

Systèmes de Référence Temps-Espace

FREQUENCY COMPARISON (H_MASER 40 0889) - (LNE-SYRTE-FO2) From MJD 54224 to MJD 54249

The primary frequency standard LNE-SYRTE-FO2 was compared to the hydrogen Maser (40 0889) of the laboratory during the 4th to 29th May 2007 period, from MJD 54224 to MJD 54249.

Period (MJD)	y(HMaser _{40 0889} - FO2)	u _B	u _A	$u_{\mathit{link} \; / \; \mathit{maser}}$
54224 - 54249	- 12014.0	4.6	3.0	4.6

Table 1: Results of the comparison in 1×10^{-16} .

Figure 1 collects the measurements of fractional frequency differences during the 4th to 29th May 2007 period. Error bars represent the statistical uncertainties. The measurements are corrected for the systematic frequency shifts listed below.

Figure 1: fractional frequency differences between H_Maser40 0889 & FO2 from MJD 54224 to MJD 54249

Table 2 gives the results of the frequency estimate for the middle date of the period, and the associated statistical uncertainty, using either a linear or a polynomial fit to the data.

FREQUENCY COMPARISON (H_MASER 40 0889) - (LNE-SYRTE-FO2)

FO2: Rubidium-Caesium Fontaine in Caesium mode

Dates Duration & Measurement Rate	Mean normalized frequency difference $y_{Maser} - y_{FO2}$	type A uncertainty $\sigma_{\scriptscriptstyle Stat}$	Uncertainty due to the dead times $\sigma_{deadTime}$
BIPM interval Start date MJD UTC 54224,0 Stop date MJD UTC 54249,0 Length of interval 25 d Measurement Rate: 55,2% mean duration between measurements $\tau_0 = 61714$ s	Mean by linear fit at middle date 54236.5: $\overline{y} = -12014.0 \times 10^{-16}$ Mean by polynomial fit order 5: $\overline{y} = -12014.2 \times 10^{-16}$	Uncertainty of linear fit 3.0×10^{-16} Allan Deviation at T with assumption of White Frequency Noise $\sigma_y = 2.0 \times 10^{-16}$	$\sigma_{deadTime} =$ 4.5 10 ⁻¹⁶

Table 2: Statistics of measurements

Summary of the systematic corrections and uncertainties:

	Correction (10 ⁻¹⁶)	Uncertainty (10 ⁻¹⁶)
Cold collisions and cavity pulling	186.0	2.5
Quadratic Zeeman effect	- 1919.5	0.1
Black body radiation	167.0	0.6
Microwave spectral purity & leakage		0.5
First order Doppler effect		3.0
Ramsey & Rabi pulling		< 1.0
Microwave recoil		< 1.4
Second order Doppler effect		< 0.1
Background gas collisions		<1.0
Total		4.5
Red shift	- 65.4	1.0
Total with red shift		4.6

Table 3: Budget of systematic effects and associated uncertainties in the FO2 fountain.

Systematic effects taken into account are listed in Table 3. The correction and estimated uncertainty for each of them is given. Here the collisional shift correction is the average correction over all measurements, which are taken alternatively at high and low densities. The uncertainty on this correction is taken as 1% of the collisional shift correction at high density to account for 1% spurious population in non-zero m_F states which affect the measurements equally at both densities. Finally, including also an uncertainty for the red shift effect, this gives the type B total uncertainty:

$$\sigma_{B} = \left(\sigma_{Zeeman2}^{2} + \sigma_{BlackBody}^{2} + \sigma_{Collision}^{2} + \sigma_{Microwave_Spectrum_Leakage}^{2} + \sigma_{first_Doppler}^{2} + \sigma_{Ramsey_Rabi}^{2} + \sigma_{Recoil}^{2} + \sigma_{second_Doppler}^{2} + \sigma_{Background_collisions}^{2} + \sigma_{Redshift}^{2}\right)^{(1/2)}$$

For the whole May 2007 period it gives

$$\sigma_{\rm B}=4.6\times10^{-16}$$

SYRTE61, avenue de l'Observatoire75014 Paris - France tél 33 (0)1 40 51 22 04 fax 33 (0)1 40 51 22 91 e-mail direction.syrte@obspm.frUnité de recherche du CNRS 8630site syrte.obspm.frJean-Yves Richard08/06/2007