Dear Dr. Arias,

Attached is the report of our most recent evaluation of NIST-F1, a cesium fountain primary frequency standard. The report period is for the 15 day interval from MJD 54904 to 54919. However, the fountain was operated in a nearly continuous fashion over a shorter evaluation interval from MJD 54911.0 to 54916.7. This report is like some others in which only one atom density was used and the run time is short. We have used data from previous full evaluations to determine the spin exchange shift.

Details of the standard’s design, construction, and performance are presented in references 1 - 8 listed on page 7. A detailed summary of the present evaluation is included in this report. The evaluation results using the BIPM format are given on page 2. There are no significant changes in NIST-F1 since the last report.

Steven R. Jefferts Thomas P. Heavner Thomas E. Parker
Leader, NIST-F1 Project
SUMMARY

March 2009 Evaluation of NIST-F1

The most recent evaluation of NIST-F1 is reported. The value

\[Y_{(\text{maser-NISTF1})} = -296.90 \times 10^{-15} \]

is the average fractional frequency difference between the hydrogen maser ST0022, (clock # 40222) and NIST-F1 over the 15 day report period MJD 54904 to 54919. The type A uncertainty of the fountain for this evaluation (statistical confidence on the frequency measurement, but not including dead time) is \(0.34 \times 10^{-15} \) (1σ). The type B uncertainty from known biases, including spin exchange, is \(0.32 \times 10^{-15} \) (1σ). The combined uncertainty (type A and type B) is \(0.47 \times 10^{-15} \) (1σ). The uncertainty becomes \(0.77 \times 10^{-15} \) (1σ) when the contribution from dead time, \(u_{\text{link/lab}}\), is included. A detailed description of the various biases and uncertainties is given in the following sections of this report.

RESULTS IN BIPM FORMAT

Report period

MJD 54904 to 54919

Maser frequency (ST0022, clock # 40222) \(Y_{(\text{maser-NISTF1})} = -296.90 \times 10^{-15}\)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>(u_A)</td>
<td>(0.34 \times 10^{-15})</td>
<td></td>
</tr>
<tr>
<td>Systematic</td>
<td>(u_B)</td>
<td>(0.32 \times 10^{-15})</td>
<td></td>
</tr>
<tr>
<td>Link to clock</td>
<td>(u_{\text{link/lab}}) (15 days)</td>
<td>(0.61 \times 10^{-15})</td>
<td></td>
</tr>
<tr>
<td>Link to TAI (estimated)</td>
<td>(u_{\text{link/TAI}}) (15 days)</td>
<td>(0.61 \times 10^{-15})</td>
<td></td>
</tr>
<tr>
<td>Combined (estimated)</td>
<td>(u)</td>
<td>(0.98 \times 10^{-15})</td>
<td></td>
</tr>
</tbody>
</table>
1. DETAILS OF EVALUATION

An accuracy evaluation of NIST-F1 has been completed in which the frequency of a hydrogen maser was determined with respect to the primary frequency standard. The report period is 15 days, but the fountain was operated only over the 5.65 day evaluation interval of MJD 54911.00 to 54916.65. Of the 5.65 days intended for the maser frequency measurement, 5.45 days of data were collected (96.4% run time). The lost run time was from intentional and unintentional interruptions to the fountain operation. The percentage run time for the entire report period is 36.3%. A time line of the 15 day report period is shown in Table 1 below.

<table>
<thead>
<tr>
<th>MJD</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>54904.00</td>
<td>Start report period</td>
</tr>
<tr>
<td>54911.00</td>
<td>Start fountain run, low density (8)</td>
</tr>
<tr>
<td>54916.65</td>
<td>End low density, end fountain run</td>
</tr>
<tr>
<td>54919.00</td>
<td>End report period</td>
</tr>
</tbody>
</table>

Table 1: Time Line

Only one atom density was used in this evaluation, so spin exchange shift data from previous full evaluations were used to estimate the spin exchange shift for this run (see section 1B for details). The atom density in laboratory units is shown in parentheses in Table 1. For the 5.65 days of data the Birge ratio was 1.71. Other corrections are also made to the raw frequency data in order to compensate for known biases which are described below [2]. Units for all biases are fractional frequency x10\(^{-15}\) and all uncertainties are 1 sigma.

1A. Quadratic Zeeman Bias

The quadratic Zeeman bias was determined by measuring the linear Zeeman splitting of the microwave spectrum. The magnetic field was monitored during the entire run. No significant changes were made to the Zeeman bias since the last run. The resulting bias and uncertainty are shown below.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Type B Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>+181.27</td>
<td>0.013</td>
</tr>
</tbody>
</table>
1B. Spin Exchange Bias

Measurements were made using only one value of atom density for this evaluation (a value of 8 in laboratory units). The average slope of -0.051 +/- 0.009 per unit atom density was used from the previous five full evaluations made in 2007 and 2008 to estimate the frequency at zero density. These five runs are all statistically consistent. No changes in fountain configuration have been made over the course of the 5 evaluations used to determine the slope of the atom number vs. frequency curve, so there is no reason to expect the spin exchange shift to have changed.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Type B Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.41</td>
<td>0.07</td>
</tr>
</tbody>
</table>

1C. Blackbody Bias

The blackbody bias is calculated from the temperature of the drift region. The resulting bias and its uncertainty are shown below.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Type B Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>-22.65</td>
<td>0.28</td>
</tr>
</tbody>
</table>

1D. Microwave Amplitude Shift

No additional measurements on the microwave amplitude dependence were made for this evaluation, so the bias is unchanged from the previous run. The observed bias is consistent with zero, but we have chosen to include it in the list of corrected biases.

<table>
<thead>
<tr>
<th>Bias</th>
<th>Type B Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.026</td>
<td>0.12</td>
</tr>
</tbody>
</table>
1E. Combined variable and fixed biases

There are additional biases that do not change under normal circumstances. The complete list of all biases (run dependent and fixed) and their corresponding uncertainties are shown in Table 2. This table is based on [2]. Only the first 5 biases are explicitly corrected for since the rest are all well under 1×10^{-16}. The maximum magnitudes of all uncorrected biases are indicated in blue.

Table 2: Known Frequency Biases and Their Type B Uncertainty. (Units are fractional frequency x10^{-15})

<table>
<thead>
<tr>
<th>Physical Effect</th>
<th>Bias</th>
<th>Type B Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational Red shift</td>
<td>$+179.95$</td>
<td>0.03</td>
</tr>
<tr>
<td>Second-Order Zeeman</td>
<td>$+181.27$</td>
<td>0.013</td>
</tr>
<tr>
<td>Blackbody</td>
<td>-22.65</td>
<td>0.28</td>
</tr>
<tr>
<td>Microwave Amplitude Shift</td>
<td>-0.026</td>
<td>0.12</td>
</tr>
<tr>
<td>Spin Exchange (density =8)</td>
<td>-0.41</td>
<td>0.07</td>
</tr>
<tr>
<td>AC Zeeman (heaters)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cavity Pulling</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Rabi Pulling</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Ramsey Pulling</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Majorana Transitions</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fluorescence Light Shift</td>
<td>10^{-5}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Cavity Phase (distributed)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Second-Order Doppler</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>DC Stark Effect</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Background Gas Collisions</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Bloch-Siegert</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>RF Spectral purity</td>
<td>3×10^{-3}</td>
<td>3×10^{-3}</td>
</tr>
<tr>
<td>Integrator offset</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Type B Standard Uncertainty</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>
2. EVALUATION INTERVAL RESULTS (MJD 54911.00 to 54916.65)

When corrections for the biases of Table 2 are applied, the following result for the measurement of $Y_{\text{maser-NISTF1}}$ is obtained. Units are fractional frequency $x10^{-15}$.

<table>
<thead>
<tr>
<th>Corrected Frequency</th>
<th>Type A Uncertainty</th>
<th>Total Type B Uncertainty - includes spin exchange</th>
<th>Combined Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>-296.39</td>
<td>0.34</td>
<td>0.32</td>
<td>0.47</td>
</tr>
</tbody>
</table>

3. INFLUENCE OF DEAD TIME

NIST-F1 was operated for a total of only 5.45 days during this 15 day report period so the dead time has an impact on the overall uncertainty. However, NIST has a well characterized ensemble of hydrogen masers so this impact can be quantified. The frequency stability and drift of the maser ensemble are well known. No drift correction was required for the ensemble because the frequency drift of the time scale is very small. The dead time introduced by extrapolating on the ensemble contributes an additional type A uncertainty of $0.61x10^{-15}$. See references 10 - 12. A new procedure was used to handle distributed dead time [12]. This results in an improved estimate of the dead time uncertainty.

4. FINAL REPORT PERIOD RESULTS

Applying the correction resulting from dead time to the evaluation interval results yields the following 15 day final report period results. All uncertainties a 1σ.

Report period MJD 54904 to 54919

Maser frequency (ST0022, clock # 40222) $Y_{\text{maser-NISTF1}} = -296.90x10^{-15}$

Type A uncertainty (not including dead time) $0.34x10^{-15}$
Type B uncertainty $0.32x10^{-15}$

Combined uncertainty (fountain only) $0.47x10^{-15}$

Type A uncertainty from dead time $0.61x10^{-15}$

Combined uncertainty with dead time $0.77x10^{-15}$

Uncertainty in link to TAI for 15 days (estimated) $0.61x10^{-15}$

Combined total uncertainty (estimated) $0.98x10^{-15}$
5. REFERENCES

Recent Improvements and Accuracy Evaluations,” Metrologia, vol. 42, pp 411-422,
2005.
Caesium Fountain Primary Frequency Standard with a Maser Ensemble, Including the
Leakage Induced Frequency Shifts in the Primary Frequency Standards NIST-F1 and
of the Frequency Bias Caused by Spurious Components in the Microwave Spectrum in
Atomic Fountains,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency
of Distributed Cavity Phase-Induced Frequency Biases in Atomic Fountain Frequency
52, pp 2314-2321, 2004
End-to-End Cavity Phase Shifts in Cesium-Fountain Frequency Standards,” IEEE
Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp 652-653,
2005.
10. T.E. Parker, “Hydrogen Maser Ensemble Performance and Characterization of
Frequency Standards,” in Proc. 1999 Joint Meeting of European Freq. and Time
Comparison with Distributed Dead Time and Measurement Interval Offset,”
Appendix A

Summary of accumulated changes in biases and uncertainties since the state of NIST-F1 discussed in references 2 and 3

(1) 30 day evaluation of June/July 2005 (MJD 53529-53559)
Modifications to the optical detection electronics and the low noise quartz oscillator improved the stability (u_A) of NIST-F1. More measurements with respect to microwave leakage reduced this uncertainty from 2x10^{-16} to 1.4x10^{-16}.

(2) 40 day evaluation of September/October 2005 (MJD 53629-53669)
A magnetic field monitor was added to NIST-F1. No change was needed in the second order Zeeman bias uncertainty. Also, no other Type B uncertainties have been changed.

(3) 40 day evaluation of December 2005/January 2006 (MJD 53724-53764)
The fountain cycle time was shortened a bit and this resulted in a small improvement in short-term stability. Also the magnetic field uniformity was improved by shield degaussing and shimming, and this resulted in a small decrease in the Zeeman bias. There were no changes in the Type B uncertainties.

(4) 40 day evaluation of February/March 2006 (MJD 53784-53824)
No significant changes were made to NIST-F1 other than a slight increase in the average atom density. There were no changes in the Type B uncertainties.

(5) 30 day evaluation of October 2006 (MJD 54009-54039)
NIST-F1 was moved to a room with better environmental control and which is closer to the hydrogen masers and the time scale (shorter cables). The fountain was damaged in the move and as a result the microwave cavities, drift tube, and source region were replaced with nearly identical parts. All of the replaced parts are functionally the same as the originals. Because of the change in location and the repairs, the Zeeman and blackbody corrections are slightly larger, along with their uncertainties. The gravitational red shift is slightly smaller due primarily to the fact the fountain is now one floor lower than before, but there is no change in uncertainty. The bias and uncertainty for microwave leakage below the cavities are slightly larger.

(6) 20 day evaluation of February 2007 (MJD 54134-54154)
No significant changes were made to NIST-F1 for this evaluation, except that the magnetic field above the Ramsey cavity was increased by a factor of 2 in order to improve the field uniformity and decrease the possible effects of off resonant transitions. As an indirect result of these changes the atom cloud was slightly larger and probably colder. This resulted in a higher atom number at the lowest density used and consequently an improved short-term stability. Also additional microwave amplitude measurements were made to reduce the uncertainty on the microwave amplitude shift. This resulted in a slight decrease in the overall Type B uncertainty.
(7) 15 day evaluation of April 2007 (MJD 54204-54219)
 No significant changes were made to NIST-F1 since the February 2007 evaluation.

(8) 15 day evaluation of May 2007 (MJD 54219-54234)
 No changes were made to NIST-F1 since the April 2007 evaluation.

(9) 25 day evaluation of August 2007 (MJD 54314-54339)
 No changes were made to NIST-F1 since the May 2007 evaluation other than additional microwave power measurements which resulted in a slight decrease in the Type B uncertainty.

(10) 15 day “mini” evaluation of October 2007 (MJD 54384-54399)
 No changes were made to NIST-F1 since the August 2007 full evaluation.

(11) 10 day “mini” evaluation of November 2007 (MJD 54409-54419)
 No changes were made to NIST-F1 since the August 2007 full evaluation.

(12) 25 day full evaluation of January 2008 (MJD 54469-54494)
 The state selection synthesizer was replaced, but this had no impact on the accuracy or operation of NIST-F1.

(13) 15 day “mini” evaluation of April 2008 (MJD 54554-54569)
 The repump laser was replaced, but this had no impact on the accuracy or operation of NIST-F1.

(14) 20 day “mini” evaluation of July 2008 (MJD 54654-54674)
 No changes were made to NIST-F1 since the April 2008 evaluation other than a slight refinement to the blackbody temperature.

(15) 25 day full evaluation of November 2008 (MJD 54764-54799)
 No significant changes were made to NIST-F1 since the July 2008 evaluation other than adjustments to the optical system which resulted in a modest improvement to the frequency stability of NIST-F1. Also, a change was made in the method for calculating the spin exchange shift and its uncertainty. The new method uses slopes from previous full evaluations as well as the current slope.

(16) 15 day “micro” evaluation of December 2008 (MJD 54814-54829)
 No changes were made to NIST-F1 since the November 2008 evaluation.

(17) 15 day “micro” evaluation of January 2009 (MJD 54844-54859)
 No changes were made to NIST-F1 since the November 2008 evaluation.

(18) 15 day “micro” evaluation of February 2009 (MJD 54864-54879)
 No changes were made to NIST-F1 since the November 2008 evaluation.
15 day “micro” evaluation of March 2009 (MJD 54904-54919)
No changes were made to NIST-F1 since the November 2008 evaluation.