

Calibration Report BIPM Calibration Reference: XXXX-2016

Relative calibration of CNES link to TAI via GPS receiver CS22.

June 10, 2016. Issue 1

Prepared by: Pierre Uhrich, G. Daniele Rovera, Baptiste Chupin

pierre.uhrich@obspm.fr daniele.rovera@obspm.fr baptiste.chupin@obspm.fr

LNE-SYRTE

Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06 61 avenue de l'Observatoire, 75014 Paris, France pierre.uhrich@obspm.fr

Content

1. Summary.	3
1.1. General information.	
1.2. Timetables.	
1.3. Calibration report changes.	3
2. Acronym list and Reference Documents.	4
2.1. Acronym list.	4
2.2. Reference documents.	4
3. Description of equipment and operations.	5
4. Data used.	6
5. Results of raw data processing.	7
6. Calibration results.	8
6.1. Calibrated system against reference system.	8
6.2. Uncertainty estimation.	8
7. Final results for the system to calibrate.	9
Annexes.	10
Annex A. BIPM information sheets.	11
Annex B. Plots of raw data and TDEV analysis.	13
Annex C. Details on the systematic uncertainties.	17
End of Document.	19

1. Summary.

1.1. General informations.

This Calibration Report released by LNE-SYRTE is about the relative calibration of one CNES GPS receiver, which took place in April 2016.

It is built according to the Annex 4 of the document "*BIPM guidelines for GNSS equipment calibration*", *V3.2 15/02/2016*, and contains all the required information, data, plots and results either required by BIPM in the frame of the CCTF Working Group on GNSS, or by BIPM and EURAMET in the frame of the Group1/Group2 calibration scheme. It also contains the uncertainty budget computation according to the Guidelines, which is showing whether the calibrated links used in the frame of the TAI computation would be in line with the conventional values.

Note however that, due to the fact the traveling equipment is the one being calibrated, this calibration report is written down accordingly, and is not exactly in line with the current issue of the guidelines. In particular, the misclosure could only be estimated from CGGTTS CV mean offset between the CNES receiver and the OP reference receiver when using the calibrated internal delays for CNES data processing.

1.2. Timetables.

Calibration campaign: April 8-13, 2016 (MJD 57485-92) Draft 0 of the report: May 31, 2016. Issue 1 of the report: June 10, 2016. Transmission to BIPM: June 15, 2016.

1.3. Calibration report changes.

This is Issue 1 of the Calibration report

2. Acronym list and Reference Documents.

2.1. Acronym list.

ADEV:	Allan deviation, square root of AVAR.
AVAR:	Allan variance or two-sample variance.
BIPM:	Bureau International des Poids et Mesures, Sèvres, France.
CCTF:	Consultative Committee on Time and Frequency.
CGGTTS:	CCTF Global GNSS Time Transfer Standard format.
CIPM:	Comité International des Poids et Mesures.
CNES:	Centre National d'Études Spatiales, French Space Agency.
GLONASS:	Russian GNSS.
GNSS:	Global Navigation Satellite System.
GPS:	United States of America GNSS.
LNE:	Laboratoire National de Métrologie et d'Essais, French NMI.
LNE-SYRTE: I	French designated laboratory in charge of Time and Frequency units.
MDEV:	Modified Allan deviation, square root of MVAR.
MVAR:	Modified Allan variance.
NIST:	National Institute of Standards and Technology, United States NMI.
NMI:	National Metrology Institute.
NRCan:	National Ressources Canada.
OP:	Observatoire de Paris, France.
PPP:	Precise Point Positioning.
PPS:	Pulse per second.
PTB:	Physikalisch Technisches Bundesanstalt, German NMI.
RINEX:	Receiver International Exchange format for Geodesy.
SYRTE:	Systèmes de Référence Temps-Espace, OP laboratory where LNE-SYRTE is located
TDEV:	Time Allan deviation, square root of TVAR.
TIC:	Time Interval Counter.
TVAR:	Time Allan variance derived from AVAR and MVAR.

2.2. Reference Documents.

- [1] BIPM, "BIPM guidelines for GNSS calibration", V3.2 15/02/2016.
- [2] Pierre Uhrich and David Valat, "*GPS receiver relative calibration campaign preparation for Galileo In-Orbit Validation*", Proc. of the 24th European Frequency and Time Forum (EFTF), Noordwijk, The Netherlands, April 2010 (CD-Rom).
- [3] G.D. Rovera, J-M. Torre, R. Sherwood, M. Abgrall, C. Courde, M. Laas-Bourez and P. Uhrich, "Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties", Metrologia 51 (2014) 476-490.

3. Description of equipment and operations.

In the frame of the future inclusion of UTC(CNES) inside BIPM Circular T, and following a request by CNES to calibrate one GPS receiver, LNE-SYRTE and CNES agreed that one Septentrio PolaRx4 belonging to CNES, together with is antenna, would travel to Paris to be implemented in OP.

The reference receiver for this measurement campaign is OPMT, an Ashtech Z-XII3T multichannel multi-frequencies receiver located in OP, which is also the basis of the IGS station OPMT. This receiver was relatively calibrated by BIPM since 98 on a regular basis. The last BIPM calibration was achieved as the first Group1 calibration trip, which results were made available in Summer 2015. The resulting OPMT internal delays were implemented on July 30 2015 (MJD 57233).

The traveling equipment was made of one Septentrio PolaRx4 receiver called CS22, together with an AEROANTENNA antenna. It was agreed that OP would provide the antenna cable used in Paris. This antenna cable delay should then be taken into account for the implementation back to CNES where one local cable would be used instead.

All the involved equipment is described inside the BIPM information sheets provided in Annex A for all receivers and both locations. Here follows a summary Table.

Institute	Status of equipment	Dates of	Receiver type	BIPM code	RINEX name
		measurement			
OP	Group 1	57485-57492	Ashtech ZXII3-T	OPMT	OPMT
CNES/OP	Group 2/Traveling	57485-57492	Septentrio PolaRx4	CS22	CS22

Table 1. Summary information of the calibration trip.

4. Data used.

CNES Issue 1, June 10, 2016

The OPMT collected raw data are transformed into RINEX 2.1 format by using the UNAVCO TEQC software. The traveling receivers collected raw data are transformed into RINEX 2.1 format by using the Septentrio proprietary software. The calibration is consisting in building differential pseudoranges for each code P1 and P2 between pairs of receivers, these differences being corrected by the known reference (REFDLY) and antenna cable (CABDLY) delays when available. The coordinates of the antenna phase centers are especially computed for the calibration period from RINEX files by using the NRCan PPP software, and precise orbits provided by IGS are used to compute an accurate geometric correction between pairs of antenna phase centers for receivers in common-clock set-up.

As conservative estimate, the noise of the P1 and P2 differences is obtained from the highest value of the one-sigma statistical uncertainty of the TDEV at 1 d. In the case there is not enough data to compute a TDEV at 1 d, the TDEV of the largest possible averaging period is considered as noise of the raw differences.

Reference delays are measured against the local UTC(OP) physical reference point according to the OP double weighting technique. Antenna cable delay is obtained from dedicated measurements.

For validation purposes, P3 CGGTTS files are computed by using the R2CGGTTS software provided by P. Defraigne (ROB), and CV are built between pairs of receivers. Without a given "closure" to be computed, because the receiver to be calibrated is also the traveling one, we have decided to consider as misclosure value the mean offset between the traveling and the reference receivers obtained from CGGTTS CV after application of the calibrated internal delays. The noise of P3 data is issued from a TDEV analysis similarly as above.

5. Results of raw data processing.

The first Table here provides a summary of the P1 and P2 delays (INTDLY) computed from the P-code differences between RINEX files, corrected for satellite signal geometrical path differences, together with the REFDLY and CABDLY used for these computations. The REFDLY and CABDLY values were either measured on site or taken as known parameter for a given receiving chain. From our point of view, this Table is the most comprehensive summary of the calibration campaign.

Table 2. Summary information on receiver delays (all values in ns).

Receiver	Reference	Dates of	REFDLY	CABDLY	INTDLY	Unc.	INTDLY	Unc.
		measurements			P1		P2	
OPMT		57485-57492	155.95	156.5	310.10		321.65	
CS22	OPMT	57485-57492	240.6	204.8	60.3	0.06	66.4	0.07

The plots of P1 and P2 computed delays and of the related TDEV analysis are provided in Annex B. In addition, the next table here is providing the RAWDIF values as required by reference [1].

Table 3. Summary information on raw calibration results (all values in ns).

Pair	Dates	Rawdiff P1	Unc.	Rawdiff P2	Unc.
CS22-OPMT	57485-57492	- 286.15	0.06	- 291.60	0.07

The CGGTTS P3 CV computed by using these results of the calibration and the related TDEV analysis are also made available in Annex B.

6. Calibration results.

6.1. Calibrated system against reference system.

The following Tables are providing the computed internal delays INTDLY P1 and P2 for CS22 against OPMT together with other parameters and computations.

Table 4. Traveling vs Reference system ΔINTDLY (all values in ns).

Pair	Date	CABDLY _{CS22}	CABDLY _{OPMT}	ΔINTDLY (P1)	ΔINTDLY (P2)
CS22 - OPMT	57485-57492	204.8	156.5	- 249.8	- 255.25

Table 5. Traveling vs Reference system Δ SYSDLY (all values in ns).

Pair	Date	REFDLY _{CS22}	REFDLY _{OPMT}	L1		I	.2
				RAWDIF	ΔSYSDLY	RAWDLY	ΔSYSDLY
CS22-OPMT	57485-57492	240.6	155.95	- 286.15	- 201.5	- 291.60	- 206.95

6.2. Uncertainty estimation.

We provide in this Section an estimation of the uncertainty of the differential calibration for the receiver CS22 against OPMT. The uncertainty budget has been built according to the reference [1] in order to provide the required u_{CAL0} values. The details on the systematic uncertainties are provided in Annex C. Note that we have chosen as ub for misclosure the mean offset between CS22 and OPMT in CGGTTS CV after application of the calibrated delays. This is certainly not a conservative value, but we are having no other means for this calibration, which was achieved without a traveling transfer equipment. We obtain below 0.9 ns for P3 uncertainty uCAL0 for CS22, in line with the conventional uncertainty of 2.5 ns to appear in Circular T for GPS links of Group 2 laboratories.

Unc.	Value P1	Value P2	Value P1-P2	Value P3	Description
	(ns)	(ns)	(ns)	(ns)	-
$u_a(T-R)$	0.06	0.07			TDEV(1 d)
ua	0.06	0.07	0.09	0.15	
Misclosure					
u _{b,1}				0.02	Mean CV offset
Systematic compo	onents related to RA	AWDIF			
u _{b,11}	0.05	0.05	0.05	0.05	Position error
					(ref)
u _{b,12}	0.05	0.05	0.05	0.05	Position error
					(trav)
u _{b,13}	0.05	0.05	0.05	0.05	Multipaths (ref)
u _{b,14}	0.05	0.05	0.05	0.05	Multipaths
					(trav)
Link of the Trave	ling system to local	UTC(k)			
u _{b,21}	0.220	0.220		0.220	REFDLY(trav)
Link of the Refer	ence system to its lo	ocal UTC(k)			
u _{b,31}	0.360	0.360		0.360	REFDLY(ref)
Antenna cable de	lays				
u _{b,41}	0.5	0.5		0.5	CABDLY(ref)
u _{b,42}	0.5	0.5		0.5	CABDLY(trav)
u _{b,SYS}				0.83	
U _{CAL0}				0.84	Quadratic sum
					of u_a and $u_{b,SYS}$

Table 6. Uncertainty c	contributions.
Value u _a (P3) is computed from: [[P1 + 1.545 x (P1 - P2)].

Due to the absence of true misclosure, the resulting uncertainty is lower than what is usually obtained. Note that this uncertainty is only valid for the link between CNES and the TAI network. For a comparison between this calibration and another one for this receiver CS22, either relative or absolute, the uncertainty budget might be computed differently.

7. Final results for the system to calibrate.

The next Table provides a summary of the calibration results for CS22 receiver.

Reference	Cal Id	Date		INTDLY P1 /	INTDLY P2 /
system				ns	ns
OPMT	1001-2014	2013-03		310.10	321.65
Visited system	Cal Id	Date	u _{CAL} (P3) / ns	INTDLY P1 /	INTDLY P2 /
				ns	ns
CS22	XXXX-2016	2016-04	0.9	60.3	66.4

Table 7. Summary information on the calibration trip.

The resulting P3 uncertainty, even if underestimated due to the specific calibration campaign, is in line with the conventional Group 2 laboratory uncertainty of 2.5 ns for the TAI network.

ANNEXES.

Annex A. BIPM information sheets. Annex B. Plots of raw data and TDEV analysis. Annex C. Details on the systematic uncertainties.

Annex A. BIPM information sheets.

Cal_Id : XXXX-2016

BIPM Information Sheet

Laboratory		Observatoire de Paris				
Date and hour start of measurement	ts 2016-04-08 (MJD 57485)					
Date and hour end of measurements	5	2016-	04-13 (MJD 57492)			
	Inform	ation on the system				
		Local	Traveling			
4-character BIPM code		OPMT	CS22			
Receiver maker and type	As	htech ZXII3-T	Septentrio PolaRx4			
Receiver serial number		S/N: 02942	S/N: 3008022			
1 PPS trigger level /V		1.0	1.0			
Antenna cable maker and type	An	drews SFGXX	Andrews (?)			
Phase stabilized cable (Y/N)		No	No			
Cable length outside building		≈ 10	≈ 25			
/m						
Antenna maker and type	TSA	3S-02-TSADM	AEROANTENNA			
Antenna serial number		0019	AERAT2775_43			
			S/N : 5614			
Temperature if stabilized /°C		75 °F	N/A			
Measured delays / ns						
		Local	Traveling			
Delay from local UTC(k) to		155.9 ns	103.85 ns			
receiver 1 PPS_IN						
Delay from 1 PPS_IN to	Ir	ncluded above	136.73 ns			
internal reference						
Antenna cable delay		156.5 ns	204.8 ns			
Splitter delay	Ir	ncluded above	N/A			
Additional cable delay	Ir	ncluded above	N/A			
Data use	d for the	generation of CGGT	TS files			
		Local	Traveling			
INT DLY (GPS) /ns	310.	2 (P1) 321.6 (P2)	60.3 (P1) 66.4 (P2)			
INT DLY (GLONASS) /ns		N/A	N/A			
CAB DLY /ns		156.5	204.8			
REF DLY /ns		155.9	240.6			
Coordinate reference frame		ITRF	ITRF			
Latitude or X /m		4202777.36	4202781.42			
Longitude or Y /m	171368.19		171369.26			
Height or Z /m	4778660.47 4778658.89					
	Gen	eral information				
Rise time of local UTC pulse 0.5 ns			0.5 ns			
Air conditioning (Y/N)			yes			
Set temperature value and uncertain	ıty		22 ± 1 °C			
Set humidity value and uncertainty		50 ± 10 %				

Annex B. Plots of raw data and TDEV analysis.

Figure B 1. P1- and P2-code delays of CS22 receiver against OPMT.

Figure B 2. TDEV for P1 differences between CS22 and OPMT.

Figure B 3. TDEV for P2 differences between CS22 and OPMT.

Figure B_4. CGGTTS P3 CV between OPMT and CS22 when implemented in OP in common-clock set-up after application of the CS22 calibrated delays.

Figure B 5. TDEV of CGGTTS P3 CV between CS22 and OPMT.

Annex C. Details on the systematic uncertainties.

Annex C. Details on the systematic uncertainties.

We provide here a detailed description of the systematic uncertainties as they are appearing inside the uncertainty budgets provided in the calibration report.

- All u_a (ReceiverA-ReceiverB) are based on a TDEV analysis. We choose TDEV(1 d) values as the upper limit of the statistical uncertainty of the TDEV computed for the averaging period the closest to 1 d, which is depending on the available set of data. Clearly, except when the set of data is not consistent over the measurement interval, these values are not a limiting factor in the uncertainty budgets.

- The u_b misclosure appearing in the uncertainty budget is only based on the P3 CV offset between the traveling equipment CS22 and the reference equipment OPMT, after application of the CS22 calibrated delays. This misclosure is usually estimated from the traveling transfer equipment instability during the campaign.

- The u_b uncertainty on the position error is estimated according to the accuracy of the PPP solution computed by using the NRCan software together with IGS products. We have chosen an u_b of about 50 ps for these lines of the uncertainty budgets.

- The u_b uncertainty on multipaths is an arbitrary estimate. We do not have any knowledge about papers describing the optimal way to compute such an estimate.

- About the REFDLY measurements for Septentrio receivers, we assume from past experience that delays based on a TIC by applying the double-balance technique can be measured within an uncertainty of about 200 ps. In addition, we take into account the noise of such data (called "Jitter" on a SR620 TIC), which is added quadratically. By considering 90 ps for Septentrio PPS_OUT data as typical value, we obtain for Septentrio REFDLY value an u_b estimate of about 220 ps.

- For Ashtech ZXII3-T receivers, we have to consider two measurements for the REFDLY computation. First the PPS_IN cable delay measurement based on a TIC and assuming a negligible noise (typically below 10 ps), which leads to a figure of about 200 ps. Second the 20 MHz to PPS_IN additional delay, which is measured by using an oscilloscope, within an uncertainty of about 300 ps. By computing the quadratic sum of both values, we obtain for Ashtech REFDLY value an u_b estimate of about 360 ps.

- By considering the simplest technique for antenna cable delay measurement, which would be based on a 1 PPS signal and a TIC, we assume an u_b estimate of about 0.5 ns.

These choices or assumptions are most probably leading to a conservative uncertainty budget for the relative calibration of GPS receivers, except for the misclosure. Note that this computation, aiming at a validation of the conventional Group2 uncertainty for the link between CNES and the TAI network, is achieved without considering any additional uncertainty estimates on the reference receiver delays.

LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France

END OF DOCUMENT