FREQUENCY COMPARISON (H_MASER 40 3853) - (SU-CsFO2)
For the period MJD 57784 to MJD 57799.

The primary frequency standard SU-CsFO2 has been compared to the hydrogen Maser 40 3853 of the laboratory, during a measurement campaign between MJD 57784 and 57799 (31st January 2017 – 15th February 2017). The fountain operation covers ~ 81 % of the total measurement duration for the period MJD 57784-57799. The mean frequency difference at the middle date of the period is given in the following table:

<table>
<thead>
<tr>
<th>Period (MJD)</th>
<th>Date of the estimation</th>
<th>y(HMaser40 3853 – CsFO2)</th>
<th>u_B</th>
<th>u_A</th>
<th>$u_{Link,Maser}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>57784-57799</td>
<td>57791.5</td>
<td>-1198.8</td>
<td>2.4</td>
<td>2.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 1: Results of the comparison in 1×10^{-16}.

For the uncertainty due to the clock link $u_{Link,Lab} = 0.1 \times 10^{-15}$ is obtained by taking into account the actual measurement time.

The CsFO2 standard uncertainty u_B is estimated as 0.24×10^{-15} (1σ) for the relevant periods.

Accuracy

The following table summarizes the budget of systematic effects and their associated uncertainties. The accuracy is the quadratic sum of all the systematic uncertainties.

<table>
<thead>
<tr>
<th>Physical Effect</th>
<th>Shifts (10^{-16})</th>
<th>Uncertainty (10^{-16})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-order Zeeman effect</td>
<td>1069</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 2: Budget of systematic effects and uncertainties for VNII FTRI- CsFO2 fountain for the MJD 57784 – 57799 period

\[u_B = 2.4 \times 10^{-16}. \]

Uncertainty due to the dead times

During the evaluation period there were gaps in the data collection (dead time) due to both intentional and unintentional breaks. Most of the unintentional breaks were caused by failures of the laser locking systems (due to rapid change barometric pressure).

The standard deviation of the fluctuations of frequency due to the dead times in measurements is estimated by the ratio
\[\sum_{i} \sigma_{x_i}^2 \quad \frac{T}{T} = \sigma_{\text{Dead_Time}} \]

<table>
<thead>
<tr>
<th>Period</th>
<th>(\sigma_{\text{Dead_Time}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>57784 - 57799</td>
<td>5.4E-17</td>
</tr>
</tbody>
</table>

The uncertainty on the link Maser is obtained by the quadratic sum of the link lab uncertainty and the uncertainty due to the dead times calculated above:

\[
u_{\text{Link_Lab}} = 1 \times 10^{-16},
\]

\[
u_{\text{Link_Maser}} = \sqrt{\left(\sigma_{\text{Dead_Time}}\right)^2 + \left(\sigma_{\text{Link_Lab}}\right)^2}
\]

<table>
<thead>
<tr>
<th>Period</th>
<th>(u_{\text{Link_Maser}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>57784-57799</td>
<td>1.1E-16</td>
</tr>
</tbody>
</table>

References