

Frequency evaluation of Maser 1401103 by IT-Yb1 for the period MJD 60704 to 60734

During the period MJD 60704 – 60734 (29 January 2025–28 February 2025) INRIM evaluated the frequency of the hydrogen maser IT-HM3 (BIPM code 1401103) using the Yb optical lattice frequency standard IT-Yb1 and an optical frequency comb. The evaluation is based on the CCTF2021 recommended frequency for ¹⁷¹Yb as a secondary representation of the second, $f(^{171}\text{Yb}) = 518\,295\,836\,590\,863.63\,\text{Hz}$ with a relative standard uncertainty of $u_{\text{Srep}} = 1.9 \times 10^{-16}$ [1, 2]. The results of the evaluation are summarized in Tab. 1. Details of IT-Yb1 operation and uncertainty budget are given in Refs. [3–5] and summarized below.

1 Frequency measurement

The clock laser of IT-Yb1 is stabilized on an ultrastable cavity and probes ¹⁷¹Yb atoms trapped in an optical lattice at the magic frequency. A digital control loop acting on an acousto-optic modulator keeps the clock laser frequency in resonance with the atoms. The cavity-stabilized laser is sent to a fibre frequency comb referenced to IT-HM3. The frequency ratio between the ¹⁷¹Yb transition and IT-HM3 is calculated from the comb measurements and the corrections used for steering the acousto-optic modulator.

Table 1: Final evaluation using IT-Yb1.

Period of estimation	y(HM1401103 /ITYb1)	u_{A}	$u_{ m B}$	$u_{\mathrm{A/lab}}$	$u_{\rm B/lab}$	u_{Srep}	Uptime
01111401011	$/10^{-15}$	$/10^{-15}$	$/10^{-15}$	$/10^{-15}$	$/10^{-15}$	$/10^{-15}$	
60704-60734	-364.90	0.00	0.03	0.08	0.02	0.19	52.7%

Table 2: Uncertainty budget for IT-Yb1 for the reported period.

Effect	Rel. Shift/ 10^{-17}	Rel. Unc./ 10^{-17}
Density shift	2.08	0.11
Lattice shift	2.7	2.1
Zeeman shift	-2.86	0.02
Blackbody radiation shift (room)	-236.9	1.3
Blackbody radiation shift (oven)	-1.4	0.7
Static Stark shift	-0.22	0.08
Probe light shift	0.04	0.03
Background gas shift	-0.5	0.2
Servo error	0.0	0.3
Other shifts	0.0	0.1
Grav. redshift (static)	2599.5	0.3
Grav. redshift (tides)	0.0	0.2
Total	2362.4	2.6

2 IT-Yb1 evaluation

The uncertainty $u_{\rm A}$ is the statistical contribution from the instability of IT-Yb1. The uncertainty $u_{\rm B}$ is the systematic uncertainty of IT-Yb1 [4]. The systematic frequency shift and uncertainty budget of IT-Yb1 for the reported period are given in Tab. 2. IT-Yb1 now operates with a vertical optical lattice and the lattice light shift calculations have been updated following Ref. [6]. Since 2025, IT-Yb1 implemented clock-line-mediated Sisyphus cooling [7] to reduce the temperature of atoms trapped in the lattice. This is expected to lower the uncertainty associated with the lattice shift; however, as we are still investigating it under these conditions, the presented results include a provisional larger uncertainty. The table includes the gravitational redshift relative to the conventional potential $W_0 = 62\,636\,856.0\,{\rm m}^2{\rm s}^{-2}$ [4].

3 Link evaluation

The uncertainty $u_{l/lab}$ is due to the link between IT-Yb1 and IT-HM3, including the optical to microwave comparison at the comb. Table 3 summarizes the contributions to this uncertainty.

The comparison uncertainty between optical and microwave signals at the comb has been evaluated from comparison with a second optical frequency comb and includes the maser distribution to the comb laboratory.

IT-Yb1 and the comb were operated for 1367021s (uptime 52.7% of the evaluation period). The data collected and the distribution of the uptimes of IT-Yb1 are shown in Fig. 1. Extrapolation using the maser as a flywheel is needed given the intermittent operation of IT-Yb1. Its evaluation is separated in an uncertainty from dead times and a

Table 3: Uncertainty budget for the link between IT-Yb1 and IT-HM3 for the reported period.

Effect	Uncertainty/ 10^{-15}
Comb statistic	0.00
Distribution	0.04
Extrapolation (dead time)	0.07
Extrapolation (drift)	0.00
Total $u_{A/lab}$	0.08
Optical/microwave comp. (type B)	0.02
Total $u_{\rm B/lab}$	0.02

correction for the maser drift. The maser drift of $-2.04(7) \times 10^{-16}$ d has been calculated from IT-Yb1 data collected in the period. The contribution from dead times has been evaluated following the approach in Ref. [8]. For this measurement we considered the IT-HM3 noise to be a power-law model described by the Allan deviation: white phase noise $3 \times 10^{-13} (\tau/\text{s})^{-1}$; white frequency noise $4 \times 10^{-14} (\tau/\text{s})^{-1/2}$; flicker frequency noise 3×10^{-16} ; random walk frequency noise $2 \times 10^{-19} (\tau/\text{s})^{1/2}$.

Contributors

Marco Pizzocaro, Stefano Condio, Irene Goti, Tommaso Petrucciani, Cecilia Clivati, Filippo Levi, Davide Calonico

References

- [1] Consultative Committee for Time and Frequency (CCTF), "Recommendation CCTF PSFS 2: Updates to the CIPM list of standard frequencies," 2021. Online: https://www.bipm.org/en/committees/cc/cctf/22-_2-2021
- [2] Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the definition of the second. Online: https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html
- [3] M. Pizzocaro, P. Thoumany, B. Rauf, F. Bregolin, G. Milani, C. Clivati, G. A. Costanzo, F. Levi, and D. Calonico, "Absolute frequency measurement of the ¹S₀ ³P₀ transition of ¹⁷¹Yb," *Metrologia*, vol. 54, no. 1, pp. 102–112, 2017. Online: http://stacks.iop.org/0026-1394/54/i=1/a=102
- [4] M. Pizzocaro, F. Bregolin, P. Barbieri, B. Rauf, F. Levi, and D. Calonico, "Absolute frequency measurement of the 1S_0 3P_0 transition of 171 Yb with a link

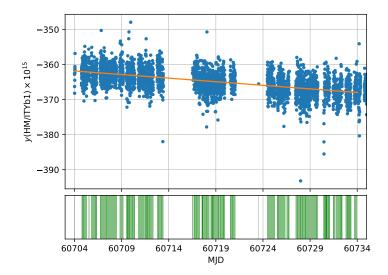


Figure 1: Fractional frequency deviation y(HM1401103/ITYb1) measured in the period MJD 60704 - 60734. Green shaded regions in the bottom plot represent the uptime of IT-Yb1.

to international atomic time," Metrologia, vol. 57, no. 3, p. 035007, may 2020. Online: https://doi.org/10.1088%2F1681-7575%2Fab50e8

- [5] I. Goti, S. Condio, C. Clivati, M. Risaro, M. Gozzelino, G. A. Costanzo, F. Levi, D. Calonico, and M. Pizzocaro, "Absolute frequency measurement of a Yb optical clock at the limit of the Cs fountain," *Metrologia*, vol. 60, no. 3, p. 035002, May 2023. Online: https://dx.doi.org/10.1088/1681-7575/accbc5
- [6] K. Beloy, W. F. McGrew, X. Zhang, D. Nicolodi, R. J. Fasano, Y. S. Hassan, R. C. Brown, and A. D. Ludlow, "Modeling motional energy spectra and lattice light shifts in optical lattice clocks," *Phys. Rev. A*, vol. 101, p. 053416, May 2020. Online: https://link.aps.org/doi/10.1103/PhysRevA.101.053416
- [7] C.-C. Chen, J. L. Siegel, B. D. Hunt, T. Grogan, Y. S. Hassan, K. Beloy, K. Gibble, R. C. Brown, and A. D. Ludlow, "Clock-line-mediated sisyphus cooling," *Phys. Rev. Lett.*, vol. 133, no. 5, p. 053401, Jul. 2024. Online: https://link.aps.org/doi/10.1103/PhysRevLett.133.053401
- [8] C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat, "Realization of a timescale with an accurate optical lattice clock," *Optica*, vol. 3, no. 6, pp. 563–569, Jun 2016. Online: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-563