-26.14	0.1
BIPM	57630-57637	BP1X-ZA02	-27.77	0.2	-29.27	0.1

4. Calibration results

In the first step, one computes Δ SYSDLY, the differences of SYSDLY for all pairs (BIPM Reference – ZA02) from

 $\Delta SYSDLY_{R-V}(Code) = RAWDIF_{R-V}(Code) + REFDLY_R - REFDLY_V$ (1) where the subscript R stands for BIPM reference and V for the visiting ZA02, the RAWDIF(Code) are read in Table 2 and where the values REFDLY are in the report of operations <u>1102-2016-cv.pdf</u>. The **ΔSYSDLY** values are reported in Table 3 for all pairs (BIPM Reference – ZA02).

Dain	D-4-	DEEDIW			Nata	L1 (ns)		L2 (ns)	
Pair	Date	KEFDLY _T		EFDLY _R	INOLE	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BPOR-ZA02	57630-57637	269.0		175.7		62.95	156.25	61.19	154.49
BP1J-ZA02	57634-57637	180.0		175.7		-22.04	-17.74	-26.14	-21.84
BP1X-ZA02	57630-57637	42.6		175.7	*	-27.77	-160.87	-29.27	-162.37

Table 3. ∆SYSDLY for (BIPM Reference – ZA02) (all values in ns)

* The value REFDLY=42.6 ns is entered in the receiver BP1X.

In the second step one then computes Δ INTDLY for all pairs (ZA02 - BIPM Reference) from Δ INTDLY_{V-R} = Δ SYSDLY_{V-R} - CABDLY_V + CABDLY_R (2) where the values CABDLY are taken from the report of operations <u>1102-2016-cv.pdf</u>. See Table 4;

Table 4. \triangle SYSDLY and \triangle INTDLY for (ZA02 – BIPM Reference) (all values in ns)

						/ (/	
Dair				Nada	L1	(ns)	L2 (ns)	
Pair	Date	CABDLY	CABDL Y _R	Note	ΔSYSDLY	ΔINTDLY	ΔSYSDLY	ΔINTDLY
ZA02-BPOR	2016.7	152.6	133.4		-156.25	-175.45	-154.49	-173.69
ZA02-BP1J	2016.7	152.6	128.7		17.74	-6.16	21.84	-2.06
ZA02-BP1X	2016.7	152.6	129.7	*	160.87	137.97	162.37	139.47

* The value CABDLY=129.7 ns is entered in the receiver BP1X.

Finally Table 5 shows the assumed $INTDLY_R$ values for the BIPM Reference systems and the computed $INTDLY_V$ for ZA02.

From Table 5, the final INTDLY values for ZA02 are taken as 47.0 ns (L1) and 51.0 ns (L2).

D- !		Note	L1	(ns)	L2 (ns)				
Pair	Date		INTDLY _R	INTDLY _V	INTDLY _R	INTDLY _V			
ZA02-BP0R	2016.7		222.60	47.15	224.80	51.11			
ZA02-BP1J	2016.7		53.20	47.04	53.10	51.04			
ZA02-BP1X	2016.7	*	-4.00	46.87	-1.60	50.77			
Mean				47.0		51.0			

Table 5. **INTDLY**_R for the BIPM References and inferred **INTDLY**_V for ZA02 (all values in ns)

* The value CABDLY-REFDLY = 87.1 ns entered in the receiver BP1X is substracted from Δ INTDLY.

5 Uncertainty estimation

This section is an exercise to determine the uncertainty of the differential calibration process, here noted u_{CALO} .

In the actual UTC computation, the calibration uncertainty for an UTC link with such a "golden system" calibration is conventionally taken to be $u_{CAL} = 4$ ns. This is to account for the difference between the calibration set-up and the actual set-up at the laboratory,.

$$u_{CAL0} = \sqrt{u_a^2 + u_b^2}$$

with the statistical uncertainty u_a and the systematic uncertainty u_b . (all are 1-sigma).

The statistical uncertainty u_a originates from RAWDIF (see section 3) and is given by the statistical analysis of the raw code differences.

The systematic uncertainty is given by $u_{\rm B} = \sum_{n}$

where all possible terms to be considered in the sum are listed in Table 6 and some detail on their estimation is provided at the end of this section. Values appear separately for each code and for the difference of the two codes (P1, P2 and P1-P2) so as to compute a value u_{CAL0} applicable to P3 links. We choose to compute u_{CAL0} using for u_b the uncertainty u_{bSYS} of $\Delta SYSDLY_{R-V}$ from equation (1) Table 6 presents all components of the uncertainty budget along with the uncertainty u_{bSYS} and the resulting uncertainty value u_{CAL0}

Table 6. Uncertainty	contributions.	Values P3 are computed	as $P1 + 1.545x(P1-P2)$
		· · · · · · · · · · · · · · · · · · ·	

Unc.	Value P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description			
u_a (V-R)	0.1-0.2	0.1	0.15-0.2		RAWDIF (visitor-reference)			
u _a	0.1-0.2	0.1	0.15-0.2	0.25-0.35				
Systematic components related to RAWDIF								
u _{b,11}	0.1	0.1	0.1		Baseline error			
u _{b,13}	0.3	0.3	0.4		Multipaths			
Link to the local UTC(k)								
u _{b,31}	0.5	0.5	0		REFDLY _R (at BIPM)			
u _{b,32}	0.5	0.5	0		REFDLY _V (at BIPM)			
u _{b,SYS}	0.8	0.8	0.45	1.1	Components of equation (1)			
u _{CAL0}				1.1	Composed of u _a and u _{b,SYS}			

1102-2016

The components in Table 6 are separated in several categories:

- $u_{b,11}$ accounts for errors in the differential position (Travel Local). L1 and L2 phase centers are independently estimated with standard uncertainties of order 1.5 cm (50 ps) when computing the RAWDIF values. However the baseline uncertainty is here increased to account for the problem encountered with BPOR (see section 3).
- $u_{b,13}$ accounts for multipaths. This is difficult to estimate and has been conventionally and conservatively estimated to be 0.3 ns, independently for P1 and P2.
- $u_{b,31}$ and $u_{b,32}$ account for the measurement between the reference point of the receiver and the local UTC(k) and are taken to be 0.5 ns (see more information in the report of operations <u>1102-2016-cv.pdf</u>).

4