2020 Group 1 GNSS calibration trip

Summary

The 2020 visit to Group 1 laboratories is the fourth Group 1 trip and started in June 2020. The trip is decomposed into several phases, each enclosed with closure at the BIPM. Some phases may be run in parallel.

- Phase 1 (June-December 2020). BIPM-NICT-TL-BIPM with the traveling receivers BP1J and BP25;
- Phase 1b (June-December 2020). BIPM-NIM-TL-BIPM with the traveling receivers TS03 and TS04;
- Phase 2 (to be continued)

Due to the COVID situation, restrictions in shipping made it imposible to carry out Phase 1 with the three APMP laboratorios in the same trip. Taking advantage of the presence of two NIM receivers at the BIPM, a specific trip was organized, described under Phase 1b.

Since phase 3 of the 2018 Group 1 trip, results are provided for the GPS codes P1, P2 and C1 and the Galileo E1 and E5a codes.

This report provides intermediate results which are determined with respect to one BIPM receiver.

Final results for all Group 1 receivers are determined in a separate document <u>BIPM Technical</u> Memorandum 266.

Trip 1001-2020: Report of phase 1b

1. Description of equipment and operations

- 1.1 Traveling equipment
- Traveling systems:

For phase 1b, two systems owned by NIM which were on extended stay at the BIPM are used as traveling receivers: TS03 and TS04, see Table 1 and the report of operations <u>1001-2020-phase1b-cv.pdf</u>.

• Other traveling equipment:

See Annex 1 of the <u>Guidelines</u>.

1.2 Visited equipment

See a summary in Table 1. The detailed information on the set-up and the measurements performed is in the report of operations <u>1001-2020-phase1b-cv.pdf</u>.

The receiver BP21 from the BIPM serves as a reference for the closure, with the receiver BP1C included as a backup system.

Institute	Status of	Dates of	BIPM	RINEX	Receiver type
	equipment	measurement	code	name	
BIPM	Traveling		TS03	TS03	NIM-TF-GNSS-3
BIPM	Traveling		TS04	TS04	NIM-TF-GNSS-3
BIPM	BIPM reference	59010-59015	BP21	BP21	Septentrio PolaRx5TR (AC Off) (1)
BIPM	BIPM backup	59010-59015	BP1C	BP1C	Septentrio PolaRx3TR
NIM	G1 backup	59100-59106	IM15	IM15	NIM-TF-GNSS-3
NIM	G1 reference	59100-59106	IM06	IMEJ	Dicom GTR50
NIM	G1 backup	59100-59106	IM05	BJNM	Septentrio PolaRx3eTR
NIM	G1 backup	59100-59106	IM03	IMEU	NIM-TF-GNSS-2J
NIM	G1 backup	59100-59106	IM21	IM21	NIM-TF-GNSS-3
BIPM	BIPM reference	59191-59197	BP21	BP21	Septentrio PolaRx5TR (AC On) (1)
BIPM	BIPM backup	59191-59197	BP1C	BP1C	Septentrio PolaRx3TR

 Table 1. Summary information on phase 1b of the calibration trip 1001-2020

(1) Because it is estimated that the Auto-compensation mode of the Septentrio PolaRx5 impacts its INTDLY value at the level of 0.5 ns, the mode is indicated in Table 1.

2. Data used

Rinex files have been obtained from all receivers participating to this trip.

3. Results of raw data processing

- The raw code differences have been generated by the DCLRINEX procedure (see <u>Guidelines</u> Annex 3). Each run for a pair of stations generates 3 files (summary .sum, data .dif, plot .pdf). Summary files and plots are available in <u>1001-2020-phase1b-cv.pdf</u>. All code measurements are indicated with 2 digits numeric precision in order to minimize rounding errors in computing dual Frequency values.
- For each pair (traveling visited) or (traveling reference):

- Plots of the data differences and of the statistical analysis (Tdev) are in the report of operations <u>1001-2020-phase1b-cv.pdf</u>;

- The inferred RAWDIF(Code) are taken as the median of the raw differences. The associated uncertainties are taken as the floor of the Tdev values, with a minimum of 0.1 ns.

Two series of measurements were carried out at the NIM. Both are reported and the results are derived from the average of the two series.

• Summary tables.

For this report, the BIPM system BP21 is considered to be the reference. However another system BP1C is used as a backup and is listed in Table 2.1.

Table 2.1 Raw differential results for all pairs (Traveling – Reference) and (Backup - Reference) (ns) at the BIPM.

Labo	Date	Pair	RDIF(P1)	Unc	RDIF(P2)	Unc	RDIF(C1)	Unc	RDIF(E1)	Unc	RDIF(E5)	Unc
BIPM	59010-59015	TS03-BP21	107.82	0.1	106.24	0.1	107.79	0.1	107.80	0.1	109.00	0.1
BIPM	59191-59197	TS03-BP21	78.03	0.1	76.53	0.1	77.99	0.1	77.95	0.1	79.46	0.1
BIPM	59010-59015	TS04-BP21	110.43	0.1	108.09	0.1	110.34	0.1	110.27	0.1	111.51	0.1
BIPM	59191-59197	TS04-BP21	80.73	0.1	78.29	0.1	80.63	0.1	80.58	0.1	81.89	0.1
BIPM	59010-59015	BP1C-BP21	-153.17	0.1	-146.50	0.1	-153.60	0.1				
BIPM	59191-59197	BP1C-BP21	-182.78	0.1	-176.16	0.1	-183.15	0.1				

Table 2.2 Raw differential results for all pairs (Traveling – Visited) (ns)

Labo	Date	Pair	RDIF(P1)	Unc	RDIF(P2)	Unc	RDIF(C1)	Unc	RDIF(E1)	Unc	RDIF(E5a)	Unc
NIM	59100-59106	TS03-IM15	-117.20	0.1	-109.42	0.1	-116.14	0.1	-115.53	0.1	-103.24	0.1
NIM	59100-59106	TS04-IM15	-114.91	0.1	-107.42	0.1	-113.84	0.1	-113.22	0.1	-101.04	0.1
NIM	59100-59106	TS03-IMEJ	-51.91	0.1	-54.80	0.1	-49.88	0.1				
NIM	59100-59106	TS04-IMEJ	-49.63	0.1	-52.77	0.1	-47.58	0.1				
NIM	59100-59106	TS03-BJNM	78.65	0.1	68.60	0.1	79.18	0.1	78.78	0.1	N/A (1)	
NIM	59100-59106	TS04-BJNM	80.93	0.1	70.60	0.1	81.48	0.1	81.11	0.1	N/A (1)	
NIM	59100-59106	TS03-IM21	-105.28	0.1	-104.22	0.1	-104.25	0.1	-103.57	0.1	-98.31	0.1
NIM	59100-59106	TS04-IM21	-103.00	0.1	-102.20	0.1	-101.95	0.1	-101.26	0.1	-96.09	0.1
NIM	59100-59106	TS03-IMEU	-157.37	0.1	-173.08	0.1	-156.55	0.1				
NIM	59100-59106	TS04-IMEU	-155.07	0.1	-171.08	0.1	-154.24	0.1				
NIM	59120-59126	TS03-IM15	-117.15	0.1	-109.38	0.1	-116.03	0.1	-115.43	0.1	-103.18	0.1
NIM	59120-59126	TS04-IM15	-114.97	0.1	-107.41	0.1	-113.80	0.1	-113.20	0.1	-100.94	0.1
NIM	59120-59126	TS03-IMEJ	-51.76	0.1	-54.74	0.1	-49.74	0.1				
NIM	59120-59126	TS04-IMEJ	-49.60	0.1	-52.76	0.1	-47.53	0.1				
NIM	59120-59126	TS03-BJNM	78.54	0.1	68.37	0.1	79.07	0.1	78.70	0.1	N/A	
NIM	59120-59126	TS04-BJNM	80.72	0.1	70.33	0.1	81.27	0.1	80.90	0.1	N/A	
NIM	59120-59126	TS03-IM21	-105.31	0.1	-104.20	0.1	-104.17	0.1	-103.50	0.1	-98.42	0.1
NIM	59120-59126	TS04-IM21	-103.13	0.1	-102.20	0.1	-101.96	0.1	-101.27	0.1	-96.15	0.1
NIM	59120-59126	TS03-IMEU	-157.41	0.1	-173.16	0.1	-156.55	0.1				
NIM	59120-59126	TS04-IMEU	-155.22	0.1	-171.20	0.1	-154.34	0.1				

(1) BJNM does not provide measurements at L5 frequency.

4. Calibration results

In the first step, one computes Δ **SYSDLY**, the differences of SYSDLY for all pairs (Traveling-Reference) and (Traveling-Visited), from

 $\Delta SYSDLY_{A-B}(Code) = RAWDIF_{A-B}(Code) + REFDLY_A - REFDLY_B$ (1) where RAWDIF(Code) is read in Table 2 and where the values REFDLY are in the report of operations <u>1001-2020-phase1b-cv.pdf</u>.

The Δ SYSDLY values are reported in Table 3 for the pairs Traveling-Reference (section 4.1) and in Table 4 for the pairs Traveling-Visited (section 4.2).

In the second step one computes Δ SYSDLY (Visited-Reference) for all visited systems. Δ SYSDLY_{V-R} = Δ SYSDLY_{T-R} - Δ SYSDLY_{T-V}. (2) One can then compute Δ INTDLY (Visited-Reference) for all visited systems. Δ INTDLY_{V-R} = Δ SYSDLY_{V-R} - CABDLY_V + CABDLY_R (3) where the values CABDLY are taken from the report of operations 1001-2020-phase1b-cv.pdf; Tables 5 reports the Δ INTDLY_{V-R} results for the pairs Visited-Reference (section 4.3).

Using assumed $INTDLY_R$ values for the Reference system, Table 6 then reports $INTDLY_V$ for all visited systems (section 4.4).

4.1 Traveling system with respect to the reference system

REFDLY values are taken from the report of operations 1001-2020-phase1b-cv.pdf.

Note (1): The reference receiver BP21 is a PolaRx5TR, it was operated in "Auto-compensation OFF" during the opening session 59010-59015. After MJD 59023, BP21 has been operated in "Auto-compensation ON". Its REFDLY value for 59010-59015 has been corrected by -0.5 ns with respect to the value in 1001-2020-phase1b-cv.pdf to compensate the offset due to the Xo value measured by the operator in "Auto-compensation OFF" with respect to the operation in "Auto-compensation ON".

Table 3.1. Computed ASYSDLY values for the traveling systems with respect to BP1J used as a reference. The misclosures are also indicated. (all values in ns)

Pair Date	DEEDIV	DEEDIV	Nata	P1	(ns)	P2	(ns)	C1	(ns)	E1	(ns)	E5	(ns)	
Pair	Date	KEFDLY _T	REFULY _R	Note	RAWDIF	ΔSYSDLY								
TS03-BP21	59010-59015	27.2	72.8	(1)	107.82	62.29	106.24	60.71	107.79	62.26	107.80	62.27	109.00	63.47
TS03-BP21	59191-59197	27.0	43.3		78.03	61.72	76.53	60.22	77.99	61.68	77.95	61.64	79.46	63.15
		Misclos.				0.57		0.49		0.58		0.63		0.32
TS03-BP21		Mean (1)				62.01		60.47		61.97		61.96		63.31
TS04-BP21	59010-59015	28.1	72.8	(1)	110.43	65.76	108.09	63.42	110.34	65.67	110.27	65.60	111.51	66.84
TS04-BP21	59191-59197	27.9	43.3		80.73	65.33	78.29	62.89	80.63	65.23	80.58	65.18	81.89	66.49
		Misclos.				0.43		0.53		0.44		0.42		0.35
TS04-BP21		Mean (1)				65.55		63.16		65.45		65.39		66.67

Results for the local backup BP1C vs. BP1J are shown in Table 3.2. The misclosure for this pair is an indicator of the relative instabilities of two receivers.

Table 3.2. Computed ASYSDLY value	es for the local backup BP21	with respect to BP1J use	ed as a reference. All values in ns
1	1	1	

					P1	(ns)	P2 (r	ns)	C1 (1	is)	E1	(ns)	E5	(ns)
Pair	Date	REFDLY _T	REFDLY _R	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSD LY	RAWDIF	ΔSYSD LY	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BP1C-BP21	59010-59015	235.0	72.8	(1)	-153.17	9.06	-146.50	15.53	-153.60	8.63				
BP1C-BP21	59191-59197	235.7	43.3		-182.78	9.67	-176.16	16.29	-183.15	9.30				
		Misclos.				0.61		0.56		0.67				
BP1C-BP21		Mean				9.37		16.01		8.97				

4.2 Traveling system with respect to the visited systems

REFDLY values are taken from the report of operations <u>1001-2020-phase1b-cv.pdf</u>.

Table 4. Traveling vs. Visited systems (all values in ns)

Doin	Data	DEEDI V	DEEDI V	Noto	P1	(ns)	P2	(ns)	C1	(ns)	E1	(ns)	E5a	a (ns)
Pair	Date	KEFDLI T	KEFDL I _V	note	RAWDIF	∆SYSDLY								
TS03-IM15	59100-59106	283.2	119.4		-117.20	46.60	-109.42	54.38	-116.14	47.66	-115.53	48.27	-103.24	60.56
TS04-IM15	59100-59106	284.0	119.4		-114.91	49.69	-107.42	57.18	-113.84	50.76	-113.22	51.38	-101.04	63.56
TS03-IMEJ	59100-59106	283.2	121.7	*	-51.91	109.59	-54.80	106.70	-49.88	111.62				
TS04-IMEJ	59100-59106	284.0	121.7	*	-49.63	112.67	-52.77	109.53	-47.58	114.72				
TS03-BJNM	59100-59106	283.2	324.8		78.65	37.05	68.60	27.00	79.18	37.58	78.78	37.18	N/A	N/A
TS04-BJNM	59100-59106	284.0	324.8		80.93	40.13	70.60	29.80	81.48	40.68	81.11	40.31	N/A	N/A
TS03-IM21	59100-59106	283.2	119.8		-105.28	58.12	-104.22	59.18	-104.25	59.15	-103.57	59.83	-98.31	65.09
TS04-IM21	59100-59106	284.0	119.8		-103.00	61.20	-102.20	62.00	-101.95	62.25	-101.26	62.94	-96.09	68.11
TS03-IMEU	59100-59106	283.2	120.1		-157.37	5.73	-173.08	-9.98	-156.55	6.55				
TS04-IMEU	59100-59106	284.0	120.1		-155.07	8.83	-171.08	-7.18	-154.24	9.66				
TS03-IM15	59120-59126	283.2	119.4		-117.15	46.65	-109.38	54.42	-116.03	47.77	-115.43	48.37	-103.18	60.62
TS04-IM15	59120-59126	284.0	119.4		-114.97	49.63	-107.41	57.19	-113.80	50.80	-113.20	51.40	-100.94	63.66
TS03-IMEJ	59120-59126	283.2	121.7		-51.76	109.74	-54.74	106.76	-49.74	111.76				
TS04-IMEJ	59120-59126	284.0	121.7		-49.60	112.70	-52.76	109.54	-47.53	114.77				
TS03-BJNM	59120-59126	283.2	324.8		78.54	36.94	68.37	26.77	79.07	37.47	78.70	37.10	N/A	N/A
TS04-BJNM	59120-59126	284.0	324.8		80.72	39.92	70.33	29.53	81.27	40.47	80.90	40.10	N/A	N/A
TS03-IM21	59120-59126	283.2	119.8		-105.31	58.09	-104.20	59.20	-104.17	59.23	-103.50	59.90	-98.42	64.98
TS04-IM21	59120-59126	284.0	119.8		-103.13	61.07	-102.20	62.00	-101.96	62.24	-101.27	62.93	-96.15	68.05
TS03-IMEU	59120-59126	283.2	120.1		-157.41	5.69	-173.16	-10.06	-156.55	6.55				
TS04-IMEU	59120-59126	284.0	120.1		-155.22	8.68	-171.20	-7.30	-154.34	9.56				

4.3 Visited systems with respect to reference system

The Table 5 provides the values obtained by differencing Table 3.1 (BP21 reference) and Table 4. CABDLY values are taken from the report of operations <u>1001-2020-phase1b-cv.pdf</u>.

Table 5. Visited vs. BP21 Reference (all values in ns)
--

Doir	Data	CARDI V.	CARDI V.	Noto	P1	(ns)	P2	(ns)	C1	(ns)	E1	(ns)	E5a	(ns)
1 all	Date	CABDLIV	CABDLIR	Note	∆SYSDLY	∆INTDLY	∆SYSDLY	∆INTDLY	∆INTDLY	∆INTDLY	∆INTDLY	∆INTDLY	∆SYSDLY	∆INTDLY
IM15-BP21 via TS03	2020.7	212.4	140.8		15.41	-56.20	6.09	-65.52	14.31	-57.29	13.69	-57.92	2.75	-68.85
IM15-BP21 via TS04	2020.7	212.4	140.8		15.86	-55.75	5.98	-65.63	14.69	-56.91	14.01	-57.59	3.11	-68.50
IMEJ-BP21 via TS03	2020.7	248.7	140.8		-47.59	-155.49	-46.24	-154.14	-49.65	-157.55				
IMEJ-BP21 via TSO4	2020.7	248.7	140.8		-47.13	-155.03	-46.38	-154.28	-49.27	-157.17				
BJNM-BP21 via TS03	2020.7	125.0	140.8		24.96	40.76	33.47	49.27	24.39	40.19	24.78	40.58	N/A	N/A
BJNM-BP21 via TS04	2020.7	125.0	140.8		25.42	41.22	33.36	49.16	24.77	40.57	25.08	40.88	N/A	N/A
IM21-BP21 via TS03	2020.7	212.3	140.8		3.89	-67.62	1.29	-70.22	2.82	-68.68	2.13	-69.38	-1.78	-73.28
IM21-BP21 via TS04	2020.7	212.3	140.8		4.35	-67.16	1.15	-70.35	3.20	-68.30	2.45	-69.05	-1.45	-72.95
IMEU-BP21 via TS03	2020.7	250.3	140.8		56.28	-53.23	70.45	-39.06	55.42	-54.08				
IMEU-BP21 via TS04	2020.7	250.3	140.8		56.72	-52.79	70.34	-39.17	55.79	-53.71				
IM15-BP21 via TS03	2020.8	212.4	140.8		15.36	-56.25	6.05	-65.56	14.20	-57.40	13.59	-58.02	2.69	-68.91
IM15-BP21 via TS04	2020.8	212.4	140.8		15.92	-55.69	5.97	-65.64	14.65	-56.95	13.99	-57.61	3.01	-68.60
IMEJ-BP21 via TS03	2020.8	248.7	140.8		-47.74	-155.64	-46.30	-154.20	-49.79	-157.69				
IMEJ-BP21 via TSO4	2020.8	248.7	140.8		-47.16	-155.06	-46.39	-154.29	-49.32	-157.22				
BJNM-BP21 via TS03	2020.8	125.0	140.8		25.07	40.87	33.70	49.50	24.50	40.30	24.86	40.66	N/A	N/A
BJNM-BP21 via TSO4	2020.8	125.0	140.8		25.63	41.43	33.63	49.43	24.98	40.78	25.29	41.09	N/A	N/A
IM21-BP21 via TS03	2020.8	212.3	140.8		3.92	-67.59	1.27	-70.24	2.74	-68.76	2.06	-69.45	-1.67	-73.17
IM21-BP21 via TS04	2020.8	212.3	140.8		4.48	-67.03	1.15	-70.35	3.21	-68.29	2.46	-69.04	-1.39	-72.89
IMEU-BP21 via TS03	2020.8	250.3	140.8		56.32	-53.19	70.53	-38.98	55.42	-54.08				
IMEU-BP21 via TS04	2020.8	250.3	140.8		56.87	-52.64	70.46	-39.05	55.89	-53.61				

4.4 Provisional INTDLY values of visited systems

Table 6 lists INTDLY values of the visited systems, based on the average of AINTDLY values for the two sets in Table 5. Note that they typically differ by no more than 0.1 ns.

These INTDLY values are provisional and based on INTDLY values for BP21 (P1=28.4 ns; P2=27.3 ns; C1=30.6 ns, E1=30.7 ns, E5a=30.9 ns) from 1001-2018, as described in <u>BIPM</u> <u>Technical Memorandum 266</u>. Final INTDLY values will be based on minimizing changes between 1001-2018 and 1001-2020, as described in <u>BIPM Technical Memorandum 266</u>, and will be reported in the global report of the trip 1001-2020 available <u>here</u>. Since two results can be computed from Table 5, using either BP1J or BP25 as traveling system, the values in Table 6 are the average of the two results, and the difference between the two is indicated. We note that the difference Δ (BP1J-BP25) is typically of order 0.3 to 0.4 ns. It is taken into account in component u_{b,1} of the uncertainty budget in Tables 7 and 8.

Pair	Data	Note	P1	P2	C1	E1	E5
rair	Date	note	INTDLY _V				
IM15 vs BP21	2020.7		-27.57	-38.28	-26.54	-27.08	-36.43
Δ (TS03-TS04)			-0.51	0.10	-0.41	-0.36	-0.35
IMEJ vs BP21	2020.7	(1)	0.10	0.08	0.19		
Δ (TS03-TS04)			-0.52	0.12	-0.42		
BJNM vs BP21	2020.7		69.47	76.64	71.06	71.50	N/A
Δ (TS03-TS04)			-0.51	0.09	-0.43	-0.37	N/A
IM21 vs BP21			-38.95	-42.99	-37.91	-38.53	-40.79
Δ (TS03-TS04)	2020.9		-0.51	0.12	-0.42	-0.36	-0.33
IMEU vs BP21			-24.56	-11.76	-23.27		
Δ (TS03-TS04)	2020.9	(3)	-0.50	0.09	-0.42		

Table 6. Provisional INTDLY values of Visited systems using 1001-2018 reference values for the reference systems BP21 (all values in ns).

(1) GTR50: Results are changes with respect to values entered in the receiver (-31.8 ns P1, -16.4 ns P2, -31.0 ns C1).

5 Uncertainty estimation

In this section, we determine the uncertainty of the differential calibration process i.e. we estimate all components that can affect the accuracy. We determine a value U_{CAL0} that is to be used as the accuracy of all P3/PPP links (Visited – Reference) at the epoch of calibration.

$$u_{CAL0} = \sqrt{u_a^2 + u_b^2}$$

with the statistical uncertainty u_a and the systematic uncertainty u_b . (all are 1-sigma). The statistical uncertainty u_a originates from RAWDIF (see section 3) and is given by the statistical analysis of the raw code differences for (Traveling-Reference) and (Traveling-Visited).

The systematic uncertainty is given by $u_B = \sqrt{\sum_n u_{b,n}^2}$

where all possible terms to be considered in the sum are listed in Table 7 for GPS and Table 8 for Galileo and some detail on their estimation is provided at the end of this section. Values appear separately for each code and for the difference of the two codes (P1, P2 and P1-P2 for GPS) so as to compute a value u_{CAL} applicable to P3 links.

We choose to compute U_{CAL} using for u_b the uncertainty u_{bSYS} of $\Delta SYSDLY_{V-R}$ from equation (2)¹ Table 7 presents all components of the uncertainty budget along with the uncertainty u_{bSYS} of $\Delta SYSDLY_{V-R}$ from equation (2) and the resulting uncertainty value U_{CAL} .

The value $u_{CAL} = 1.4$ ns from Tables 7 and 8 is applicable to dual-frequency code or PPP links. The value $u_{CAL} = 1.2$ ns is applicable to C1/E1 links. Final values of u_{CAL} are consistent with the conventional value of 1.5 ns for dual-frequency links between G1 laboratories, as used in UTC computation.

Unc.	Value C1/P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description			
u _a (T-V)	0.1	0.1			RAWDIF (traveling-visited)			
$u_a (T-R)$	0.1	0.1			RAWDIF (traveling-reference)			
u _a	0.15	0.15		0.4	See text below			
"Misclosure"								
u _{b,1}	0.5	0.5	0.5		observed mis-closure			
Systematic co	mponents relate	d to RAW	/DIF					
u _{b,11}	0.1	0.1	0.1		Position error at reference			
u _{b,12}	0.1	0.1	0.1		Position error at visited			
u _{b,13}	0.2	0.2	0.3		Multipaths at reference			
u _{b,14}	0.2	0.2	0.3		Multipaths at visited			
Link of the Tra	veling system to	the local U	UTC(k)					
u _{b,21}	0.5	0.5	0		REFDLY _T (at ref lab)			
u _{b,22}	0.5	0.5	0		REFDLY _T (at visited lab) (1)			
u _{b,TOT}	0.9	0.9	0.7	1.4				
Link of the Ret	ference system to	its local U	JTC(k)					
u _{b,31}	0.5	0.5	0		REFDLY _R (at ref lab)			
Link of the Vis	ited system to its	local UTC	<u>(k)</u>					
u _{b,32}	0.5	0.5	0		REFDLY _V (at visited lab)			
u _{b,SYS}	1.2	1.2	0.7	1.5	Components of equation (2)			
u _{CAL}	1.2			1.5	Composed of u _a and u _{b,SYS}			

Table 7. Uncertainty contributions. For all components of u_b , the P3 values are computed as P1 + 1.545x(P1-P2)

¹ It is somewhat arbitrary to choose SYSDLY to estimate the link accuracy. This reflects the fact that the REFDLY is subject to change e.g. with change of reference clock and that its uncertainty should better be taken into account.

Table 8. Galileo uncertainty contributions. For all components of u_b , the E3 values are computed as E1 + 1.261x(E1-E5)

Unc.	Value E1 (ns)	Value E5 (ns)	Value E1-E5 (ns)	Value E3 (ns)	Description				
u _a (T-V)	0.1	0.1			RAWDIF (traveling-visited)				
u _a (T-R)	0.1	0.1			RAWDIF (traveling-reference)				
u _a	0.15	0.15		0.4	See text below				
"Misclosure"									
u _{b,1}	0.5	0.5	0.5		observed mis-closure				
Systematic co	mponents relate	ed to RAW	/DIF						
u _{b,11}	0.1	0.1	0.1		Position error at reference				
u _{b,12}	0.1	0.1	0.1		Position error at visited				
u _{b,13}	0.2	0.2	0.3		Multipaths at reference				
u _{b,14}	0.2	0.2	0.3		Multipaths at visited				
Link of the Tra	veling system to	the local	UTC(k)						
u _{b,21}	0.5	0.5	0		REFDLY _T (at ref lab)				
u _{b,22}	0.5	0.5	0		REFDLY _T (at visited lab)				
u _{b,TOT}	0.9	0.9	0.7	1.2					
Link of the Ret	ference system to	its local U	JTC(k)						
u _{b,31}	0.5	0.5	0		REFDLY _R (at ref lab)				
Link of the Vis	sited system to its	local UTC	2(k)	-					
u _{b,32}	0.5	0.5	0		REFDLY _V (at visited lab)				
u _{b,SYS}	1.2	1.2	0.7	1.4	Components of equation (2)				
u _{CAL}	1.2			1.5	Composed of u _a and u _{b,SYS}				

The components in Table 7 and 8 are separated in several categories:

- The u_a value for P3 is conservatively estimated from the linear combination of P1 and P2 values. Lower values would be obtained from a statistical analysis of P3 RAWDIF
- $u_{b,1}$ accounts for possible variations of the delays of the traveling systems during the trip. This is evaluated on the one hand by the observed misclosure (~ 0.3-0.4 ns average for each code, see Table 3.1), on the other hand by the observed discrepancies between the results of the two traveling receivers (~ 0.3-0.4 ns average for each code, see Table 6). The chosen values accounts for both evaluations.
- $u_{b,11}$ and $u_{b,12}$ account for errors in the differential position (Travel Local). They are conservatively estimated to be 3 cm (100 ps) to account for possible sub-nominal behavior of the baseline determination occasionally observed in the DCLRINEX software. The L5 baseline used for Galileo processing is determined from L5 data.
- $u_{b,13}$ and $u_{b,14}$ account for multipaths. This is difficult to estimate and 0.2 ns is conventionally used, following a discussion in the CCTF working group on GNSS in 2017.
- $u_{b,21}$ and $u_{b,22}$ account for the measurement between the reference point of the traveling system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns.
- $u_{b,31}$ and $u_{b,32}$ account similarly for the measurement between the reference point of the local system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns.

Version history V1.0 2021/01/29: Draft report of phase 1b.