

Calibration Report Septentrio PolaRx5TR serial 3021141 METAS calibration of 2017-10-02

1 Identification of DUT

1.1 GNSS receiver ID

Septentrio
PolaRx5TR
3021141
WAB2
CH04

1.2 HDWAB258.022

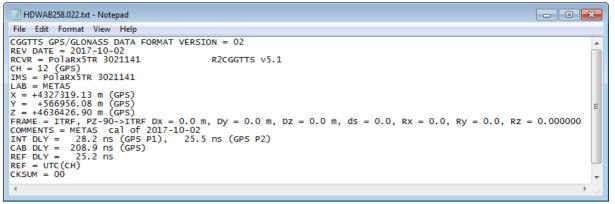


Figure 1-1 Current BIPM header file for WAB2 location with receiver CH04

2 identification of REF

2.1 GNSS receiver

manufacturer :	Septentrio
type :	PolaRx3eTR
serial :	2001065
Rinex code :	WAB1
BIPM code :	CH03
BIPM Cal ID :	1012-2016

2.2 HDWAB157.894

HDWAB157.894.bt - Notepad	• 🔀
File Edit Format View Help	
<pre> Example 2 Control Contr</pre>	000000
REF = UTC(CH) MCA CKSUM = B3	-
۲	∎ I

Figure 2-1 Current BIPM header file for WAB1 location with receiver CH03

3 Calibration method

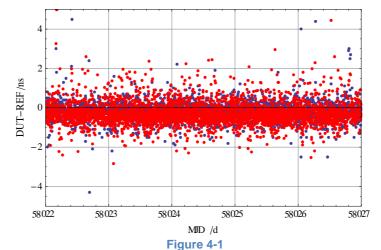
This method was formerly used by PTB and BIPM and is well documented.

Rinex files version 2.11 are converted into CGGTTS files version 2 using R2CGGTTS version 5.1.

In the CGGTTS files the field REFSYS contains the P3 observations P3 – GPS. The P3 observations are the ionosphere-free combination of the P1 and P2 observations.

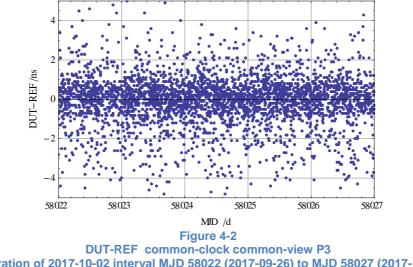
P1 and P2 observations are reconstructed using the REFSYS and MSIO fields according to the conventions of format CGGTTS version 2.

$P_1 = REFSYS + MSIO$	(1)
$P_2 = P_1 + 0.647 \times MSIO$	(2)


The internal delays $INTDLY_{P_1}(REF)$ and $INTDLY_{P_2}(REF)$ of the REF receiver are calibrated. This is why the REF receiver can be used as a standard to calibrate the DUT receiver.

In a differential common-clock experiment the Common-View comparison of DUT-REF must yield zero if the internal delays $INTDLY_{P_1}(DUT)$ and $INTDLY_{P_2}(DUT)$ of the DUT are properly calibrated.

The calibration of the DUT is performed by adjusting the internal delays of the DUT so that the differential common-clock DUT-REF yields an average value of zero.


In this document we use the same definitions as the BIPM for G1 and G2 official GNSS receiver calibrations.

4 Results of the calibration of 2017-10-02

4.1 Common-Clock Common-View Calibration Measurements

DUT-REF common-clock common-view P1 (Blue) and P2 (Red) calibration of 2017-10-02, interval MJD 58022 (2017-09-26) to MJD 58027 (2017-10-01) mean DUT-REF P1 = (-0.2 ± 0.2) ns, mean DUT-REF P2 = (-0.2 ± 0.2) ns

calibration of 2017-10-02 interval MJD 58022 (2017-09-26) to MJD 58027 (2017-10-01) mean DUT-REF P3 = (-0.1 \pm 0.3) ns

4.2 Calibration results

parameter	calibration value
TOTDLY(REF)	(60.4 ± 2.5) ns
	Table 1

Total Delay of REF Receiver CH03 according to BIPM Calibration ID 1012-2016

parameter	calibration value
TOTDLY(DUT)	(216.1 ± 2.52) ns
CABDLY(DUT)	(208.9 ± 1.0) ns
REFDLY(DUT)	(25.2 ± 0.5) ns
INTDLYP3(DUT)	(32.4 ± 2.8) ns
INTDLYP1(DUT)	(28.2 ± 0.9) ns
INTDLYP2(DUT)	(25.5 ± 0.9) ns
	Table 2

2017-10-02 Calibration Results of DUT Receiver CH04

4.3 Determination of the calibration uncertainties

According to BIPM Calibration ID 1012-2016 the standard uncertainty on *TOTDLY*(*REF*) is 2.5 ns.

Since the calibration is performed by means of a differential common-clock common-view comparison the DUT vs the REF receiver, the uncertainty on TOTDLY(DUT) is the same as the uncertainty on TOTDLY(REF), degraded by the statistical uncertainty of the common-view comparison which is assumed to be 0.3 ns. The resulting uncertainty of 2.52 ns is the quadratic combination of 2.5 ns and 0.3 ns.

The *REFDLY(DUT)*, i.e. the delay of the cable between UTC(CH) and the 1-PPS input of the DUT receiver was measured by means of a time interval counter and the standard uncertainty is 0.5 ns.

The *REFDLY(DUT*), i.e. the delay of the antenna cable, was measured using a time domain reflectometer measurement and the standard uncertainty is 1.0 ns.

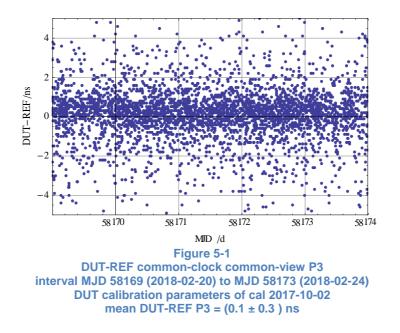
By definition we have.

TOTDLYP3 = CABDLY(DUT) + INTDLYP3(DUT) - REFDLY(DUT)(1)

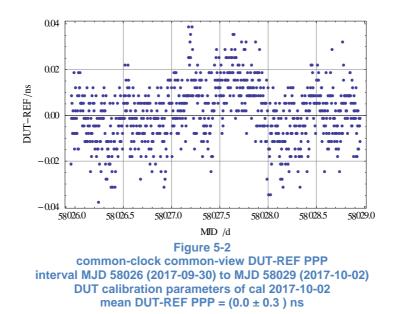
Therefore *INTDLYP3(DUT*) can be computed using the following equation.

INTDLYP3(DUT) = TOTDLY(DUT) - CABDLY(DUT) + REFDLY(DUT)(2)

The standard uncertainty for *INTDLYP3(DUT)* resulting from (2) is 2.8 ns.


On the other hand *INTDLYP3(DUT)* is a linear combination of *INTDLYP1(DUT)* and *INTDLYP2(DUT)*.

 $INTDLYP3(DUT) = 2.546 \times INTDLYP1(DUT) - 1.546 \times INTDLYP2(DUT)$ (3)


If an uncertainty of 0.9 ns is assumed for both *INTDLYP1(DUT)* and *INTDLYP2(DUT)* then the linear combination (3) yields the standard uncertainty on *INTDLYP3(DUT)* of 2.8 ns resulting from (2).

5 Verification measurements

5.1 common-view P3 comparison

5.2 PPP comparison APPS Service (JPL)

