Initial Group 1 calibration trip

Summary

Several visits of the BIPM equipment 'METODE' to Group 1 laboratories have been carried out between April 2013 and September 2014 to carry out tests of the equipment. These visits were successful and it was decided to consider them as the start of the initial Group 1 calibration trip.

Because the set-up of the METODE was not constant in all visits, the trip is actually separated in several phases:

- Phase 1 (March-April 2013). BIPM-OP-BIPM with the two traveling receivers BP0T and BP0U;
- Phase 2 (April 2013-September 2014). BIPM-PTB-BIPM-TL-BIPM-NMIJ-NICT-BIPM-NIM-BIPM-ROA-BIPM with the two traveling receivers BP1C and BP0U;

The starting session (at BIPM) for the second phase corresponds to the closing session of the first phase.

- Phase 3 (XXXX 2014). BIPM-SU-BIPM with the traveling receiver BP1K;
- Phase 4 (starting January 2015). BIPM-NIST-USNO-BIPM with the two traveling receivers BP1C and BP0U.

Trip 1001-2014: Report of phase 1

1. Description of equipment and operations

- 1.1 Traveling equipment
- Traveling systems:

Two systems are included in the BIPM traveling calibrator: BP0T and BP0U, see Table 1 and the report of operations <u>1001-2014 Phase1-cv.pdf</u>.

The long term stability of the two systems is described in the **BIPM Technical Memorandum 204**.

• Other traveling equipment:

See Annex 1 of the Guidelines (TO BE CHECKED)

1.2 Visited equipment

See a summary in Table 1. The detailed information on the set-up and on the measurements performed is in the report of operations <u>1001-2014-Phase1-cv.pdf</u>.

At OP, two different set-ups were used:

1. Over 56395-56399, the visiting system was referenced in common clock with OPMT.

2. Over 56400-56403, the visiting system was referenced to UTC(OP); the link with OPMT is provided through LZ files.

Table 1. Summary information on phase 1 of the calibration trip 1001-2014

Institute	Status of	Dates of	BIPM	RINEX	Receiver type
	equipment	measurement	code	name	
BIPM	Traveling		BPOT	BPOT	Dicom GTR50
BIPM	Traveling		BPOU	BPOU	Dicom GTR50
BIPM	BIPM reference	56380-56387	BPOR	BPOR	Septentrio PolaRx2eTR
OP	G1 reference	56395-56399	OPMT	OPMT	Ashtech Z12T
OP	G1 ref UTC(OP)	56400-56403	OPMT	OPMT	Ashtech Z12T
BIPM	BIPM reference	56407-56412	BPOR	BPOR	Septentrio PolaRx2eTR

2. Data used

Rinex files have been obtained from all receivers participating to this trip. They are available in G:\calib\Group1\2013-2014\dclrinex\

3. Results of raw data processing

- The raw code differences have been generated by the DCLRINEX procedure (see Guidelines Annex 3). Each run for a pair of stations generates 3 files (summary .sum, data .dif, plot .pdf). All files are available in G:\calib\Group1\1001-2014. All P1/P2 measurements are indicated with 2 digits numeric precision in order to minimize rounding errors in computing P3 values.
- For each pair (traveling visited) or (traveling reference):
 Plots of the data differences and of the statistical analysis (Tdev) are in the report of operations <u>1001-2014-Phase1-cv.pdf</u>;

- The inferred RAWDIF(P1) and RAWDIF(P2) are taken as the median of the raw differences. The associated uncertainties are taken as the floor of the Tdev values, with a minimum of 0.1 ns.

• Summary tables.

For this report, the BIPM system BP0R is considered to be the reference.

·						
Labo	Date	Pair	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc
BIPM	56380-56387	BPOT-BPOR	-84.73	0.1	-85.57	0.2
BIPM	56407-56412	BPOT-BPOR	-85.17	0.1	-85.95	0.2
BIPM	56380-56387	BPOU-BPOR	-81.98	0.1	-79.07	0.2
BIPM	56407-56412	BPOU-BPOR	-82.39	0.1	-79.30	0.2
BIPM	56380-56387	BPOT-BPOC	-463.23	0.1	-479.35	0.1
BIPM	56407-56412	BPOT-BPOC	-463.38	0.1	-479.43	0.1
BIPM	56380-56387	BPOU-BPOC	-460.46	0.1	-472.84	0.1
BIPM	56407-56412	BPOU-BPOC	-460.56	0.1	-472.74	0.1

Table 2.1 Raw differential results for all pairs (Traveling – Reference) (ns)

Table 2.2 Raw differential results for all pairs (Traveling – Visited) (ns)

Labo	Date	Pair	RAWDIF(P1)	Unc	RAWDIF(P2)	Unc
OP	56395-56399	BP0T-OPMT/1	-354.93	0.1	-364.96	0.1
OP	56395-56399	BPOU-OPMT/1	-352.18	0.1	-358.41	0.1
OP	56400-56403	BPOT-OPMT/2	-648.03	0.1	-658.04	0.1
OP	56400-56403	BPOU-OPMT/2	-645.19	0.1	-651.43	0.1

4. Calibration results

In the first step, one computes Δ **SYSDLY**, the differences of SYSDLY for all pairs (Traveling-Reference) and (Traveling-Visited), from

 $\Delta SYSDLY_{A-B}(Code) = RAWDIF_{A-B}(Code) + REFDLY_A - REFDLY_B$ (1) where RAWDIF(Code) is read in Table 2 and where the values REFDLY are in the report of operations <u>1001-2014-Phase1-cv.pdf</u>.

The Δ SYSDLY values are reported in Table 3 for the pairs Traveling-Reference (section 4.1) and in Table 4 for the pairs Traveling-Visited (section 4.2).

In the second step one computes Δ **SYSDLY** (Visited-Reference) for all visited systems. Δ **SYSDLY**_{V-R} = Δ **SYSDLY**_{T-R} – Δ **SYSDLY**_{T-V}.

 $\Delta S I SDL I_{V-R} = \Delta S I SDL I_{T-R} - \Delta S I SDL I_{T-V}$

One can then compute Δ **INTDLY** (Visited-Reference) for all visited systems. Δ **INTDLY**_{V-R} = Δ **SYSDLY**_{V-R} - **CABDLY**_V + **CABDLY**_R

where the values CABDLY are taken from the report of operations <u>1001-2014</u> Phase1-ev.pdf;

Tables 5 reports the Δ INTDLY_{V-R} results for the pairs Visited-Reference (section 4.3).

Using assumed $INTDLY_R$ values for the Reference system, Table 6 then reports $INTDLY_V$ for all visited systems (section 4.4).

4.1 Traveling system with respect to the reference system

Pair	Data	DEEDI V	Y _T REFDLY _R		P1	(ns)	P2	(ns)
Pair	Date	REFDLY _T	REFULY _R	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BPOT-BPOR	56380-56387	54.2	282.6		-84.73	-313.13	-85.57	-313.97
BPOT-BPOR	56407-56412	54.2	282.6		-85.17	-313.57	-85.95	-314.35
		Misclosure				0.44		0.38
BPOT-BPOR		Mean				-313.35		-314.16
BPOU-BPOR	56380-56387	54.2	282.6		-81.98	-310.38	-79.07	-307.47
BPOU-BPOR	56407-56412	54.2	282.6		-82.39	-310.79	-79.30	-307.70
		Misclosure				0.41		0.23
BPOU-BPOR		Mean				-310.59		-307.59

Table 3. Traveling vs. Reference system (all values in ns)

4.2 Traveling system with respect to the visited systems

Data		DEEDIN			(ns)	P2	(ns)	
Pair	Date	REFDLY _T	REFDLY _V	Note	RAWDIF	ΔSYSDLY	RAWDIF	ΔSYSDLY
BPOT-OPMT/1	56395-56399	50.0	117.2	*	-354.93	-422.13	-364.96	-432.16
BPOU-OPMT/1	56395-56399	50.0	117.2	*	-352.18	-419.38	-358.41	-425.61
BP0T-OPMT/2	56400-56403	342.6	117.2	*	-648.03	-422.63	-658.04	-432.64
BPOU-OPMT/2	56400-56403	342.6	117.2	*	-645.19	-419.79	-651.43	-426.03

Table 4. Traveling vs. Visited systems (all values in ns)

* Values of \mathbf{REFDLY}_{V} taken from the CGGTTS header.

4.3 Visited systems with respect to reference system

The Table 5 provides the values obtained by differencing Tables 3 and 4. CABDLY values are taken from the report of operations <u>1001-2014-Phase1-cv.pdf</u>.

Pair	Data	CADDIV	BDLY _V CABDLY _R		Р	1	Р	2
rair	Date		CADDLIR		ΔSYSDLY	ΔINTDLY	ΔSYSDLY	ΔINTDLY
OPMT/1-BPOR via BPOT	2013.3	156.5	133.4		108.78	85.68	118.00	94.90
OPMT/1-BPOR via BPOU	2013.3	156.5	133.4		108.80	85.70	118.03	94.93
OPMT/2-BPOR via BPOT	2013.3	156.5	133.4		109.28	86.18	118.48	95.38
OPMT/2-BPOR via BPOU	2013.3	156.5	133.4		109.21	86.11	118 .45	95.34

4.4 Provisional INTDLY values of visited systems

Table 6 lists provisional INTDLY values of the visited systems using BIPM standard reference values for BP0R (L1=221.5 ns; L2=224.5 ns).

Final INTDLY values will be based on a reference computed after the completion of phases 1 and 2 of the trip 1101-2014. This reference will be provided in <u>TM243 Group1-reference-values V6.pdf</u>. Final INTDLY values are reported in the global report of the trip 1001-2014 available <u>here</u>.

Table 6. Provisional INTDLY values of Visited systems using BIPM reference values for the reference systems BPOR (all values in ns)

Data	P1	P2
Date	INTDLY _V	INTDLY _V
2013.3	307.18	319.40
2013.3	307.20	319.43
2013.3	307.68	319.88
2013.3	307.61	319.85
	2013.3 2013.3	Date INTDLYv 2013.3 307.18 2013.3 307.20 2013.3 307.68

5 Uncertainty estimation

In this section, we determine the uncertainty of the differential calibration process i.e. we estimate all components that can affect the accuracy. We determine a value U_{CAL} that is to be used as the accuracy of all P3/PPP links (Visited – Reference) at the epoch of calibration.

$$U_{CAL} = \sqrt{u_a^2 + u_b^2},$$

with the statistical uncertainty u_a and the systematic uncertainty u_b . (all are 1-sigma). The statistical uncertainty u_a originates from RAWDIF (see section 3) and is given by the statistical analysis of the raw code differences for (Traveling-Reference) and (Traveling-Visited).

The systematic uncertainty is given by

u_b = $\sum u_{b,n}$

where all possible terms to be considered in the sum are listed in Table 7 and some detail on their estimation is provided at the end of this section. Values appear separately for each code and for the difference of the two codes (P1, P2 and P1-P2) so as to compute a value u_{CAL} applicable to P3 links. We choose to compute U_{CAL} using for u_b the uncertainty u_{bSYS} of $\Delta SYSDLY_{V-R}$ from equation (2)¹ Table 7 presents all components of the uncertainty budget along with the uncertainty u_{bSYS} of Δ SYSDLY_{V-R} from equation (2) and the resulting uncertainty value U_C

TTI 1 1 (rom Table 7 is applicable to the P3 link OP-PTB.
1 bo voluo $u_{} = 1.6$ ng t	rom Table / 10 applicable to the UV link (NU UTR
1 He value uc M = 1.0 Hs I	

Unc.	Value P1 (ns)	Value P2 (ns)	Value P1-P2 (ns)	Value P3 (ns)	Description
$\iota_a (T-V)$	0.1	0.1	0.15		RAWDIF (traveling-visited)
u_a (T-R)	0.1	0.1	0.15		RAWDIF (traveling-reference
Ja	0.15	0.15	0.2	0.35	
Misclosure					
l _{b,1}	0.5	0.6	0.2		observed mis-closure
Systematic c	components relat	ted to RAV	VDIF		
u _{b,11}	0.05	0.05	0.05		Position error at reference
u _{b,12}	0.05	0.05	0.05		Position error at visited
u _{b,13}	0.3	0.3	0.4		Multipaths at reference
u _{b,14}	0.3	0.3	0.4		Multipaths at visited
Link of the T	raveling system to	the local	UTC(k)		
u _{b,21}	0.5	0.5	0		REFDLY _T (at ref lab)
u _{b,22}	0.5	0.5	0		REFDLY _T (at visited lab)
u _{b,TOT}	1.0	1.0	0.6	1.4	
Link of the R	eference system to	o its local	UTC(k)		
u _{b,31}	0.5	0.5	0		$REFDLY_R$ (at ref lab)
Link of the V	isited system to it	s local UT	C(k)		
u _{b,32}	0.5	0.5	0		REFDLY _V (at visited lab)
u _{b,SYS}	1.2	1.2	0.6	1.5	Components of equation (2)
μ_{CAL}				1.6	Composed of u_a and $u_{b,SYS}$

The components in Table 7 are separated in several categories:

¹ It is somewhat arbitrary to choose SYSDLY to estimate the link accuracy. This reflects the fact that the REFDLY is subject to change e.g. with change of reference clock or distribution and that its uncertainty should better be taken into account.

- $u_{b,1}$ accounts for the mis-closure between the reference measurements; it is proposed to take the full mis-closure as $u_{b,1}$ even though the mis-closure may be partly accounted for by other components of the table
- $u_{b,11}$ and $u_{b,12}$ account for errors in the differential position (Travel Local), including for L1-L2 a possible error in using only one position for the phase centers. All are estimated to be 1.5 cm (50 ps). Standard uncertainty of the differential positioning is typically at or below this level.
- $u_{b,13}$ and $u_{b,14}$ account for multipaths. This is difficult to estimate and could be conventionally defined.
- $u_{b,21}$ and $u_{b,22}$ account for the measurement between the reference point of the traveling system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns..
- $u_{b,31}$ and $u_{b,32}$ account similarly for the measurement between the reference point of the local system and the local UTC(k). They include at least one measurement with a TIC and are taken to be 0.5 ns..