2016 Group 1 GPS calibration trip

Summary

The 2016 visit to Group 1 laboratories started in March 2016.

The trip is decomposed into several phases, each separated with closures at the BIPM.

- Phase 1 (March-September 2016). BIPM-TL-NICT-NIM-BIPM with the traveling receivers BP1C and BP0U; In addition, a visit to NTSC was organized to check results of a previous Group 2 trip by NIM.
- Phase 2 (October-December 2016): BIPM-PTB-ROA-OP-BIPM with the traveling receivers BP1C and BP0U;
- Phase 3 (February-May 2017): BIPM-USNO-NIST-BIPM with the traveling receivers BP1C and BP0U;
- Phase 4 (To be continued)

Following work described in <u>BIPM Technical Memorandum 243</u>, calibration results for code C1 (L1C) have been added to the original Group 1 P1/P2 calibration. Starting with this report for the second Group 1 trip, results are provided for the GPS codes P1, P2 and C1.

This report provides intermediate results which are determined with respect to one BIPM receiver.

Final results for all three codes for all Group 1 receivers are determined in a separate document <u>BIPM</u> Technical Memorandum 266.

Trip 1001-2016: Report of phase 3

1. Description of equipment and operations

- 1.1 Traveling equipment
- Traveling systems:

Two systems are included in the BIPM traveling calibrator: BP1C and BP0U, see Table 1 and the report of operations 1001-2016-phase3-cv.pdf.

The long term stability of the two systems is described in the BIPM Technical Memorandum 204.

• Other traveling equipment:

See Annex 1 of the **Guidelines**.

1.2 Visited equipment

See a summary in Table 1. The detailed information on the set-up and the measurements performed is in the report of operations 1001-2016-phase3-cv.pdf.

For reasons mentioned in section 3, two receivers (BP1J and BP1X) from the BIPM have been included as backup systems to check the closure.

Table	1. Summary	information	on	phase 3	of the	e calibration tri	p 1001-2016

Institute	Status of	Dates of	BIPM	RINEX	Receiver type
	equipment	measurement	code	name	
BIPM	Traveling		BP1C	BP1C	Septentrio PolaRx3eTR
BIPM	Traveling		BP0U	BP0U	Dicom GTR50
BIPM	BIPM reference	57778-57782	BPOR	BPOR	Septentrio PolaRx2eTR
BIPM	BIPM backup	57778-57782	BP1J	BP1J	Septentrio PolaRx4
BIPM	BIPM backup	57778-57782	BP1X	BP1X	Dicom GTR51
USNO	G1 backup	57671-57678	USN6	USN6	Ashtech Z12T
USNO	G1 reference	57671-57678	USN7	USN7	Ashtech Z12T
NIST	G1 reference	57863-57867	NIST	NIST	Novatel OEM4-G2
NIST	G1 backup	57863-57867	NISS	NISS	Septentrio PolaRx3e TRPro
NIST	G1 backup	57863-57867	NIS3	NB01	Novatel OEM5
NIST	G1 backup	57863-57867	NIS4	NB02	Novatel OEM5
BIPM	BIPM reference	57896-57906	BPOR	BPOR	Septentrio PolaRx2eTR
BIPM	BIPM backup	57896-57906	BP1J	BP1J	Septentrio PolaRx4
BIPM	BIPM backup	57896-57906	BP1X	BP1X	Dicom GTR51

2. Data used

Rinex files have been obtained from all receivers participating to this trip.

3. Results of raw data processing

- The raw code differences have been generated by the DCLRINEX procedure (see <u>Guidelines</u> Annex 3). Each run for a pair of stations generates 3 files (summary .sum, data .dif, plot .pdf). Summary files and plots are available in <u>1001-2016-phase3-cv.pdf</u>. All P1/P2 measurements are indicated with 2 digits numeric precision in order to minimize rounding errors in computing P3 values.
- In Phases 1 and 2 of this trip, we noted that the phase measurements of BP0R are sometimes corrupted and could not be fully trusted to compute the baseline that is needed to compute the code differences. To overcome this, we used two other receivers (BP1J and BP1X), which have previously been compared to BP0R, as additional references to check the baselines and the results obtained from BP0R.
- For each pair (traveling visited) or (traveling reference):
 - Plots of the data differences and of the statistical analysis (Tdev) are in the report of operations 1001-2016-phase3-cv.pdf;
 - The inferred RAWDIF(P1), RAWDIF(P2) and RAWDIF(C1) are taken as the median of the raw differences. The associated uncertainties are taken as the floor of the Tdev values, with a minimum of 0.1 ns.
- Summary tables.

For this report, the BIPM system BP0R is considered to be the reference. However two other systems (BP1J and BP1X) are used as backups to check the behavior of BP0R and are listed in Table 2.1.

Table 2.1 Raw differential results for all pairs (Traveling – Reference) (ns) for three reference receivers at the BIPM.

Labo	Date	Pair	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc	RAWDIF(C1)	Unc
BIPM	57778-57782	BP1C-BP0R	-59.86	0.1	-55.96	0.1	-61.18	0.1
BIPM	57896-57906	BP1C-BP0R	-59.49	0.1	-56.11	0.1	-60.74	0.1
BIPM	57778-57782	BPOU-BPOR	-95.35	0.1	-90.99	0.1	-98.49	0.1
BIPM	57896-57906	BPOU-BPOR	-95.09	0.1	-91.31	0.1	-98.14	0.1
BIPM	57778-57782	BP1C-BP1J	25.41	0.1	31.46	0.1	25.88	0.1
BIPM	57896-57906	BP1C-BP1J	25.54	0.1	31.33	0.1	26.07	0.1
BIPM	57778-57782	BPOU-BP1J	-10.04	0.1	-3.46	0.1	-11.42	0.1
BIPM	57896-57906	BPOU-BP1J	-10.09	0.1	-3.82	0.1	-11.35	0.1
BIPM	57778-57782	BP1C-BP1X	31.53	0.1	34.74	0.1	37.48	0.1
BIPM	57896-57906	BP1C-BP1X	31.28	0.1	34.58	0.1	37.17	0.1
BIPM	57778-57782	BPOU-BP1X	-4.06	0.1	-0.28	0.1	0.04	0.1
BIPM	57896-57906	BPOU-BP1X	-4.38	0.1	-0.72	0.1	-0.31	0.1

Table 2.2 Raw differential results for all pairs (Traveling – Visited) (ns)

Labo	Date	Pair	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc	RAWDIF(C1)	Unc
USNO	57839-57849	BP1C-USN6	-17.34	0.1	-8.95	0.1	-15.79	0.1
USNO	57839-57849	BPOU-USN6	-74.66	0.1	-66.05	0.1	-74.94	0.1
USNO	57839-57849	BP1C-USN7	-17.95	0.1	-9.48	0.1	-17.33	0.1
USNO	57839-57849	BPOU-USN7	-75.25	0.1	-66.59	0.1	-76.39	0.1
NIST	57863-57867	BP1C-NIST	-605.24	0.1	-600.25	0.2	-603.80	0.1
NIST	57863-57867	BPOU-NIST	-646.79	0.1	-641.44	0.2	-647.00	0.2
NIST	57863-57867	BP1C-NISS	903.64	0.1	908.64	0.1	903.64	0.1
NIST	57863-57867	BPOU-NISS	862.25	0.1	867.67	0.1	860.49	0.1
NIST	57863-57867	BP1C-NIS3	814.76	0.1	831.49	0.1	816.31	0.1
NIST	57863-57867	BP0U-NIS3	773.39	0.1	790.44	0.1	773.19	0.1
NIST	57863-57867	BP1C-NIS4	788.71	0.2	805.75	0.2	790.21	0.2
NIST	57863-57867	BP0U-NIS4	747.35	0.2	764.78	0.2	747.05	0.2

4. Calibration results

In the first step, one computes Δ SYSDLY, the differences of SYSDLY for all pairs (Traveling-

Reference) and (Traveling-Visited), from

$$\Delta SYSDLY_{A-B}(Code) = RAWDIF_{A-B}(Code) + REFDLY_A - REFDLY_B$$

where RAWDIF(Code) is read in Table 2 and where the values REFDLY are in the report of operations 1001-2016-phase3-cv.pdf.

The Δ SYSDLY values are reported in Table 3 for the pairs Traveling-Reference (section 4.1) and in Table 4 for the pairs Traveling-Visited (section 4.2).

In the second step one computes Δ SYSDLY (Visited-Reference) for all visited systems.

$$\Delta SYSDLY_{V-R} = \Delta SYSDLY_{T-R} - \Delta SYSDLY_{T-V}. \tag{2}$$

One can then compute Δ INTDLY (Visited-Reference) for all visited systems.

$$\Delta INTDLY_{V-R} = \Delta SYSDLY_{V-R} - CABDLY_V + CABDLY_R$$
(3)

where the values CABDLY are taken from the report of operations <u>1001-2016-phase3-cv.pdf</u>; Tables 5 reports the ΔINTDLY_{V-R} results for the pairs Visited-Reference (section 4.3).

Using assumed $INTDLY_R$ values for the Reference system, Table 6 then reports $INTDLY_V$ for all visited systems (section 4.4).

4.1 Traveling system with respect to the reference system

Table 3.1. Computed ASYSDLY values for the traveling systems with respect to BPOR used as a reference. The misclosures are also indicated. (all values in ns)

Dain	Doto	DEEDI V	DEEDI V	Mada	P1	(ns)	P2	(ns)	C1	(ns)
Pair	Date	REFDLY _T	REFDLY _R	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BP1C-BP0R	57778-57782	256.5	268.9		-59.86	-72.26	-55.96	-68.36	-61.18	-73.58
BP1C-BP0R	57896-57906	256.4	269.0		-59.49	-72.09	-56.11	-68.71	-60.74	-73.34
		Misclos.				0.17		0.35		0.24
BP1C-BP0R		Mean				-72.18		-68.54		-73.46
BPOU-BPOR	57778-57782	52.6	268.9		-95.35	-311.65	-90.99	-307.29	-98.49	-314.79
BPOU-BPOR	57896-57906	52.6	269.0		-95.09	-311.49	-91.31	-307.71	-98.14	-314.54
		Misclos.				0.16		0.42		0.25
BPOU-BPOR		Mean				-311.57		-307.50		-314.67

Results for BP0R have been checked using BP1J and BP1X. Misclosures for BP1J and BP1X can be directly interpreted from the data in Table 3.2 and 3.3. However, the mean values of ΔSYSDLY obtained for (Traveling – BP1J) and (Traveling – BP1X) in Table 3.2 and 3.3 cannot be directly compared to those obtained for (Traveling – BP0R).

Table 3.2. Computed ASYSDLY values for the traveling systems with respect to BP1J used as a reference. The misclosures are also indicated. (all values in ns)

ъ.	D /				P1	(ns)	P2	(ns)	C1	(ns)
Pair	Date	REFDLY _T	REFDLY _R	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BP1C-BP1J	57778-57782	256.5	179.9		25.41	102.01	31.46	108.06	25.88	102.48
BP1C-BP1J	57896-57906	256.4	180.1		25.54	101.84	31.33	107.63	26.07	102.37
		Misclos.				0.17		0.43		0.11
		Mean				101.93		107.85		102.43
BPOU-BP1J	57778-57782	52.6	179.9		-10.04	-137.34	-3.46	-130.76	-11.42	-138.72
BPOU-BP1J	57896-57906	52.6	180.1		-10.09	-137.59	-3.82	-131.32	-11.35	-138.85
		Misclos.				0.25		0.56		0.13
		Mean				-137.47		-131.04		-138.79

Table 3.3. Computed ASYSDLY values for the traveling systems with respect to BP1X used as a reference. The misclosures are also indicated. (all values in ns)

Pair	Doto	DEEDI V	DEEDI V	Note	P1	(ns)	P2	(ns)	C1	(ns)
Pair	Date	REFDLY _T	REFDLY _R	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BP1C-BP1X	57778-57782	256.5	42.6		31.53	245.43	34.74	248.64	37.48	251.38
BP1C-BP1X	57896-57906	256.4	42.6		31.28	245.08	34.58	248.38	37.17	250.97
		Misclos.				0.35		0.26		0.41
		Mean				245.26		248.51		251.18
BPOU-BP1X	57778-57782	52.6	42.6		-4.06	5.94	-0.28	9.72	0.04	10.04
BPOU-BP1X	57896-57906	52.6	42.6		-4.38	5.62	-0.72	9.28	-0.31	9.69
		Misclos.				0.32		0.44		0.35
		Mean				5.78		9.50		9.87

This is done in Table 3.4 using comparisons (BP1J-BP0R) and (BP1X-BP0R) obtained in December 2015. As can be seen from Table 3.4, the various evaluations of ΔSYSDLY for (BP1C-BP0R) vary by no more than about 0.2 ns. They are considered close enough so that, in the following, the directly measured values (BP1C-BP0R) and (BP0U-BP0R) will be used to compute the results of the Group 1 trip.

Table 3.4. Computed ASYSDLY mean values for the traveling systems with respect to BPOR computed directly (Table 3.1) or through BP1J (Table 3.2) or BP1X (Table 3.3). Numerical discrepancies of 0.01 ns are due to rounding (all values in ns).

· III CII CUI GIBCI	epanetes of 0.0	I III are aac	10	rounding (d	 varaes in ns)
		ΔSYSDLY P1		ΔSYSDLY P2	ΔSYSDLY C1
BP1C-BP0R	Mean value	-72.18		-68.54	-73.46
BP1C-BP1J	Mean value	101.93		107.85	102.43
BP1J-BP0R	Dec 2015	-174.1		-176.4	-175.9
BP1C-BP0R	Sum of above	-72.18		-68.56	-73.48
BP1C-BP1X	Mean value	245.26		248.51	251.18
BP1X-BP0R	Dec 2015	-317.5		-317.1	-324.7
BP1C-BP0R	Sum of above	-72.25		-68.59	-73.53
BPOU-BPOR	Mean value	-311.57		-307.50	-314.67
BPOU-BP1J	Mean value	-137.47		-131.04	-138.79
BP1J-BP0R	Dec 2015	-174.1		-176.4	-175.9
BPOU-BPOR	Sum of above	-311.57		-307.44	-314.69
BPOU-BP1X	Mean value	5.78		9.50	9.87
BP1X-BP0R	Dec 2015	-317.5		-317.1	-324.7
BPOU-BPOR	Sum of above	-311.72		-307.60	-314.84

4.2 Traveling system with respect to the visited systems

Table 4. Traveling vs. Visited systems (all values in ns)

Dain	Data	DEEDI V	DEEDL V	Mada	P1	(ns)	P2	(ns)	C1	(ns)
Pair	Date	REFDLY _T	REFDLY _V	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BP1C-USN6	57839-57849	306.8	0.0	*	-17.34	289.46	-8.95	297.85	-15.79	291.01
BP0U-USN6	57839-57849	125.0	0.0	*	-74.66	50.34	-66.05	58.95	-74.94	50.06
BP1C-USN7	57839-57849	306.8	0.0	*	-17.95	288.85	-9.48	297.32	-17.33	289.47
BP0U-USN7	57839-57849	125.0	0.0	*	-75.25	49.75	-66.59	58.41	-76.39	48.61
BP1C-NIST	57863-57867	773.5	87.3		-605.24	80.93	-600.25	85.92	-603.80	82.37
BPOU-NIST	57863-57867	575.6	87.3		-646.79	-158.50	-641.44	-153.15	-647.00	-158.71
BP1C-NISS	57863-57867	773.5	1736.9		903.64	-59.73	908.64	-54.73	903.64	-59.73
BPOU-NISS	57863-57867	575.6	1736.9		862.25	-299.00	867.67	-293.58	860.49	-300.76
BP1C-NIS3	57863-57867	773.5	1597.0		814.76	-8.69	831.49	8.04	816.31	-7.14
BPOU-NIS3	57863-57867	575.6	1597.0		773.39	-247.94	790.44	-230.89	773.19	-248.14
BP1C-NIS4	57863-57867	773.5	1566.4		788.71	-4.21	805.75	12.83	790.21	-2.71
BP0U-NIS4	57863-57867	575.6	1566.4		747.35	-243.45	764.78	-226.02	747.05	-243.75

^{*} USN6 and USN7 delay values incorporated in Rinex data.

4.3 Visited systems with respect to reference system

The Table 5 provides the values obtained by differencing Table 3.1 (BP0R reference) and Table 4. CABDLY values are taken from the report of operations <u>1001-2016-phase3-cv.pdf</u>.

Table 5. Visited vs. BPOR Reference (all values in ns)

Doin	Doto	CAPDIV	CAPDIV	Note	P1	(ns)	P2	(ns)	C1	(ns)
Pair	Date	CABDLY _V	CABDLY _R	Note	ΔSYSDLY	ΔINTDLY	ΔSYSDLY	ΔINTDLY	ΔSYSDLY	ΔINTDLY
USN6-BPOR via BP1C	2017.2	0.0	133.4	*	-361.64	-228.24	-366.39	-232.99	-364.47	-231.07
USN6-BPOR via BPOU	2017.2	0.0	133.4	*	-361.91	-228.51	-366.45	-233.05	-364.73	-231.33
USN7-BPOR via BP1C	2017.2	0.0	133.4	*	-361.03	-227.63	-365.86	-232.46	-362.93	-229.53
USN7-BPOR via BPOU	2017.2	0.0	133.4	*	-361.32	-227.92	-365.91	-232.51	-363.28	-229.88
NIST-BPOR via BP1C	2017.3	275.5	133.4		-153.11	-295.21	-154.46	-296.56	-155.83	-297.93
NIST-BPOR via BPOU	2017.3	275.5	133.4		-153.07	-295.17	-154.35	-296.45	-155.96	-298.06
NISS-BPOR via BP1C	2017.3	298.9	133.4		-12.45	-177.95	-13.81	-179.31	-13.73	-179.23
NISS-BPOR via BPOU	2017.3	298.9	133.4		-12.57	-178.07	-13.92	-179.42	-13.91	-179.41
NIS3-BPOR via BP1C	2017.3	298.5	133.4		-63.49	-228.59	-76.58	-241.68	-66.32	-231.42
NIS3-BPOR via BPOU	2017.3	298.5	133.4		-63.63	-228.73	-76.61	-241.71	-66.52	-231.63
NIS4-BPOR via BP1C	2017.3	298.0	133.4		-67.97	-232.57	-81.36	-245.97	-70.75	-235.35
NIS4-BPOR via BPOU	2017.3	298.0	133.4		-68.12	-232.72	-81.48	-246.08	-70.92	-235.52

^{*} USN6 and USN7 delay values incorporated in Rinex data.

4.4 Provisional INTDLY values of visited systems

Table 6 lists provisional INTDLY values of the visited systems using 1001-2014 Group 1 values for BP0R (P1=222.6 ns; P2=224.8 ns; C1=225.8 ns), see in TM243 Group1-reference-values V7.pdf. Final INTDLY values will be based on minimizing changes between 1001-2014 and 1001-2016, as described in BIPM Technical Memorandum 266, and will be reported in the global report of the trip 1001-2016 available here. Since two results can be computed from Table 5, using either BP1C or BP0U as traveling system, the values in Table 6 are the simple mean of the two results, and the difference between the two is indicated. We note that the difference $\Delta(BP1C-BP0U)$ is typically below 0.3 ns, which is considered reasonable and covered in the uncertainty budget.

Table 6. Provisional INTDLY values of Visited systems using 1001-2014 reference values for the reference systems BP0R (all values in ns).

Doin	Doto	Note	P1	P2	C1
Pair	Date	Note	INTDLYv	INTDLYv	INTDLYv
USN6 vs. BP0R	2017.25	(1)	-5.77	-8.22	-5.40
$\Delta(BP1C\text{-}BP0U)$			0.27	0.06	0.25
USN7 vs. BPOR	2017.25	(1)	-5.17	-7.68	-3.90
$\Delta(BP1C\text{-}BP0U)$			0.29	0.05	0.34
NIST vs. BPOR	2017.31		-72.59	-71.70	-72.19
$\Delta(BP1C\text{-}BP0U)$			-0.03	-0.11	0.12
NISS vs. BPOR	2017.31		44.59	45.44	46.48
$\Delta(BP1C\text{-}BP0U)$			0.13	0.12	0.18
NIS3 vs. BPOR	2017.31		-6.06	-16.89	-5.72
$\Delta(BP1C\text{-}BP0U)$			0.14	0.03	0.20
NIS4 vs. BPOR	2017.31		-10.04	-21.22	-9.63
$\Delta(BP1C\text{-}BP0U)$			0.15	0.12	0.16

⁽¹⁾ For USN6 and USN7, results are changes with respect to values entered in the receiver

5 Uncertainty estimation

In this section, we determine the uncertainty of the differential calibration process i.e. we estimate all components that can affect the accuracy. We determine a value U_{CAL0} that is to be used as the accuracy of all P3/PPP links (Visited – Reference) at the epoch of calibration.

$$u_{CALO} = \sqrt{u_a^2 + u_b^2}$$

with the statistical uncertainty u_a and the systematic uncertainty u_b. (all are 1-sigma).

The statistical uncertainty u_a originates from RAWDIF (see section 3) and is given by the statistical analysis of the raw code differences for (Traveling-Reference) and (Traveling-Visited).

The systematic uncertainty is given by
$$u_B = \sqrt{\sum_n u_{b,n}^2}$$

where all possible terms to be considered in the sum are listed in Table 7 and some detail on their estimation is provided at the end of this section. Values appear separately for each code and for the difference of the two codes (P1, P2 and P1-P2) so as to compute a value u_{CAL} applicable to P3 links. We choose to compute U_{CAL} using for u_b the uncertainty u_{bSYS} of $\Delta SYSDLY_{V-R}$ from equation (2) Table 7 presents all components of the uncertainty budget along with the uncertainty ubsys of Δ SYSDLY_{V-R} from equation (2) and the resulting uncertainty value U_{CAL}.

Table 7. Uncertainty contributions. For all components of u_b, the P3 values are computed as P1 + 1.545x(P1-P2)

as 1 1 + 1.	.545x(P1-P2)	T 7 1	¥7.1	X 7 1					
Unc.	Value C1/P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description				
u _a (T-V)	0.1	0.1			RAWDIF (traveling-visited)				
u _a (T-R)	0.1	0.1			RAWDIF (traveling-reference)				
u _a	0.15	0.15		0.4					
Traveling system instability									
$u_{b,1}$	0.3	0.3	0.2		Misclosure + compare 2 travelings				
Systematic co	mponents relate	d to RAW	/DIF						
$u_{b,11}$	0.05	0.05	0.05		Position error at reference				
$u_{b,12}$	0.05	0.05	0.05		Position error at visited				
$u_{b,13}$	0.2	0.2	0.3		Environment at reference				
$u_{b,14}$	0.2	0.2	0.3		Environment at visited				
Link of the Tra	veling system to	the local l	UTC(k)						
$u_{b,21}$	0.5	0.5	0		REFDLY _T (at ref lab)				
$u_{b,22}$	0.5	0.5	0		REFDLY _T (at visited lab)				
$u_{b,TOT}$	0.8	0.8	0.5	1.0					
Link of the Ref	ference system to	its local U	JTC(k)						
$u_{b,31}$	0.5	0.5	0		REFDLY _R (at ref lab)				
Link of the Vis	ited system to its	local UTC	(k)						
$u_{b,32}$	0.5	0.5	0		REFDLY _V (at visited lab)				
$u_{b,SYS}$	1.1	1.1	0.5	1.3	Components of equation (2)				
u_{CAL}	1.1			1.3	Composed of u _a and u _{b,SYS}				

¹ It is somewhat arbitrary to choose SYSDLY to estimate the link accuracy. This reflects the fact that the REFDLY is subject to change e.g. with change of reference clock or distribution and that its uncertainty should better be taken into account.

The components in Table 7 are separated in several categories:

- $u_{b,1}$ accounts for possible variations of the delays of the traveling systems during the trip. This is evaluated on the one hand by the observed misclosure (~ 0.3 ns average for each code, 0.2 ns for P1-P2, see Table 3.1), on the other hand by the observed discrepancies between the results of the two traveling receivers (< 0.3 ns average for each code, < 0.2 ns average for P1-P2, see Table 6). The chosen values represent an average of both evaluations.
- $u_{b,11}$ and $u_{b,12}$ account for errors in the differential position (Travel Local). In general they are estimated to be 1.5 cm (50 ps) because the standard uncertainty of the differential positioning obtained with the data used for calibration is typically at or below this level.
- $u_{b,13}$ and $u_{b,14}$ account for environmental effects, including multipaths. This is difficult to estimate and a conservative estimate of 0.2 ns is conventionally used, following discussions in the CCTF Working Group on GNSS.
- $u_{b,21}$ and $u_{b,22}$ account for the measurement between the reference point of the traveling system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns
- $u_{b,31}$ and $u_{b,32}$ account similarly for the measurement between the reference point of the local system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns.

Version history V1.0 2017/06/22: