# BUREAU INTERNATIONAL DES POIDS ET MESURES

# Annual Report of the BIPM Time Section Rapport annuel de la Section du temps du BIPM

Volume 7

1994



Pavillon de Breteuil F-92312 SEVRES Cedex, France

#### Practical information about the BIPM Time Section

The Time Section of the BIPM issues two periodic publications. These are the monthly Circular T and the Annual Report of the BIPM Time Section. The complete text of Circular T and most tables of the present Annual Report are available through the INTERNET network (see Annex I, just before the yellow pages of this volume, for the log-on procedure).

La Section du temps du BIPM produit deux publications périodiques: la Circulaire T, mensuelle, et le Rapport annuel de la Section du temps du BIPM. Les circulaires T et la plupart des tableaux de ce rapport annuel sont disponibles par utilisation du réseau INTERNET (voir l'annexe I, juste avant les pages jaunes de ce volume, pour la mise en oeuvre de la communication).

Address:

Time Section

Bureau International des Poids et Mesures

Pavillon de Breteuil F-92312 Sèvres Cedex

France

Telephone:

BIPM Time Section:

+ 33 1 45 07 70 72

BIPM Switchboard:

+ 33 1 45 07 70 70

Telefax:

BIPM Time Section:

+ 33 1 45 07 70 59

BIPM General:

+ 33 1 45 34 20 21

Telex:

BIPM 631351 F

Electronic Mail:

bipm@mesiob.obspm.fr

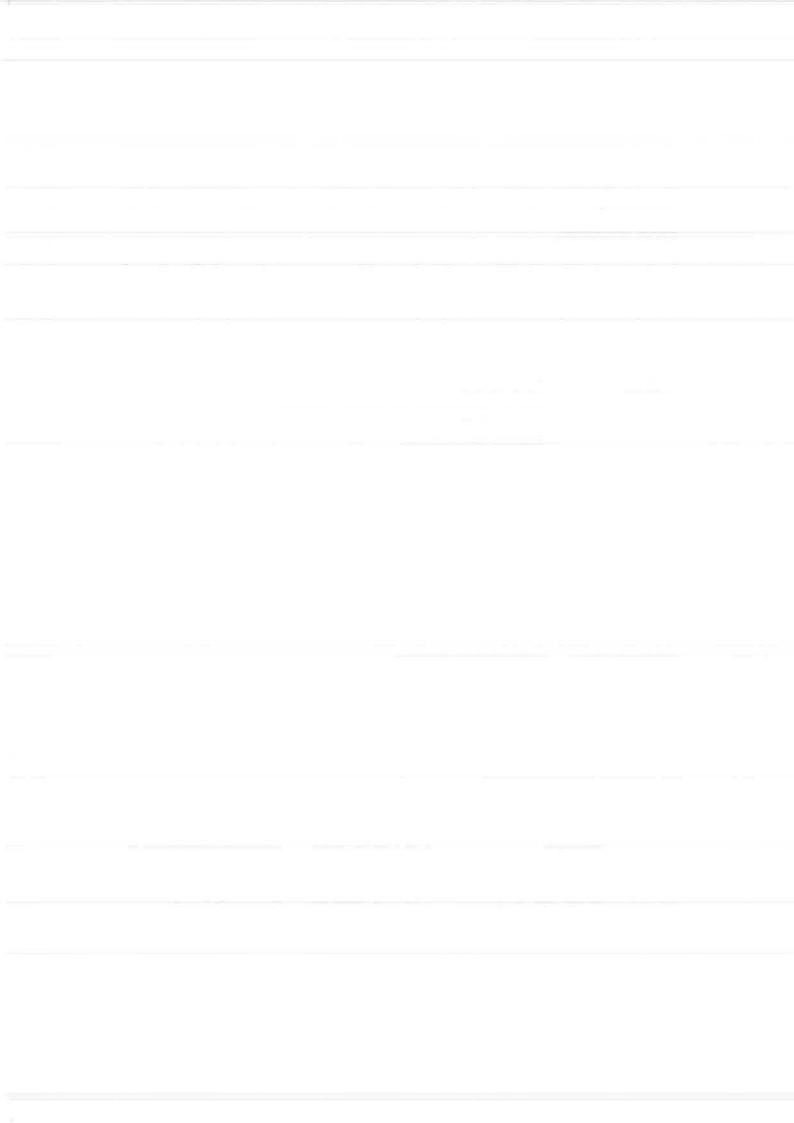
tai@bipm.fr

anonymous ftp on 145.238.2.2 (subdirectory TAI)

Staff:

Dr Claudine THOMAS, Head,

Principal physicist + 33 1 45 07 70 73 cthomas@bipm.fr Mr Jacques AZOUBIB, Physicist + 33 1 45 07 70 62 jazoubib@bipm.fr


Dr Wlodzimierz LEWANDOWSKI,

Mrs Michèle THOMAS, Technician

Physicist + 33 1 45 07 70 63 wlewandowski@bipm.fr

+ 33 1 45 07 70 74

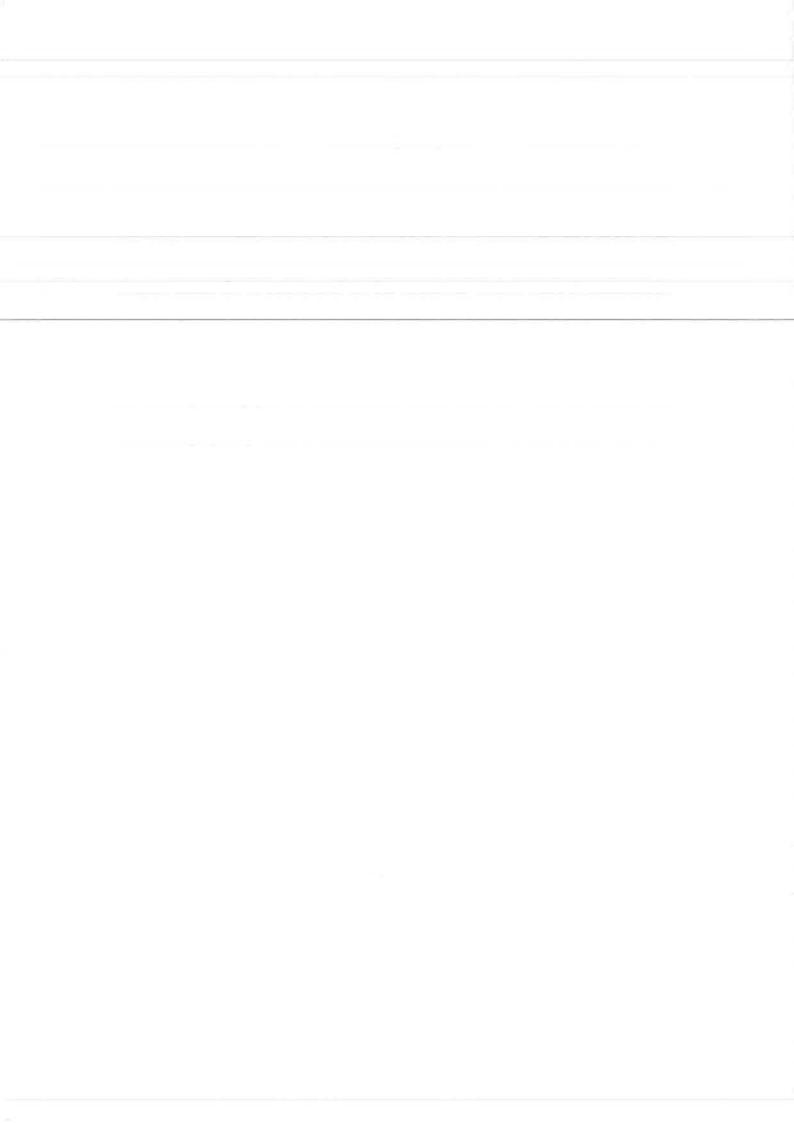
Dr Gérard PETIT, Physicist + 33 1 45 07 70 67 gpetit@bipm.fr
Mr Peter WOLF, Research Student + 33 1 45 07 70 75 pwolf@bipm.fr
Miss Hawaï KONATE, Technician + 33 1 45 07 70 72 hkonate@bipm.fr
Mr Philippe MOUSSAY, Technician + 33 1 45 07 70 66 pmoussay@bipm.fr



#### Leap seconds

### Secondes intercalaires

Since 1 January 1988, the maintenance of International Atomic Time, TAI, and of Coordinated Universal Time, UTC (with the exception of decisions and announcements concerning leap seconds of UTC) has been the responsibility of the Bureau International des Poids et Mesures (BIPM) under the authority of the Comité International des Poids et Mesures (CIPM). The dates of leap seconds of UTC are decided and announced by the International Earth Rotation Service (IERS), which is responsible for the determination of Earth rotation parameters and for maintenance of the related celestial and terrestrial reference systems. The adjustments of UTC and the relationship between TAI and UTC are given in Tables 1 and 2 of this volume.


Depuis le 1<sup>er</sup> janvier 1988, l'établissement du Temps atomique international, TAI, et du Temps universel coordonné, UTC, (à l'exception de l'annonce des secondes intercalaires de l'UTC) est placé sous la responsabilité du Bureau international des poids et mesures (BIPM) et du Comité international des poids et mesures (CIPM). Le choix des dates et l'annonce des secondes intercalaires de l'UTC constituent quelquesunes des missions du Service international de la rotation terrestre (IERS), qui est responsable de la détermination des paramètres de la rotation terrestre et de la conservation des systèmes de référence terrestre et céleste associés. Les ajustements de l'UTC et la relation entre le TAI et l'UTC sont donnés dans les tableaux 1 et 2 de ce volume.

Information on IERS can be obtained from:

Des renseignements sur l'IERS peuvent être obtenus à l'adresse suivante:

Central Bureau of IERS
Dr. Martine FEISSEL
Observatoire de Paris
61, avenue de l'Observatoire
75014 Paris, France

Telephone: + 33 1 40 51 22 26
Telefax: + 33 1 40 51 22 91
Electronic mail: services@obspm.fr
Anonymous ftp on 145.238.2.21 (subdirectory IERS)



# Establishment of the International Atomic Time and of the Coordinated Universal Time

# 1. Data and computation

The International Atomic Time, TAI, and the Coordinated Universal Time, UTC, are obtained from a combination of data from about 230 atomic clocks kept by 60 laboratories spread worldwide and regularly reported to the BIPM by 46 timing centres maintaining a local UTC, UTC(k) (list in Table 3). This data is in the form of time differences [UTC(k) - Clock] taken at 10 day intervals for Modified Julian Dates (MJD) ending in 9, at 0h UTC, dates designated here as 'standard dates'. The equipment maintained by these 46 timing centres is detailed in Table 4.

An iterative algorithm produces a free atomic time scale, EAL (Echelle atomique libre) defined as a weighted average of clock readings. The processing is done in deferred-time and treats as a whole two month blocks of data [1] [2]. The weighting procedure and clock frequency prediction are chosen so that EAL is optimized for long-term stability. No attempt is made to ensure the conformity of the EAL scale interval with the second of the International System of Units.

# 2. Accuracy

The duration of the scale interval of EAL is evaluated by comparison with the data of primary caesium standards, after conversion on the rotating geoid. The TAI is then derived from EAL by adding a linear function of time with a convenient slope to ensure the accuracy of the TAI scale interval. The frequency offset between TAI and EAL is changed when necessary to maintain accuracy, the magnitude of the changes being of the same order as the frequency fluctuations resulting from the instability of EAL. This operation is referred to as the 'steering of TAI'. Table 5 gives the normalized frequency offsets between EAL and TAI: the relationship between TAI and EAL was not modified in 1994. Measurements of TAI frequency and estimates of the mean duration of its scale interval are reported in Tables 6 and 7.

## 3. Availability

The TAI and UTC are made available in the form of time differences with respect to the local time scales UTC(k), which approximate UTC, and TA(k), which are independent local atomic time scales. These differences, [UTC - UTC(k)] and [TAI - TA(k)], reported in Tables 8 and 9, are computed for the standard dates.

The computation of TAI is carried out every two months. A provisional computation, however, is made every odd-numbered month (January, March, etc.) with the data which is available. In the following month, TAI is recomputed for the whole span of two months. The deviations between the provisional one-month and complete two-month solutions are usually smaller than 10 ns. This arrangement allows the monthly

publication of results in Circular T. When preparing the Annual Report, the results shown in Circular T are revised taking into account any improvement in the data made known after its publication. The computation is then strictly made for the six two-month intervals of the year.

#### 4. Time links

The network of time links used by the BIPM is non-redundant and mainly relies on the observation of GPS satellites. In 1994 nearly all national centres keeping a local UTC were equipped with GPS time receivers and followed the international tracking schedules published by the BIPM:

- Schedule No 23, reported in Table 10, implemented on 30 June 1994 (MJD 49533), and
- Schedule No 24, reported in Table 11, implemented on 16 December 1994 (MJD 49702).

Laboratories regularly send their GPS observations to the BIPM where they are processed following a unified procedure. Strict common views, synchronized to within 1 s, are used to remove the clock-dither noise brought about by the voluntary degradation, Selective Availability, of GPS signals.

The BIPM organizes the international GPS network which takes the form of local stars within a continent joined by two long-distance links, OP-CRL and OP-NIST, chosen because measured ionospheric delays are routinely available for these three sites. Precise GPS satellites ephemerides, produced by the International Geodynamics Service with a delay of a few days, are also routinely used for these long-distance links. The ultimate precision of one single measurement of  $[UTC(k_1) - UTC(k_2)]$ , obtained at the BIPM with these procedures, is about 2 ns for short distances and 8 ns for long distances. The BIPM also publishes an evaluation of  $[UTC - GPS \ time]$  which is reported in Table 12 of this volume.

No time link using GLONASS was used for the computation of TAI in 1994. However, the BIPM regularly publishes an evaluation of [UTC - GLONASS time], given here in Table 13, using current observations of both the GPS and GLONASS satellite systems provided by Prof. P. Daly, University of Leeds.

## 5. Time scales established in retrospect

For the most demanding applications, such as millisecond pulsar timing, the BIPM issues atomic time scales in retrospect. These are designated TT(BIPMxx) where 1900 + xx is the year of computation [3]. The successive versions of TT(BIPMxx) are both updates and revisions: they may differ for common dates. These time scales are available on request from the BIPM or via the INTERNET network.


# **Notes**

Tables 14 and 15 of this report give the rates relative to TAI and the weights of the contributing clocks to TAI in 1994.

The yellow pages, at the end of this volume, give indications about time signal emissions.

# References

- [1] B. Guinot and C. Thomas, Establishment of the International Atomic Time, Annual Report of the BIPM Time Section, 1988, pp. D3-D22.
- [2] P. Tavella and C. Thomas, Comparative study of time scale algorithms, *Metrologia*, 1991, **28**, 57-63.
- [3] B. Guinot, Atomic time scales for pulsar studies and other demanding applications, *Astron. and Astrophys.*, 1988, 192, 370-373.



# Etablissement du Temps atomique international et du Temps universel coordonné

## 1. Données et mode de calcul

Le Temps atomique international (TAI) et le Temps universel coordonné (UTC) sont obtenus par une combinaison de données provenant d'environ 230 horloges atomiques conservées par 60 laboratoires répartis dans le monde entier, et fournies régulièrement au BIPM par 46 laboratoires de temps qui maintiennent un UTC local, UTC(k) (liste donnée dans le tableau 3). Ces données prennent la forme de differences de temps [UTC(k) - Horloge] enregistrées de 10 jours en 10 jours pour les dates juliennes modifiées (MJD) se terminant par 9, à 0hUTC, 'dates normales'. L'équipement maintenu par ces 46 laboratoires de temps est décrit dans le tableau 4.

Un algorithme itératif qui traite en temps différé des blocs de 2 mois de données [1] [2], produit une échelle atomique libre, EAL, définie comme étant une moyenne pondérée de lectures d'horloges. Le choix de la pondération et du mode de prédiction de fréquence optimise la stabilité de l'EAL à long terme. Il n'est pas tenté d'assurer la conformité de l'intervalle unitaire de l'EAL avec la seconde du Système international d'unités.

#### 2. Exactitude

La durée de l'intervalle unitaire de l'EAL est évaluée par comparaison aux données d'étalons de fréquence à césium primaires, après conversion sur le géoïde en rotation. Ensuite le TAI se déduit de l'EAL par l'addition d'une fonction linéaire du temps dont la pente est convenablement choisie pour assurer l'exactitude de l'intervalle unitaire du TAI. Le décalage de fréquence entre le TAI et l'EAL est changé quand c'est nécessaire pour maintenir l'exactitude, les changements ayant le même ordre de grandeur que les fluctuations de fréquence qui résultent de l'instabilité de l'EAL. Cette opération est désignée par l'expression 'pilotage du TAI'. Le tableau 5 donne les différences de fréquences normalisées entre l'EAL et le TAI: la relation les liant n'a pas été modifiée en 1994. Des mesures de la fréquence du TAI et des estimations de la durée moyenne de son intervalle unitaire sont données dans les tableaux 6 et 7.

# 3. <u>Disponibilité</u>

Le TAI et l'UTC sont disponibles sous forme de différences de temps avec les échelles locales de temps UTC(k), approximation de l'UTC, et TA(k), temps atomique local indépendant, reportées dans les tableaux 8 et 9.

Le calcul du TAI doit être fait, en principe, tous les deux mois. Mais un calcul provisoire est fait un mois sur deux (pour janvier, mars, etc.) avec les données disponibles. Le mois suivant, le calcul du TAI est repris pour une durée de deux mois.

L'écart entre les résultats des calculs provisoire et complet est ordinairement inférieur à 10 ns. Cette organisation permet la publication mensuelle des résultats dans la Circulaire T du BIPM. Quand le Rapport annuel est préparé, les résultats de la Circulaire T sont révisés, compte-tenu des améliorations de données, connues après la publication de la Circulaire T. Les calculs sont alors strictement faits par période de deux mois.

#### 4. Liaisons horaires

Le système des liaisons horaires utilisé par le BIPM est non-redondant. Il repose principalement sur l'observation des satellites du GPS.

En 1994, pratiquement tous les laboratoires de temps qui maintiennent un UTC local, étaient équipés de récepteurs du temps du GPS et suivaient les programmes de poursuite des satellites du GPS, produits par le BIPM:

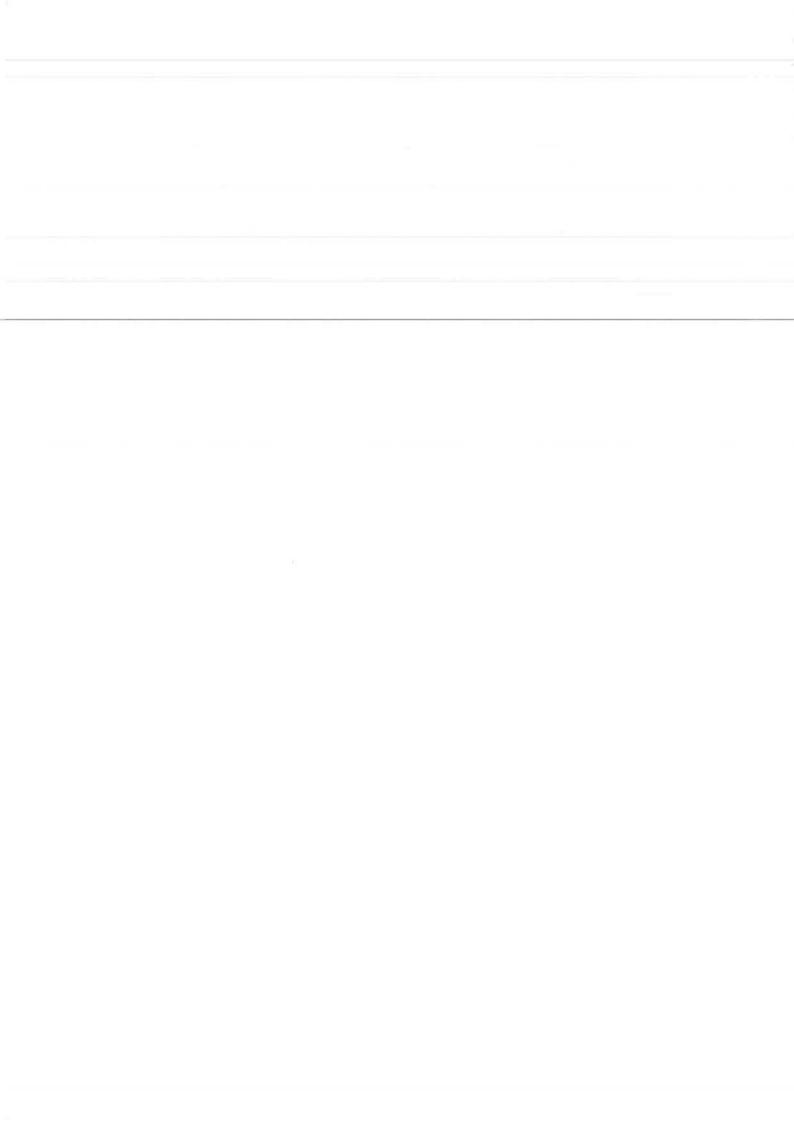
- le programme No 23, reproduit dans le tableau 10, mis en oeuvre le 30 juin 1994 (MJD 49533), et
- le programme No 24, reproduit dans le tableau 11, mis en oeuvre le 16 décembre 1994 (MJD 49702).

Les laboratoires envoient régulièrement leurs données au BIPM où les calculs sont effectués d'une manière unifiée. On utilise des observations en vues simultanées strictes, c'est-à-dire synchronisées à la seconde près, ceci afin de supprimer la dégradation des signaux des horloges embarquées, due à l'implantation de 'l'accés sélectif'.

Le BIPM organise le réseau international de comparaisons horaires utilisant le GPS selon un schéma en étoile au niveau des continents, et en deux liaisons à longue distance, OP-CRL et OP-NIST, choisies parce que des données de retards ionosphériques mesurés sont disponibles pour ces trois sites. Des éphémérides précises des satellites du GPS, produites par l'IGS et accessibles en quelques jours, sont aussi utilisées de manière courante pour ces deux liaisons. La précision ultime d'une mesure unique  $[UTC(k_1) - UTC(k_2)]$  est alors d'environ 2 ns pour les liaisons à courte distance et d'environ 8 ns pour les liaisons à longue distance. Le BIPM publie aussi une évaluation de [UTC - temps du GPS], donnée dans le tableau 12 de ce volume.

Aucun lien horaire utilisant le GLONASS n'a été utilisé en 1994. Cependant, le BIPM publie régulièrement une évaluation de [UTC - temps du GLONASS], donnée dans le tableau 13 du présent volume et déduite des observations habituelles des deux systèmes GPS et GLONASS, réalisées par le Professeur P. Daly de l'Université de Leeds.

# 5. Echelles de temps établies rétrospectivement


Pour les applications les plus exigeantes, comme le chronométrage des pulsars milliseconde, le BIPM produit des échelles de temps rétrospectivement, désignées par TT(BIPMxx), 1900 + xx étant l'année du calcul [3]. Les versions successives de TT(BIPMxx) ne sont pas seulement des mises à jour, mais aussi des révisions, de sorte qu'elles peuvent différer pour les dates communes. Ces échelles de temps sont disponibles sur demande faite au BIPM ou par utilisation du réseau INTERNET.

# **Notes**

Les tableaux 14 et 15 de ce rapport donnent les fréquences relatives au TAI et les poids des horloges qui ont contribué au calcul en 1994.

Les pages jaunes, à la fin de ce volume, concernent les émissions de signaux horaires.

Les références sont données dans le texte anglais, page 9.



# <u>List of the Tables included in the Annual Report</u> of the BIPM Time Section for 1994

Tables indicated with \* are available through the INTERNET network (see Annex I, just before the yellow pages of this volume) under the file names given in this list.

| Table 1.          | Frequency offsets and step adjustments of UTC                 | p. | 17  |
|-------------------|---------------------------------------------------------------|----|-----|
| Table 2.          | Relationship between TAI and UTC                              | p. | 19  |
| Table 3.          | Acronyms and locations of the timing centres which maintain   |    |     |
|                   | a UTC(k) or/and a TA(k)                                       | p. | 20  |
| Table 4.          | Laboratories contributing to TAI in 1994:                     |    |     |
|                   | Equipment, independent local time scale TA(k),                |    |     |
|                   | source of UTC(k) and reception of time signals                | p. | 22  |
| <u>Table 5.</u> * | Differences between the normalized frequencies of EAL and TAI | p. | 35  |
|                   | Data file EALTAI94.AR                                         |    |     |
| Table 6. *        | Measurements of TAI frequency                                 | p. | 36  |
|                   | Data file FTAI94.AR                                           |    |     |
| <u>Table 7.</u> * | Mean duration of the TAI scale interval                       | p. | 39  |
|                   | Data file SITAI94.AR                                          |    |     |
| Table 8. *        | Independent local atomic time scales: values of [TAI - TA(k)] | p. | 41  |
|                   | Data file TAI94.AR                                            |    |     |
| Table 9. *        | Local representations of UTC: values of [UTC - UTC(k)]        | p. | 53  |
|                   | Data file UTC94.AR                                            |    |     |
| Table 10.         | International GPS Tracking Schedule No 23                     | p. | 63  |
| Table 11.         | International GPS Tracking Schedule No 24                     | p. | 69  |
| Table 12. *       | Values of [UTC - GPS time]                                    | p. | 75  |
|                   | Data file UTCGPS94.AR                                         |    |     |
| Table 13. *       | Values of [UTC - GLONASS time]                                | p. | 89  |
|                   | Data file UTCGLO94.AR                                         |    |     |
| Table 14.         | Contributing clocks to TAI in 1994:                           |    |     |
|                   | 14A. * Rates relative to TAI                                  | p. | 91  |
|                   | Data file RTAI94.AR                                           |    |     |
|                   | 14B. Corrections for an homogeneous use of                    |    |     |
|                   | the clock rates published in the current                      |    |     |
|                   | and previous annual reports                                   | p. | 99  |
| Table 15.         | Contributing clocks to TAI in 1994:                           |    |     |
|                   | 15A. * Weights                                                | p. | 101 |
|                   | Data file WTAI94.AR                                           |    |     |
|                   | 15B. Statistical data on the weights                          | p. | 109 |

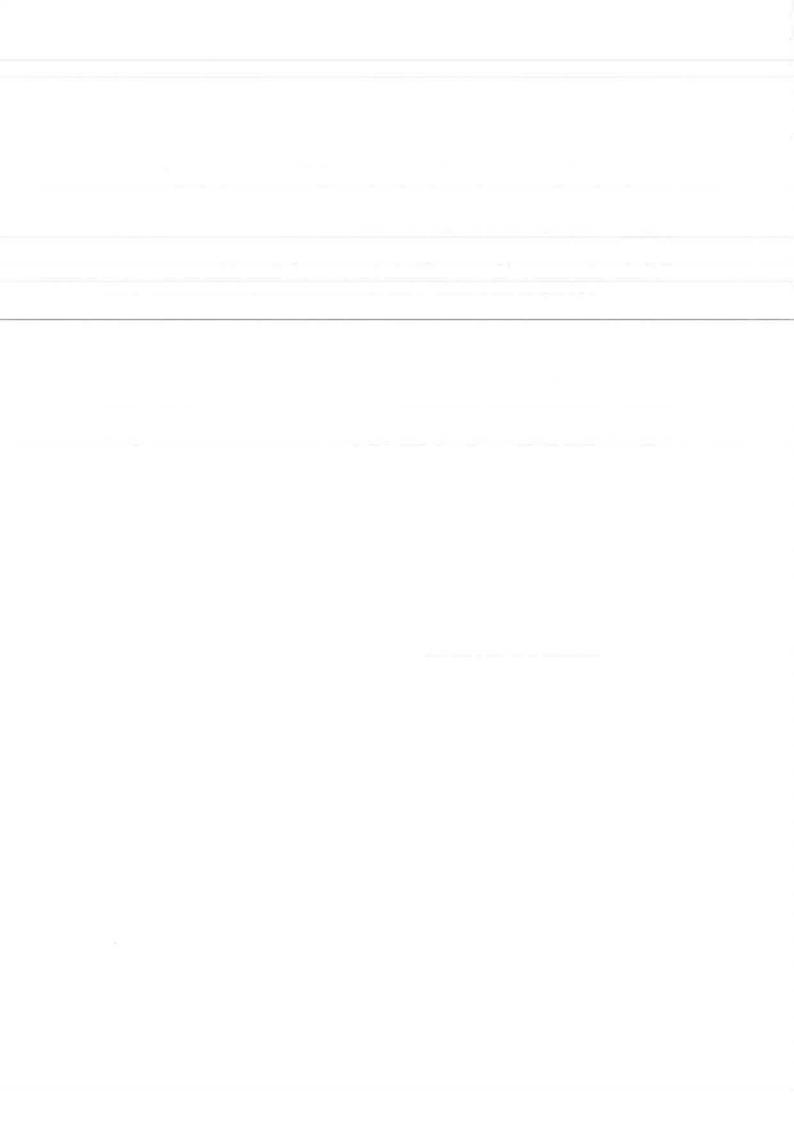



Table 1. Frequency offsets and step adjustments of UTC, until  $31\ \text{December}\ 1995$ 

| D      | ATE    |   | OFFSETS                | STEPS  |      |   |
|--------|--------|---|------------------------|--------|------|---|
| (AT OI | h UTC) |   |                        |        |      |   |
|        |        |   | 10                     |        |      |   |
| 1961   | Jan.   | 1 | -150x10 <sup>-10</sup> |        |      |   |
| 1961   | Aug.   | 1 | н                      | +0.050 | S    |   |
|        |        |   | 10                     |        |      |   |
| 1962   | Jan.   | 1 | -130x10 <sup>-10</sup> |        |      |   |
| 1963   | Nov.   | 1 | n                      | -0.100 | S    |   |
|        | _      |   | 10                     |        |      |   |
| 1964   | Jan.   | 1 | -150×10 <sup>-10</sup> |        |      |   |
| 1964   | Apr.   | 1 |                        | -0.100 | S    |   |
| 1964   | Sep.   | 1 | TI                     | -0.100 | S    |   |
| 1965   | Jan.   | 1 | 91                     | -0.100 | S    |   |
| 1965   | Mar.   | 1 | **                     | -0.100 | S    |   |
| 1965   | Jul.   | 1 | 11                     | -0.100 | S    |   |
| 1965   | Sep.   | 1 | 11                     | -0.100 | S    |   |
|        |        |   | 10                     |        |      |   |
| 1966   | Jan.   | 1 | -300x10 <sup>-10</sup> |        |      |   |
| 1968   | Feb.   | 1 | Ħ                      | +0.100 | S    |   |
| 1972   | Jan.   | 1 | 0                      | -0.107 | 7580 | S |
| 1972   | Jul.   | 1 | H                      | -1 s   |      |   |
| 1973   | Jan.   | 1 | n                      | -1 s   |      |   |
| 1974   | Jan.   | 1 | п                      | -1 s   |      |   |
| 1975   | Jan.   | 1 | 11                     | -1 s   |      |   |
| 1976   | Jan.   | 1 | Ħ                      | -1 s   |      |   |
| 1977   | Jan.   | 1 | H                      | -1 s   |      |   |
| 1978   | Jan.   | 1 | н                      | -1 s   |      |   |
| 1979   | Jan.   | 1 | н                      | -1 s   |      |   |
| 1980   | Jan.   | 1 | Ħ                      | -1 s   |      |   |
| 1981   | Jul.   | 1 | 88                     | -1 s   |      |   |
| 1982   | Jul.   | 1 | H                      | -1 s   |      |   |
| 1983   | Jul.   | 1 | 14                     | -1 s   |      |   |
| 1985   | Jul.   | 1 | 11                     | -1 s   |      |   |
| 1988   | Jan.   | 1 | н                      | -1 s   |      |   |
| 1990   | Jan.   | 1 | 11                     | -1 s   |      |   |
| 1991   | Jan.   | 1 | Ħ                      | -1 s   |      |   |
| 1992   | Jul.   | ī | n                      | -1 s   |      |   |
| 1993   | Jul.   | 1 | W                      | -1 s   |      |   |
| 1994   | Jul.   | 1 | π                      | -1 s   |      |   |
|        |        | _ |                        |        |      |   |

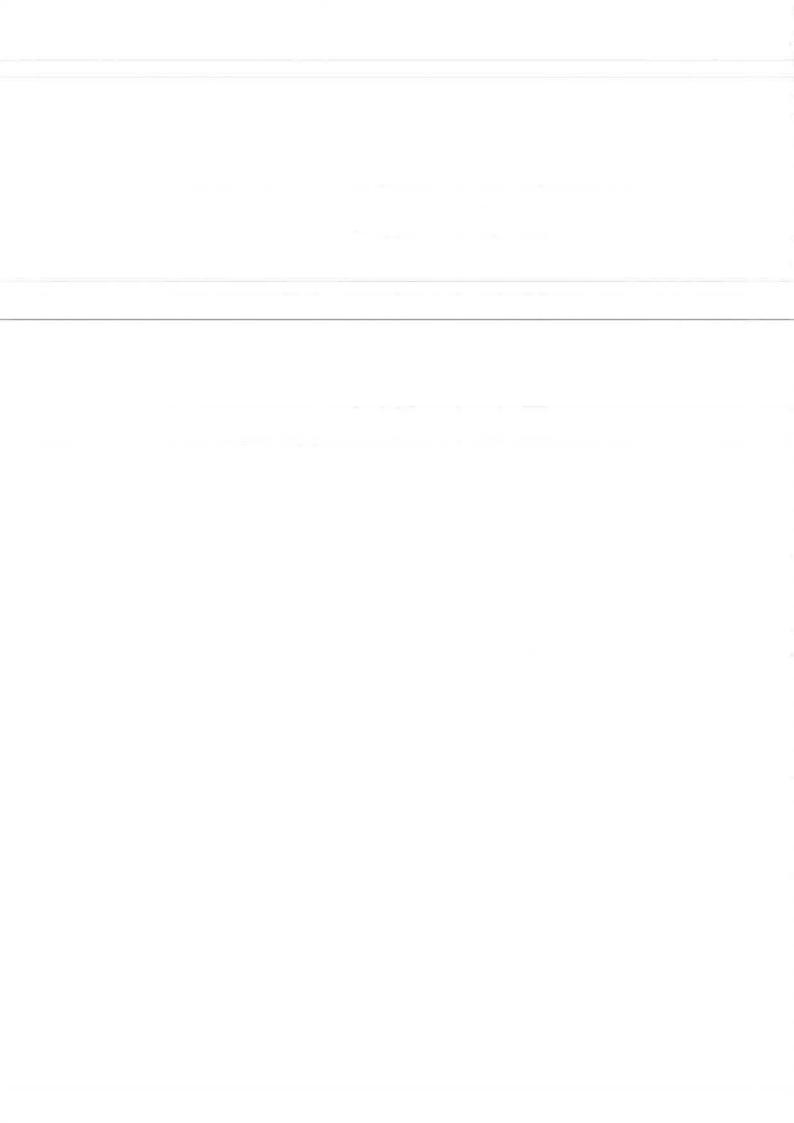



TABLE 2. RELATIONSHIP BETWEEN TAI AND UTC, UNTIL 31 DECEMBER 1995

LIMITS OF VALIDITY (AT OH UTC)

TAI - UTC (IN SECONDS)

| 1961 | Jan. 1 - 1961 Aug. 1 | 1.422 8180 + (MJD - 37300) x 0.001 296  |
|------|----------------------|-----------------------------------------|
| 1961 | Aug. 1 - 1962 Jan. 1 | 1.372 8180 + " "                        |
| 1962 | Jan. 1 - 1963 Nov. 1 | 1.845 8580 + (MJD - 37665) x 0.001 1232 |
| 1963 | Nov. 1 - 1964 Jan. 1 | 1.945 8580 + "                          |
| 1964 | Jan. 1 - 1964 Apr. 1 | 3.240 1300 + (MJD - 38761) x 0.001 296  |
| 1964 | Apr. 1 - 1964 Sep. 1 | 3.340 1300 + "                          |
| 1964 | Sep. 1 - 1965 Jan. 1 | 3.440 1300 + "                          |
| 1965 | Jan. 1 - 1965 Mar. 1 | 3.540 1300 + "                          |
| 1965 | Mar. 1 - 1965 Jul. 1 | 3.640 1300 + "                          |
| 1965 | Jul. 1 - 1965 Sep. 1 | 3.740 1300 + " "                        |
| 1965 | Sep. 1 - 1966 Jan. 1 | 3.840 1300 + " "                        |
| 1966 | Jan. 1 - 1968 Feb. 1 | 4.313 1700 + (MJD - 39126) x 0.002 592  |
| 1968 | Feb. 1 - 1972 Jan. 1 | 4.213 1700 + " "                        |
| 1972 | Jan. 1 - 1972 Jul. 1 | 10 (integral number of seconds)         |
| 1972 | Jul. 1 - 1973 Jan. 1 | 11                                      |
| 1973 | Jan. 1 - 1974 Jan. 1 | 12                                      |
| 1974 | Jan. 1 - 1975 Jan. 1 | 13                                      |
| 1975 | Jan. 1 - 1976 Jan. 1 | 14                                      |
| 1976 | Jan. 1 - 1977 Jan. 1 | 15                                      |
| 1977 | Jan. 1 - 1978 Jan. 1 | 16                                      |
| 1978 | Jan. 1 - 1979 Jan. 1 | 17                                      |
| 1979 | Jan. 1 - 1980 Jan. 1 | 18                                      |
| 1980 | Jan. 1 - 1981 Jul. 1 | 19                                      |
| 1981 | Jul. 1 - 1982 Jul. 1 | 20                                      |
| 1982 | Jul. 1 - 1983 Jul. 1 | 21                                      |
| 1983 | Jul. 1 - 1985 Jul. 1 | 22                                      |
| 1985 | Jul. 1 - 1988 Jan. 1 | 23                                      |
| 1988 | Jan. 1 - 1990 Jan. 1 | 24                                      |
| 1990 | Jan. 1 - 1991 Jan. 1 | 25                                      |
| 1991 | Jan. 1 - 1992 Jul. 1 | 26                                      |
| 1992 | Jul. 1 - 1993 Jul. 1 | 27                                      |
| 1993 | Jul. 1 - 1994 Jul. 1 | 28                                      |
| 1994 | Jul. 1 -             | 29                                      |
|      |                      |                                         |

TABLE 3. ACRONYMS AND LOCATIONS OF THE TIMING CENTRES WHICH MAINTAIN A LOCAL APPROXIMATION OF UTC, UTC(k), OR/AND AN INDEPENDENT LOCAL TIME SCALE, TA(k)

```
AOS
        Astronomiczne Obserwatorium Szerokosciowe, Borowiec, Polska
APL
        Applied Physics Laboratory, Laurel, MA, USA
AUS
        Consortium of laboratories in Australia
BEV
        Bundesamt für Eich – und Vermessungswesen, Wien, Oesterreich
CAO
        Cagliari Astronomical Observatory, Cagliari, Italia
CH
        Consortium of laboratories in Switzerland
CRL
        Communications Research Laboratory, Tokyo, Japan
CSA0
        Shaanxi Astronomical Observatory, Lintong, P.R. China
CSIR
        Council for Scientific and Industrial Research, Pretoria, South Africa
F
        Commission Nationale de l'Heure, Paris, France
FTZ
        Forschungs - und Technologiezentrum Darmstadt, Deutschland
GUM (1) Glówny Urzad Miar, Central Office of Measures, Warszawa, Polska
IEN
        Istituto Elettrotecnico Nazionale Galileo Ferraris, Torino, Italia
IFAG
        Institut für Angewandte Geodäsie, Frankfurt am Main, Deutschland
IGMA
        Instituto Geografico Militar, Buenos-Aires, Argentina
INPL
        National Physical Laboratory, Jerusalem, Israel
JATC
        Joint Atomic Time Commission, Lintong, P.R. China
KRIS
        Korea Research Institute of Standards and Science, Taejon,
        Rep. of Korea
LDS
        The University of Leeds. Leeds. United Kingdom
MSL
        Measurement Standards Laboratory, Lower Hutt, New Zealand
MOAN
        National Astronomical Observatory, Misuzawa, Japan
NAOT
        National Astronomical Observatory, Tokyo, Japan
NIM
        National Institute of Metrology, Beijing, P.R. China
NIST
        National Institute of Standards and Technology, Boulder, CO, USA
NMC
        National Metrological Center, Sofiya, Bulgaria
NPL
        National Physical Laboratory, Teddington, United Kingdom
NPLI
        National Physical Laboratory, New-Delhi, India
NRC
        National Research Council of Canada, Ottawa, Canada
NRLM
        National Research Laboratory of Metrology, Tsukuba, Japan
HMO
        Orszagos Mérésügyi Hivatal, Budapest, Hungary
ONBA
        Observatorio Naval, Buenos-Aires, Argentina
ONRJ
        Observatorio Nacional, Rio de Janeiro, Brazil
0P
        Observatoire de Paris, Paris, France
ORB
        Observatoire Royal de Belgique, Bruxelles, Belgique
```

TABLE 3. ACRONYMS AND LOCATIONS OF THE TIMING CENTRES WHICH MAINTAIN A LOCAL APPROXIMATION OF UTC, UTC(k), or/and an independent local time scale, TA(k) (Cont.)

| PTB<br>RC | Physikalisch-Technische Bundesanstalt, Braunschweig, Deutschland<br>Comité Estatal de Normalizacion, Habana, Cuba |
|-----------|-------------------------------------------------------------------------------------------------------------------|
| ROA       | Real Instituto y Observatorio de la Armada, San Fernando, Espana                                                  |
| SCL       | Standards and Calibration Laboratory, Hong Kong                                                                   |
| SNT       | Swedish National Time and Frequency Laboratory, Stockholm, Sweden                                                 |
| S0        | Shanghai Observatory, Shanghai, P.R. China                                                                        |
| SU        | Institute of Metrology for Time and Space (IMVP), NPO "VNIIFTRI"                                                  |
|           | Mendeleevo, Moscow Region, Russia                                                                                 |
| TL        | Telecommunication Laboratories, Chung-Li, Taiwan, China                                                           |
| TP        | Institute of Radio Engineering and Electronics, Academy of Sciences                                               |
|           | of Czech Republic – Czech Republic                                                                                |
| TUG       | Technische Universität, Graz, Oesterreich                                                                         |
| UME       | Ulusai Metroloji Enstitüsü, Marmara Research Centre,                                                              |
|           | National Metrology Institute, Gebze-Kocaeli, Turkey                                                               |
| USNO      | U.S. Naval Observatory, Washington D.C., USA                                                                      |
| VSL       | Van Swinden Laboratorium, Delft, Nederland                                                                        |

# (1) Formerly PKNM

TABLE 4. LABORATORIES CONTRIBUTING TO TAI IN 1994: EQUIPMENT, INDEPENDENT LOCAL TIME SCALE

(Ind. Cs : industrial Cs Standard, Lab. Cs : laboratory Cs standard,

| 7-10-11-11-11-11-11-11-11-11-11-11-11-11- | -,                                    | Information on TA(k) - UTC(k)                |                                                                           |  |  |
|-------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|--|--|
| Laboratory<br>(k)                         | Equipment<br>in atomic<br>standards   | Interval of<br>validity (in<br>MJD at OhUTC) | TA(k) - UTC(k)<br>in s                                                    |  |  |
| AOS                                       | 2 Ind. Cs                             |                                              |                                                                           |  |  |
| APL                                       | 2 Ind. Cs<br>4 H-Masers               | 49352-49534<br>49534-49717                   | 27.999 998 537<br>28.999 998 537                                          |  |  |
| AUS                                       | Ind. Cs<br>H-Masers<br>(2)            | year 1994                                    | TA(AUS)-UTC(AUS) is sent<br>to the BIPM by ORR                            |  |  |
| BEV                                       | 1 Ind. Cs                             |                                              |                                                                           |  |  |
| CAO                                       | 3 Ind. Cs                             |                                              |                                                                           |  |  |
| СН                                        | 14 Ind. Cs<br>(4)                     | year 1994                                    | TA(CH)-UTC(CH) is sent to<br>the BIPM by OFM                              |  |  |
| CRL                                       | 1 Lab. Cs<br>14 Ind. Cs<br>4 H-Masers | year 1994                                    | TA(CRL)-UTC(CRL) is published in CRL Standard Frequency and Time Bulletin |  |  |
| CSA0                                      | 5 Ind. Cs<br>2 H-Masers               | year 1994                                    | TA(CSAO)-UTC(CSAO) is published in CSAO Time and Frequency Bulletins      |  |  |

TA(K), SOURCE OF UTC(K) AND RECEPTION OF TIME SIGNALS

|                |                         | Informatio          | on on time 1                            | inks                                                                               |                                                                                                                                                          |
|----------------|-------------------------|---------------------|-----------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPS<br>recept. | Iono.<br>meas.<br>syst. | GLONASS<br>recept.  | LORAN-C<br>recept.                      | Television<br>link with                                                            | Two-way<br>satellite<br>time transfer                                                                                                                    |
| *              |                         |                     | *                                       | GUM                                                                                |                                                                                                                                                          |
| *              |                         |                     |                                         |                                                                                    | in an experi-<br>mental stage                                                                                                                            |
| *              |                         |                     |                                         | other labs in<br>Australia                                                         | in an experi-<br>mental stage                                                                                                                            |
|                |                         |                     | *                                       | OMH, TUG,<br>other labs in<br>Slovak Republic                                      |                                                                                                                                                          |
| *              |                         |                     | *                                       |                                                                                    |                                                                                                                                                          |
| *              |                         |                     | *                                       | PTT (4)                                                                            |                                                                                                                                                          |
| *              | *                       |                     | *                                       |                                                                                    | *                                                                                                                                                        |
| *              |                         |                     | *                                       | other labs in<br>China                                                             |                                                                                                                                                          |
|                | * * *                   | recept. meas. syst. | GPS recept. meas. syst. GLONASS recept. | GPS recept. Iono. meas. syst. CRAN-C recept. *  *  *  *  *  *  *  *  *  *  *  *  * | recept. meas. syst. recept. recept. link with  * GUM  * other labs in Australia  * OMH, TUG. other labs in Slovak Republic  * * PTT (4)  * other labs in |

TABLE 4. LABORATORIES CONTRIBUTING TO TAI IN 1994 : EQUIPMENT, INDEPENDENT LOCAL TIME SCALE

(Ind. Cs : industrial Cs Standard, Lab. Cs : laboratory Cs standard,

|                   |                                             | Informati                              | ion on TA(k) - UTC(k)                  |
|-------------------|---------------------------------------------|----------------------------------------|----------------------------------------|
| Laboratory<br>(k) | Equipment<br>in atomic<br>standards         | Interval of validity (in MJD at OhUTC) | TA(k) - UTC(k)<br>in s                 |
| CSIR              | 2 Ind. Cs                                   |                                        |                                        |
| FTZ               | 4 Ind. Cs                                   |                                        |                                        |
| GUM (5)           | 4 Ind. Cs                                   |                                        |                                        |
| IEN               | 6 Ind. Cs                                   |                                        | (6)                                    |
| IFAG              | 5 Ind. Cs<br>3 H-Masers                     |                                        |                                        |
| IGMA              | 4 Ind. Cs                                   |                                        |                                        |
| INPL              | 5 Ind. Cs                                   | year 1994                              | TA(INPL)-UTC(INPL) is sent to the BIPM |
| JATC              | 1 Lab. Cs<br>7 Ind. Cs<br>3 H-Masers<br>(7) | year 1994                              | TA(JATC)-UTC(JATC) is sent to the BIPM |
| KRIS              | 5 Ind. Cs<br>1 H-Maser                      | year 1994                              | TA(KRIS)-UTC(KRIS) is sent to the BIPM |
| LDS               | 3 Ind. Cs                                   |                                        |                                        |
| MSL               | 3 Ind. Cs                                   |                                        |                                        |

TA(K), SOURCE OF UTC(K) AND RECEPTION OF TIME SIGNALS (CONT.)

|                            | Information on time links |                         |                    |                    |                                  |                                       |
|----------------------------|---------------------------|-------------------------|--------------------|--------------------|----------------------------------|---------------------------------------|
| Source of<br>UTC(k)<br>(1) | GPS<br>recept.            | Iono.<br>meas.<br>syst. | GLONASS<br>recept. | LORAN-C<br>recept. | Television<br>link with          | Two-way<br>satellite<br>time transfer |
| 1 Cs                       | *                         |                         |                    |                    | other labs in<br>South Africa    |                                       |
| 1 Cs                       | *                         |                         |                    |                    |                                  | *                                     |
| 1 Cs +<br>microstepper     | *                         |                         |                    | *                  | AOS                              |                                       |
| 1 Cs +<br>microstepper     | *                         |                         |                    |                    | CAO, other<br>labs in Italy      |                                       |
| 1 Cs +<br>microstepper     | *                         |                         |                    |                    |                                  |                                       |
| 1 Cs +<br>microstepper     | *                         |                         |                    |                    | ONBA, other labs<br>in Argentina |                                       |
| 4 Cs                       | *                         | *                       |                    |                    |                                  |                                       |
| 1 Cs +<br>microstepper     | *                         |                         |                    | *                  |                                  |                                       |
| 1 Cs +<br>microstepper     | *                         | *                       |                    | *                  |                                  |                                       |
| 1 Cs                       | *                         |                         | * (8)              |                    |                                  |                                       |
| 1 Cs                       | *                         |                         |                    |                    | other labs in<br>New Zealand     |                                       |

TABLE 4. LABORATORIES CONTRIBUTING TO TAI IN 1994 : EQUIPMENT, INDEPENDENT LOCAL TIME SCALE

(Ind. Cs : industrial Cs Standard, Lab. Cs : laboratory Cs standard,

|                   |                                              | Info                                         | rmation on TA(k) - UTC(k)                            |
|-------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|
| Laboratory<br>(k) | Equipment<br>in atomic<br>standards          | Interval of<br>validity (in<br>MJD at OhUTC) | TA(k) - UTC(k) in s                                  |
| NAOM              | 3 Ind. Cs<br>1 H-Maser                       |                                              |                                                      |
| NAOT              | 4 Ind. Cs                                    |                                              |                                                      |
| NIM               | 3 Ind. Cs                                    | year 1994                                    | TA(NIM)-UTC(NIM) is sent to the BIPM                 |
| NIST              | 3 Lab. Cs<br>20 Ind. Cs<br>3 H-Masers<br>(9) | year 1994                                    | [AT1-UTC(NIST)] is<br>sent to the BIPM<br>(10)       |
| NMC               | 1 Ind. Cs                                    |                                              |                                                      |
| NPL               | 7 Ind. Cs<br>1 H-Maser                       |                                              |                                                      |
| NPLI              | 3 Ind. Cs                                    |                                              |                                                      |
| NRC               | 3 Lab. Cs<br>1 Ind. Cs                       | 49352-49534<br>from 49534                    | 27.999 983 931  TA(NRC)-UTC(NRC) is sent to the BIPM |
| NRLM              | 5 Ind. Cs<br>2 Lab. Cs                       |                                              |                                                      |

TA(k), SOURCE OF UTC(k) AND RECEPTION OF TIME SIGNALS (CONT.)

|                             | Information on time links |                         |                    |                    |                                     |                                 |  |
|-----------------------------|---------------------------|-------------------------|--------------------|--------------------|-------------------------------------|---------------------------------|--|
| Source of<br>UTC(k)<br>(1)  | GPS<br>recept.            | Iono.<br>meas.<br>syst. | GLONASS<br>recept. | LORAN-C<br>recept. | Television<br>link with             | Two-way satellite time transfer |  |
| 1 Cs +<br>microstepper      | *                         |                         |                    | *                  |                                     |                                 |  |
| 1 Cs +<br>microstepper      | *                         |                         |                    | *                  |                                     |                                 |  |
| 1 Cs +<br>microstepper      | *                         |                         |                    | *                  | other labs<br>in China              |                                 |  |
| 11 Cs<br>1 H-Maser          | *                         | *                       |                    | *                  |                                     | *                               |  |
| 1 Cs +<br>microstepper      | *                         |                         |                    |                    | ROA                                 |                                 |  |
| 1 H-Maser +<br>microstepper | *                         | (11)                    |                    | *                  | transmitting<br>station at<br>Rugby | *                               |  |
| 1 Cs                        | *                         |                         |                    |                    |                                     |                                 |  |
| 1 Lab. Cs<br>(12)           | *                         | 1                       |                    | *                  |                                     | *                               |  |
| 1 Cs                        | *                         |                         |                    |                    |                                     |                                 |  |

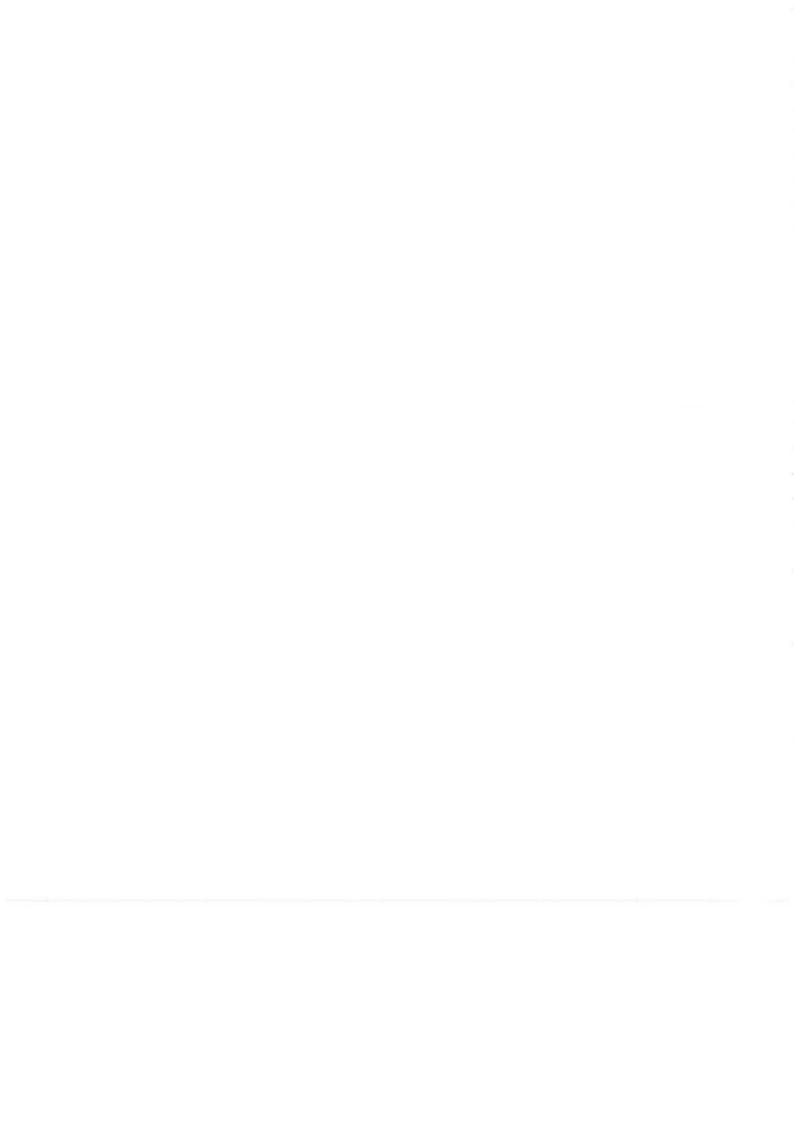
TABLE 4. LABORATORIES CONTRIBUTING TO TAI IN 1994 : EQUIPMENT, INDEPENDENT LOCAL TIME SCALE

(Ind. Cs : industrial Cs Standard, Lab. Cs : laboratory Cs standard,

|                   |                                      | Inform                                 | ation on TA(k) - UTC(k)                               |
|-------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------|
| Laboratory<br>(k) | Equipment<br>in atomic<br>standards  | Interval of validity (in MJD at OhUTC) | TA(k) - UTC(k)<br>in s                                |
| ОМН               | 1 Ind. Cs                            |                                        |                                                       |
| ONBA              | 2 Ind. Cs                            |                                        |                                                       |
| ONRJ              | 5 Ind. Cs                            |                                        |                                                       |
| OP                | 5 Ind. Cs<br>1 Lab. Cs<br>1 H-Maser  | year 1994                              | TA(F)-UTC(OP) is published in Bulletin H by LPTF (13) |
| ORB               | 3 Ind. Cs<br>1 H-Maser               |                                        |                                                       |
| РТВ               | 4 Lab. Cs<br>7 Ind. Cs<br>3 H-Masers | 49352-49534<br>49534-49717             | 28.000 363 400<br>29.000 363 400                      |
| RC                | 5 H-Masers                           | year 1994                              | TA(RC)-UTC(RC) is sent to the BIPM                    |
| ROA               | 7 Ind. Cs                            |                                        |                                                       |
| SCL               | 2 Ind. Cs                            |                                        |                                                       |
| SNT               | 3 Ind. Cs                            |                                        |                                                       |

TA(K), SOURCE OF UTC(K) AND RECEPTION OF TIME SIGNALS (CONT.)

|                            |                |                         | Informati          | on on time         | links                              |                                       |
|----------------------------|----------------|-------------------------|--------------------|--------------------|------------------------------------|---------------------------------------|
| Source of<br>UTC(k)<br>(1) | GPS<br>recept. | Iono.<br>meas.<br>syst. | GLONASS<br>recept. | LORAN-C<br>recept. | Television<br>link with            | Two-way<br>satellite<br>time transfer |
| 1 Cs                       | *              |                         |                    |                    |                                    |                                       |
| 2 Cs                       |                |                         |                    |                    | IGMA<br>other labs in<br>Argentina |                                       |
| 5 Cs                       | *              |                         |                    |                    | other labs<br>in Brasil            |                                       |
| 1 Cs +<br>microstepper     | *              | *                       |                    | *                  | 17 labs in<br>France               |                                       |
| 3 Cs                       | *              |                         |                    |                    |                                    |                                       |
| 1 Lab. Cs<br>(14)          | *              | *                       |                    | *                  | TP and other labs                  | *                                     |
| 3 H-Masers                 |                |                         |                    | *                  |                                    |                                       |
| all the Cs                 | *              |                         |                    | *                  | NMC                                |                                       |
| 1 Cs +<br>microstepper     | *              |                         |                    | *                  |                                    |                                       |
| 1 Cs                       | *              |                         |                    | *                  | other labs<br>in Sweden            |                                       |


TABLE 4. LABORATORIES CONTRIBUTING TO TAI IN 1994 : EQUIPMENT, INDEPENDENT LOCAL TIME SCALE

(Ind. Cs : industrial Cs Standard, Lab. Cs : laboratory Cs standard,

|                   | Equipment<br>in atomic<br>standards                                    | Information on TA(k) - UTC(k)                |                                                               |  |
|-------------------|------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--|
| Laboratory<br>(k) |                                                                        | Interval of<br>validity (in<br>MJD at OhUTC) | TA(k) - UTC(k)<br>in s                                        |  |
| so                | 1 Lab. Cs<br>2 Ind. Cs<br>3 H-Masers                                   | year 1994                                    | TA(SO)-UTC(SO) is<br>published in SO<br>Atomic Time Bulletins |  |
| SU                | 2 Lab. Cs<br>10 H-Masers                                               | 49352-49534<br>49534-49717                   | 25.172 750 000<br>26.172 750 000                              |  |
| TL                | 5 Ind. Cs                                                              |                                              |                                                               |  |
| ТР                | 4 Ind. Cs                                                              |                                              |                                                               |  |
| TUG               | 4 Ind. Cs                                                              |                                              |                                                               |  |
| UME (16)          | 2 Ind. Cs                                                              |                                              |                                                               |  |
| USNO              | 73 Ind. Cs<br>12 H-Masers<br>2 Prototypes<br>Mercury Ion<br>Freq. Std. | year 1994                                    | A.1(MEAN)-UTC(USNO,MC) is sent to the BIPM (17)               |  |
| VSL               | 4 Ind. Cs                                                              |                                              |                                                               |  |

TA(K), SOURCE OF UTC(K) AND RECEPTION OF TIME SIGNALS (CONT.)

|                                                                            | Information on time links |                         |                    |                    |                           |                                 |  |
|----------------------------------------------------------------------------|---------------------------|-------------------------|--------------------|--------------------|---------------------------|---------------------------------|--|
| Source of UTC(k) (1)                                                       | GPS<br>recept.            | Iono.<br>meas.<br>syst. | GLONASS<br>recept. | LORAN-C<br>recept. | Television<br>link with   | Two-way satellite time transfer |  |
| 1 Cs +<br>microstepper                                                     | *                         |                         |                    | *                  | other labs<br>in China    |                                 |  |
| 6 H-Masers<br>(15)                                                         | *                         |                         | *                  | *                  |                           |                                 |  |
| 1 cs +<br>microstepper                                                     | *                         | *                       |                    |                    |                           | in an experi-<br>mental stage   |  |
| 1 Cs + output<br>frequency<br>steering                                     | *                         |                         |                    | *                  |                           |                                 |  |
| 1 Cs                                                                       | *                         |                         |                    | *                  | BEV                       | *                               |  |
| 1 Cs                                                                       | *                         |                         |                    |                    |                           |                                 |  |
| JTC(USNO,MC) is an H-Maser + Freq. synthe- sizer steered to UTC(USNO) (17) | * (18)                    | *                       | *                  | *<br>(18)          | *                         | *                               |  |
| 1 Cs +<br>microstepper                                                     | *                         |                         |                    | *                  | 18 Labs in<br>Netherlands | *                               |  |



- (1) When several clocks are indicated as source of UTC(k), laboratory k computes a software clock, steered to UTC. Often a physical realization of UTC(k) is obtained using a Cs clock and a microphase stepper.
- (2) Some of the standards are located as follows (at the end of 1994):
  - \* Australian Telecommunications Commission (ATC, Melbourne) 7 Cs
    \* National Measurements Laboratory, (NML, Sydney) 3 Cs.

2 H-Masers

- \* Orroral Observatory (ORR, Belconnen) 5 Cs.
  Australian laboratories are intercompared by GPS and by the TV method.
- (3) From 1st January 1994, UTC(AUS) has been the output of a steered HP5071 caesium beam frequency standard.
- (4) The standards are located as follows (at the end of 1994):
  - \* Office Fédéral de Métrologie (OFM, Bern) 8 Cs

    \* Observatoire de Neuchâtel (ON, Neuchâtel) 3 Cs

    \* Direction Générale des PTT (PTT, Bern) 3 Cs.

    They are intercompared by LORAN-C (OFM-ON) and the TV method (OFM-PTT) and linked to the foreign laboratories through OFM.
- (5) Glówny Urzad Miar, (Central Office of Measures), Warszawa, Polska. Formerly PKNM.
- (6) The implementation of an algorithm for computation of TA(IEN) is under test. Values of [TA(IEN) UTC(IEN)] are not yet reported to the BIPM.
- (7) The standards are located as follows:
  - \* Shaanxi Astronomical Observatory (CSAO, Lintong)
  - \* Shanghai Astronomical Observatory (SO, Shanghai)
  - \* Wuhan Time Observatory
  - \* Beijing Institute of Radio Metrology and Measurement.

The link [UTC(JATC) - UTC(CSAO)] is obtained by direct connection.

- (8) Reception of GPS and GLONASS signals on a common custom-built receiver allowing observation of the difference between GPS time and GLONASS time.
- (9) A new primary frequency standard, NIST-7, using optical pumping has been developed at the NIST. Results have been regularly reported to the BIPM since August 1994.
- (10) The independent local time scale AT1 appears in the BIPM publications as TA(NISA).
- (11) A dual-frequency P-Code GPS receiver is under test at the NPL.
- (12) In 1994, UTC(NRC) was derived from NRC Cs VI C.

(13) TA(F) is the French atomic time scale computed by the LPTF with data from 21 industrial caesium clocks located as follows (at the end of 1994):

| * Centre Electronique de l'Armement (CELAR, Rennes)               | 2 Cs  |
|-------------------------------------------------------------------|-------|
| * Centre National d'Etudes Spatiales (CNES, Toulouse)             | 2 Cs  |
| * Centre National d'Etudes des Télécommunications (CNET, Bagneux) | 2 Cs  |
| * Observatoire de la Côte d'Azur (OCA, Grasse)                    | 1 Cs  |
| * Electronique Serge Dassault (ESD, Trappes)                      | 1 Cs  |
| * Hewlett-Packard (HP, Orsay)                                     | 3 Cs  |
| * Observatoire de Paris : Laboratoire Primaire du Temps et des    |       |
| Fréquences (LPTF)                                                 | 5 Cs  |
| * Observatoire de Besançon (OB, Besançon)                         | 2 Cs  |
| * Laboratoire de Physique et de Métrologie des Oscillateurs       |       |
| (LPMO, Besançon)                                                  | 1 Cs  |
| * Ecole Nationale Supérieure de Mécanique et des Microtechniques  |       |
| (ENSMM, Besançon)                                                 | 1 Cs  |
| * Société d'Etudes, Recherches et Constructions Electroniques     |       |
| (SERCEL, Carquefou)                                               | 1 Cs. |
| Links by GPS: OP-OB, OP-SERCEL, OP-OCA, OP-CNES, OP-CELAR, OP-HP. |       |
| Cable links : OB-LPMO, OB-ENSMM.                                  |       |
| Other national links by the TV method.                            |       |

- (14) Two laboratory Cs, PTB CS1 and PTB CS2, are operated continuously as clocks. TA(PTB) and UTC(PTB) were derived directly from PTB CS2 in 1994. The accuracy of PTB CS3 and PTB CS4 is being evaluated.
- (15) UTC(SU) is a free running time scale obtained as the simple average of a selected number of H-masers.
- (16) Ulusai Metroloji Enstitüsü, Marmara Research Centre, National Metrology Institute, Gebze-Kocaeli, Turkey.
- (17) The time scale A.1 (MEAN), designated as TA(USNO) in the BIPM publications, and UTC(USNO) are computed by the USNO. They rely on a number of Cs clocks and H-masers. A.1 (MEAN) is a free atomic time scale while UTC(USNO) is closely steered on UTC.
- (18) Daily time differences of [UTC(USNO,MC) transmitting station] are published weekly (Series 4 of USNO) for the LORAN-C chains and the GPS satellite system. This data is also available via the Automated Data Service (ADS) of USNO.

TABLE 5. DIFFERENCES BETWEEN THE NORMALIZED FREQUENCIES OF EAL AND TAI, UNTIL JANUARY 1995

(File available via INTERNET under the name EALTAI94.AR)

| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MJD                                                                                                                                                                                                                                                                                                                                             | f(EAL) - f(TAI)<br>in 10 <sup>-13</sup>                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| until 1977 Jan 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | until 43144                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                 |
| 1977 Jan 1 - 1977 Apr 26 1977 Apr 26 - 1977 Jun 25 1977 Jun 25 - 1977 Aug 24 1977 Aug 24 - 1977 Oct 23 1977 Oct 23 - 1978 Oct 28 1978 Oct 28 - 1979 Jun 25 1979 Jun 25 - 1979 Aug 24 1979 Aug 24 - 1979 Oct 23 1979 Oct 23 - 1982 Apr 30 1982 Apr 30 - 1982 Jun 29 1982 Jun 29 - 1982 Aug 28 1982 Aug 28 - 1984 Feb 29 1984 Feb 29 - 1987 Apr 24 1987 Apr 24 - 1987 Dec 30 1987 Dec 30 - 1989 Jun 22 1989 Jun 22 - 1989 Dec 29 1989 Dec 29 - 1990 Feb 27 1990 Feb 27 - 1990 Apr 28 1990 Apr 28 - 1990 Jun 27 1990 Jun 27 - 1990 Aug 26 1990 Aug 26 - 1991 Feb 22 1991 Feb 22 - 1991 Apr 23 1991 Aug 31 - 1991 Oct 30 1991 Oct 30 - 1992 Apr 27 1992 Apr 27 - 1992 Jun 26 | 43259 - 43319 43319 - 43379 43379 - 43439 43439 - 43809 43809 - 44049 44049 - 44109 44109 - 44169 44169 - 45089 45089 - 45149 45149 - 45209 45209 - 45759 45759 - 46909 46909 - 47159 47159 - 47699 47699 - 47889 47889 - 47949 47949 - 48009 48009 - 48129 48129 - 48309 48309 - 48369 48369 - 48499 48499 - 48559 48559 - 48739 48739 - 48799 | 10.0<br>9.8<br>9.6<br>9.4<br>9.2<br>9.0<br>8.8<br>8.6<br>8.4<br>8.2<br>8.0<br>7.8<br>8.0<br>7.95<br>7.95<br>7.85<br>7.80<br>7.75<br>7.70<br>7.625<br>7.55<br>7.50<br>7.45<br>7.40 |
| 1992 Jun 26 - 1993 Apr 22<br>1993 Apr 22 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48799 - 49099<br>49099                                                                                                                                                                                                                                                                                                                          | 7,35<br>7,40                                                                                                                                                                      |

As the time scales UTC and TAI differ by an integral number of seconds (see Tables 1 and 2), UTC is necessarily subjected to the same intentional frequency adjustment as TAI.

TABLE 6. MEASUREMENTS OF TAI FREQUENCY

(File available via INTERNET under the name FTAI94.AR)

The following table gives the differences of frequency measured during the period 1990-1994 between TAI and the laboratory caesium standards CRL Cs1, LPTF JPO, NIST-7, NRC CsV, NRC CsVI A and C, PTB CS1 and PTB CS2. Previous calibrations are available in the successive annual reports of the BIPM Time Section volumes 1 to 6.

The frequencies of all of these primary frequency standards are corrected for the gravitational shift (of about 1 part in  $10^{-13}$  for an altitude of 1000 m), but only the frequencies of Cs1 from the CRL, JPO from the LPTF and NIST-7 from the NIST are corrected for the black body radiation shift (of about 2 parts in  $10^{-14}$  for a temperature of 40 °C). This introduces some inconsistency in the published data, a problem which should be solved during the next CCDS meeting of 1996.

The characteristics of the calibrations of the TAI frequency provided by the different primary standards are as follows:

| Standard                                       | Unc. (1 σ)                                                      | Operation                                                          | Comparison<br>with                       | Transfer<br>to TAI                   |
|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| CRL Cs1<br>LPTF JPO<br>NIST NIST-7             | 1.1×10 <sup>-13</sup> 1.1×10 <sup>-13</sup> 1×10 <sup>-14</sup> | discontinuous<br>discontinuous<br>discontinuous                    | UTC(CRL)<br>UTC(OP)<br>H maser<br>No 201 | 60 d<br>10 d<br>10 d                 |
| NRC CsVI A<br>NRC CsVI C<br>PTB CS1<br>PTB CS2 | $ \begin{array}{l}                                     $        | continuous<br>continuous<br>continuous<br>continuous<br>continuous | TAI<br>TAI<br>TAI<br>TAI                 | 60 d<br>60 d<br>60 d<br>60 d<br>60 d |

f(TAI) - f(Standard) in  $10^{-13}$ 

| Interval<br>MJD                                          | Central<br>date                                        | CRL<br>Cs1 | LPTF<br>JPO | NIST<br>NIST-7                |
|----------------------------------------------------------|--------------------------------------------------------|------------|-------------|-------------------------------|
| 47949-48009                                              | 1990 Apr 5                                             | 0.19       |             |                               |
| 48499-48559                                              | 1991 Sep 27                                            | -0.13      |             |                               |
| 48949-49009                                              | 1992 Dec 23                                            | 0.26       |             |                               |
| 49119-49129                                              | 1993 May 17                                            |            | -1.16       |                               |
| 49509-49519<br>49589-49599<br>49599-49609<br>49629-49639 | 1994 Jun 11<br>1994 Aug 30<br>1994 Sep 9<br>1994 Oct 9 |            |             | 0.15<br>0.20<br>0.03<br>-0.06 |

TABLE 6. (CONT.)

f(TAI) - f(Standard) in  $10^{-13}$ 

| Interval<br>MJD                                                                                    | Central<br>date                                                                        | NRC<br>CsV                                      | NRC<br>CsVIA                                    | NRC<br>CsVIC                                      | PTB<br>CS1                                         | PTB<br>CS2                                         |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 47889 - 47949<br>47949 - 48009<br>48009 - 48069<br>48069 - 48129<br>48129 - 48189<br>48189 - 48249 | 1990 Jan 28<br>1990 Mar 29<br>1990 May 28<br>1990 Jul 27<br>1990 Sep 25<br>1990 Nov 24 | -2.84<br>0.59<br>1.82<br>0.20<br>-1.04<br>-0.05 | -1.01<br>-0.45<br>0.15<br>-0.25<br>0.00<br>0.79 | 0.16<br>0.37<br>-9.89<br>-2.01<br>-0.32<br>-0.61  | -0.08<br>-0.08<br>0.02<br>0.08<br>-0.01<br>-0.19   | -0.35<br>-0.36<br>-0.27<br>-0.13<br>-0.49          |
| 48249-48309<br>48309-48369<br>48369-48429<br>48429-48499<br>48499-48559                            | 1991 Jan 23<br>1991 Mar 24<br>1991 May 23<br>1991 Jul 27<br>1991 Sep 30<br>1991 Nov 29 | 0.67<br>1.07<br>0.79<br>0.23<br>-0.35           | -1.38<br>2.01<br>2.52<br>1.22<br>0.74<br>1.25   | -1.17<br>-1.70<br>-0.51<br>-0.21<br>-0.49<br>0.06 | -0.20<br>-0.22<br>-0.08<br>-0.01<br>-0.07<br>-0.03 | -0.39<br>-0.53<br>-0.17<br>-0.27<br>-0.36<br>-0.17 |
| 48619-48679<br>48679-48739<br>48739-48799<br>48799-48859<br>48859-48919                            | 1992 Jan 28<br>1992 Mar 28<br>1992 May 27<br>1992 Jul 26<br>1992 Sep 24<br>1992 Nov 23 | -0.95<br>-1.33<br>-1.22<br>-0.76<br>0.55        | 1.56<br>2.03<br>2.22<br>2.06<br>1.45            | -0.04<br>0.00<br>0.60<br>1.46<br>2.02<br>2.03     | 0.20<br>0.09<br>0.03<br>0.15<br>0.09               | -0.04<br>-0.09<br>-0.26<br>-0.24<br>-0.17          |
| 48979-49039<br>49039-49099<br>49099-49159<br>49159-49229<br>49229-49289                            | 1993 Jan 22<br>1993 Mar 23<br>1993 May 22<br>1993 Jul 26<br>1993 Sep 29<br>1993 Nov 28 |                                                 |                                                 | 1.90<br>1.18<br>1.31<br>0.90<br>0.94<br>1.26      | -0.04<br>-0.12<br>0.08<br>0.03<br>-0.07<br>0.23    | 0.03<br>0.11<br>-0.07<br>-0.04<br>-0.12<br>-0.06   |
| 49349-49409<br>49409-49469<br>49469-49529<br>49529-49589<br>49589-49649                            | 1994 Jan 27<br>1994 Mar 28<br>1994 May 27<br>1994 Jul 26<br>1994 Sep 24<br>1994 Nov 23 |                                                 |                                                 | 1.02<br>1.16<br>1.14<br>1.08<br>1.08              | 0.10<br>0.02<br>0.04<br>-0.05<br>0.06<br>0.10      | 0.03<br>0.04<br>-0.12<br>-0.16<br>-0.07            |

Table 7. Mean duration of the TAI scale interval in SI second on the rotating geoid

(File available via INTERNET under the name SITAI94.AR)

The estimate of the mean duration of the TAI scale interval in SI second on the rotating geoid is computed by the BIPM according to the method described in 'Azoubib J., Granveaud M., Guinot B., Metrologia  $\underline{13}$ , 1977, pp. 87-93', from the calibrations of Table 6 provided by PTB CS1 and PTB CS2 (data not corrected for the black body radiation shift). In the table below, the uncertainty is conservatively estimated to  $2\times10^{-14}$ .

| For the months                                                                                           | Mean duration                                                          | Uncertainty                                   |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| 1990 Jan - Feb<br>1990 Mar - Apr<br>1990 May - Jun<br>1990 Jul - Aug<br>1990 Sep - Oct<br>1990 Nov - Dec | + 1.9<br>+ 1.1                                                         | 2.0x10 <sup>-14</sup> 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1991 Jan - Feb<br>1991 Mar - Apr<br>1991 May - Jun<br>1991 Jul - Aug<br>1991 Sep - Oct<br>1991 Nov - Dec | 1 + 3.2×10 <sup>-14</sup><br>+ 3.7<br>+ 1.8<br>+ 2.2<br>+ 2.5<br>+ 1.0 | 2.0x10 <sup>-14</sup> 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1992 Jan - Feb<br>1992 Mar - Apr<br>1992 May - Jun<br>1992 Jul - Aug<br>1992 Sep - Oct<br>1992 Nov - Dec | 1 + 0.3×10 <sup>-14</sup><br>+ 0.8<br>+ 1.6<br>+ 1.4<br>+ 0.9<br>+ 0.1 | 2.0×10 <sup>-14</sup> 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1993 Jan - Feb<br>1993 Mar - Apr<br>1993 May - Jun<br>1993 Jul - Aug<br>1993 Sep - Oct<br>1993 Nov - Dec |                                                                        | 2.0x10 <sup>-14</sup> 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1994 Jan - Feb<br>1994 Mar - Apr<br>1994 May - Jun<br>1994 Jul - Aug<br>1994 Sep - Oct<br>1994 Nov - Dec | + 1.0                                                                  | 2.0×10 <sup>-14</sup> 2.0 2.0 2.0 2.0 2.0     |

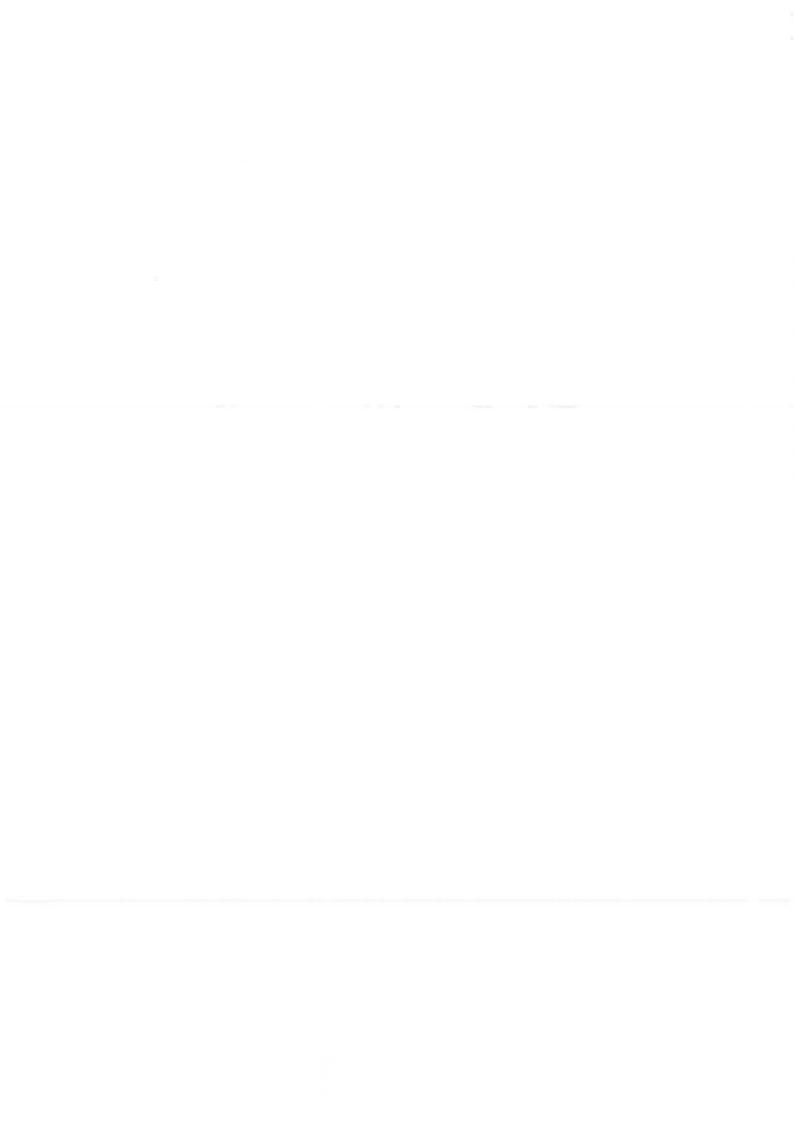



TABLE 8 - INDEPENDENT LOCAL ATOMIC TIME SCALES

(File available via Internet under the name TAI94.AR)

The following table gives the values of [TAI - TA(k)], where TA(k) denotes the independent atomic time scale established by laboratory k. The values are given within  $\pm \, 1$  ns for the most accurate time links.

Corresponding stability graphs are shown on the following pages when data is available for the years 1993 and 1994.

Unit is one microsecond.

|                                 | te<br>94                  | MJD                                       |                                           | TAI                                                 | - TA(k)                                             |                                                |                                                |
|---------------------------------|---------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                 | UTC                       | MUU                                       | APL                                       | AUS                                                 | СН                                                  | CRL                                            | CSAO                                           |
| Jan<br>Jan<br>Jan<br>Feb<br>Feb | 7<br>17<br>27<br>6<br>16  | 49359<br>49369<br>49379<br>49389<br>49399 | 2.608<br>2.684<br>2.769<br>2.826<br>2.833 | -49.563<br>-49.791<br>-50.011<br>-50.122<br>-50.272 | -76.304<br>-76.244<br>-76.126<br>-75.988<br>-75.836 | 33.296<br>33.719<br>34.125<br>34.545<br>34.960 | 15.888<br>15.726<br>15.663<br>15.554<br>15.418 |
| Feb<br>Mar<br>Mar<br>Mar<br>Apr | 26<br>8<br>18<br>28<br>7  | 49409<br>49419<br>49429<br>49439<br>49449 | 2.816<br>2.798<br>2.756<br>2.712<br>2.644 | -50.442<br>-50.563<br>-50.675<br>-50.849<br>-51.020 | -75.685<br>-75.531<br>-75.384<br>-75.231<br>-75.059 | 35.384<br>35.812<br>36.231<br>36.656<br>37.065 | 15.288<br>15.207<br>15.095<br>14.992<br>14.887 |
| Apr<br>Apr<br>May<br>May        | 17<br>27<br>7<br>17<br>27 | 49459<br>49469<br>49479<br>49489<br>49499 | 2.589<br>2.524<br>2.517<br>2.578<br>2.666 | -51.106<br>-51.273<br>-51.526<br>-51.715<br>-51.835 | -74.894<br>-74.767<br>-74.597<br>-74.433<br>-74.299 | 37.496<br>37.948<br>38.361<br>38.794<br>39.208 | 14.803<br>14.678<br>14.509<br>14.381<br>14.322 |
| Jun<br>Jun<br>Jun<br>Jul<br>Jul | 6<br>16<br>26<br>6<br>16  | 49509<br>49519<br>49529<br>49539<br>49549 | 2.778<br>2.790<br>2.729<br>2.665<br>2.615 | -51.975<br>-52.187<br>-52.391<br>-52.555<br>-52.719 | -74.123<br>-74.009<br>-73.890<br>-73.777<br>-73.638 | 39.640<br>40.063<br>40.483<br>40.902<br>41.321 | 14.386<br>14.254<br>14.122<br>13.920<br>13.749 |
| Jul<br>Aug<br>Aug<br>Aug<br>Sep | 26<br>5<br>15<br>25<br>4  | 49559<br>49569<br>49579<br>49589<br>49599 | 2.628<br>2.626<br>2.613<br>2.519<br>2.384 | -53.000<br>-53.196<br>-53.288<br>-53.532<br>-53.905 | -73.522<br>-73.376<br>-73.228<br>-73.088<br>-72.989 | 41.750<br>42.182<br>42.622<br>43.058<br>43.495 | 13.579<br>13.437<br>13.250<br>13.059<br>12.821 |
| Sep<br>Sep<br>Oct<br>Oct        | 14<br>24<br>4<br>14<br>24 | 49609<br>49619<br>49629<br>49639<br>49649 |                                           | -54.131<br>-54.344<br>-54.597<br>-54.861<br>-55.222 | -72.880<br>-72.743<br>-72.597<br>-72.446<br>-72.293 | 43.935<br>44.361<br>44.797<br>45.238<br>45.668 | 12.693<br>12.500<br>12.228<br>12.143<br>12.027 |
| Nov<br>Nov<br>Nov<br>Dec<br>Dec | 3<br>13<br>23<br>3<br>13  | 49659<br>49669<br>49679<br>49689<br>49699 | 2.225 2.215                               | -56.309                                             | -72.136<br>-71.993<br>-71.845<br>-71.707<br>-71.552 | 47.358                                         | 11.633                                         |
| Dec                             | 23                        | 49709                                     | 2.267                                     | -56.786                                             | -71.396                                             | 48.181                                         | 11.366                                         |

TABLE 8. (CONT.)

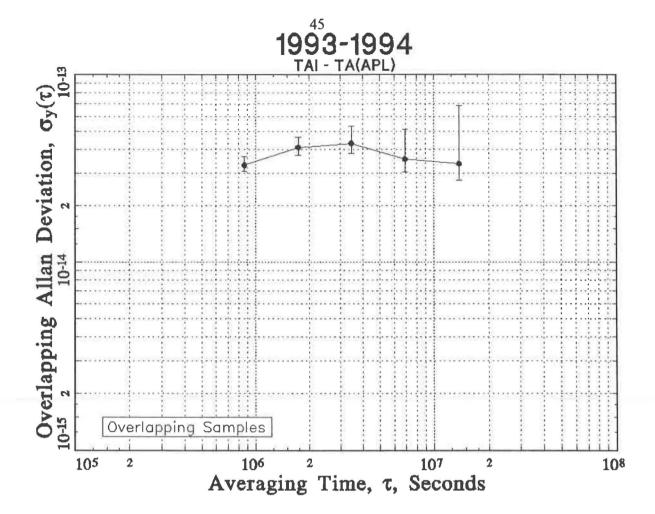
Unit is one microsecond

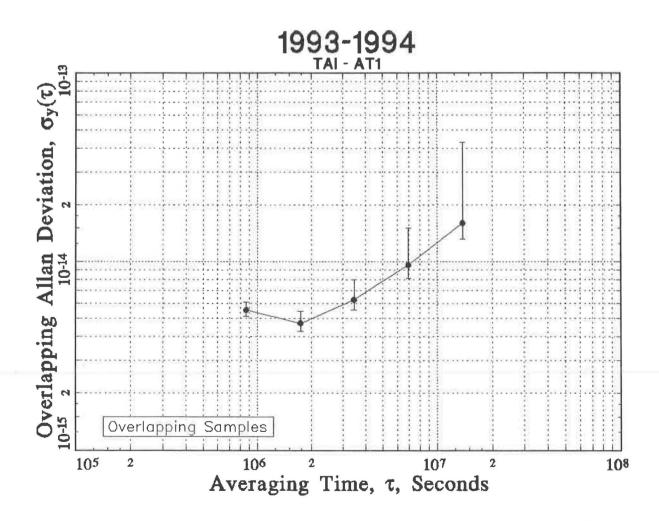
|                                 | te                        | MID                                       |                                                     | TAI                                                      | - TA(k)                                        |                                                |                                           |
|---------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|
|                                 | 94<br>UTC                 | MJD                                       | F                                                   | INPL                                                     | JATC                                           | KRIS                                           | NIM                                       |
| Jan<br>Jan<br>Jan<br>Feb<br>Feb | 7<br>17<br>27<br>6<br>16  | 49359<br>49369<br>49379<br>49389<br>49399 | 124.793<br>125.178<br>125.575<br>125.964<br>126.348 | -179.176<br>-181.043<br>-182.905<br>-184.803<br>-186.706 | 8.763<br>8.530<br>8.514<br>8.749<br>8.098      | -4.870<br>-4.721<br>-4.551<br>-4.402<br>-4.238 | -8.50<br>-9.04<br>-9.26<br>-9.23<br>-9.22 |
| Feb<br>Mar<br>Mar<br>Mar<br>Apr | 26<br>8<br>18<br>28<br>7  | 49409<br>49419<br>49429<br>49439<br>49449 | 126.720<br>127.093<br>127.473<br>127.851<br>128.227 | -188.603<br>-190.497<br>-192.449<br>-196.410             | 8.129<br>8.103<br>8.586<br>9.415<br>10.044     | -4.093<br>-3.907<br>-3.721<br>-3.486<br>-3.279 | -9.32<br>-9.01<br>-8.81<br>-8.73          |
| Apr<br>Apr<br>May<br>May        | 17<br>27<br>7<br>17<br>27 | 49459<br>49469<br>49479<br>49489<br>49499 | 128.604<br>128.987<br>129.366<br>129.738<br>130.111 | -198.459<br>-200.492<br>-202.523<br>-204.582<br>-206.632 | 10.708<br>11.488<br>11.271<br>12.068<br>12.324 | -3.054<br>-2.811<br>-2.574<br>-2.352<br>-2.142 | -8.70<br>-8.66<br>-8.59<br>-8.50<br>-8.44 |
| Jun<br>Jun<br>Jun<br>Jul<br>Jul | 6<br>16<br>26<br>6<br>16  | 49509<br>49519<br>49529<br>49539<br>49549 | 130.495<br>130.874<br>131.242<br>131.626<br>131.998 | -208.663<br>-210.650<br>-212.601<br>-214.563<br>-216.549 | 12.665<br>12.857<br>12.995<br>13.136<br>13.321 | -1.931<br>-1.779<br>-1.592<br>-1.441<br>-1.320 | -8.26<br>-8.17<br>-8.00<br>-7.94<br>-7.85 |
| Jul<br>Aug<br>Aug<br>Aug<br>Sep | 26<br>5<br>15<br>25<br>4  | 49559<br>49569<br>49579<br>49589<br>49599 | 132.349<br>132.688<br>133.027<br>133.371<br>133.721 | -218.512<br>-220.587<br>-222.690<br>-224.692<br>-226.702 | 13.506<br>13.327<br>13.510<br>13.618<br>13.471 | -1.167<br>-1.001<br>-0.797<br>-0.589<br>-0.408 | -7.58<br>-7.84<br>-8.03<br>-8.04<br>-7.95 |
| Sep<br>Sep<br>Oct<br>Oct        | 14<br>24<br>4<br>14<br>24 | 49609<br>49619<br>49629<br>49639<br>49649 | 134.069<br>134.425<br>134.786<br>135.155<br>135.523 | -228.642<br>-230.588<br>-232.551<br>-234.517<br>-236.553 | 13.481<br>13.559<br>13.542<br>13.695<br>13.786 | -0.250<br>-0.088<br>0.065<br>0.143<br>0.229    | -7.91<br>-7.92<br>-<br>-                  |
| Nov<br>Nov<br>Dec<br>Dec        | 3<br>13<br>23<br>3<br>13  | 49659<br>49669<br>49679<br>49689<br>49699 | 135.869<br>136.225<br>136.583<br>136.933<br>137.292 | -238.686<br>-240.849<br>-243.010<br>-245.183<br>-247.431 | 13.826<br>13.915<br>13.969<br>13.989<br>13.966 | 0.241<br>0.396<br>0.566<br>0.620<br>0.700      | -8.80<br>-8.78<br>-8.73<br>-8.69<br>-8.67 |
| Dec                             | 23                        | 49709                                     | 137.647                                             | -249.634                                                 | 13.979                                         | 0.788                                          | -8.60                                     |

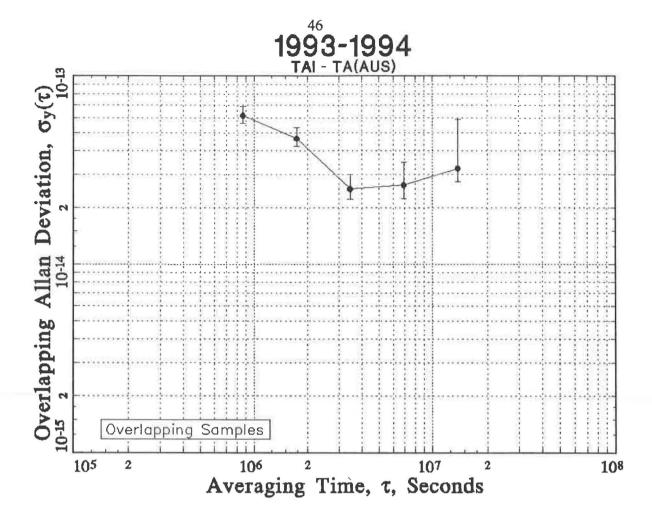
TABLE 8. (CONT.)

Unit is one microsecond

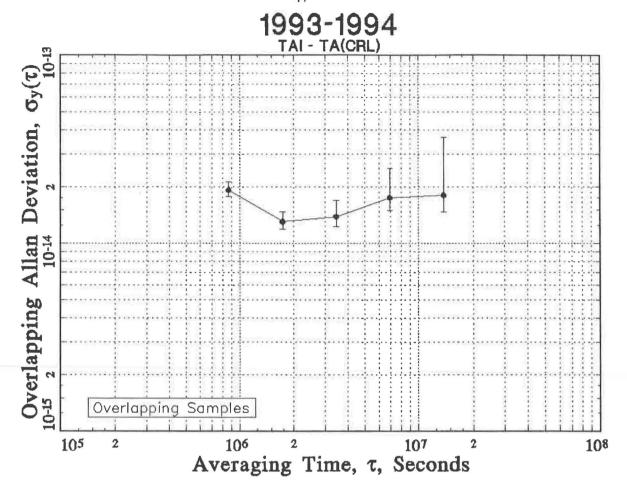
| 19                              | te<br>94                  | MJD                                       |                                                                    | TAI -                                          | TA(k)                                                    |                                                                         |
|---------------------------------|---------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|
| 0h                              | UTC                       |                                           | NISA<br>*                                                          | NRC                                            | PTB                                                      | RC                                                                      |
| Jan<br>Jan<br>Jan<br>Feb        | 7<br>17<br>27<br>6        | 49359<br>49369<br>49379<br>49389          | -45108.163<br>-45108.538<br>-45108.920<br>-45109.297               | 20.564<br>20.614<br>20.699<br>20.805           | -360.665<br>-360.668<br>-360.658<br>-360.661             | 17999673.34<br>17999673.68<br>17999673.60                               |
| Feb                             | 16                        | 49399                                     | -45109.681                                                         | 20.914                                         | -360.658                                                 | 17999673.54                                                             |
| Feb<br>Mar<br>Mar<br>Mar<br>Apr | 26<br>8<br>18<br>28<br>7  | 49409<br>49419<br>49429<br>49439<br>49449 | -45110.064<br>-45110.453<br>-45110.846<br>-45111.238<br>-45111.631 | 21.025<br>21.144<br>21.238<br>21.334<br>21.436 | -360.651<br>-360.655<br>-360.654<br>-360.652<br>-360.647 | 17999673.52<br>17999673.82<br>17999674.01<br>17999674.15<br>17999673.47 |
| Apr<br>Apr<br>May<br>May<br>May | 17<br>27<br>7<br>17<br>27 | 49459<br>49469<br>49479<br>49489<br>49499 | -45112.029<br>-45112.417<br>-45112.818<br>-45113.216<br>-45113.624 | 21.537<br>21.636<br>21.731<br>21.838<br>21.942 | -360.646<br>-360.628<br>-360.643<br>-360.661<br>-360.665 | 17999673.34<br>17999673.58                                              |
| Jun<br>Jun<br>Jun<br>Jul<br>Jul | 6<br>16<br>26<br>6<br>16  | 49509<br>49519<br>49529<br>49539<br>49549 | -45114.029<br>-45114.446<br>-45114.844<br>-45115.241<br>-45115.642 | 22.035<br>22.131<br>22.222<br>22.298<br>22.392 | -360.678<br>-360.686<br>-360.692<br>-360.703<br>-360.714 |                                                                         |
| Jul<br>Aug<br>Aug<br>Aug<br>Sep | 26<br>5<br>15<br>25<br>4  | 49559<br>49569<br>49579<br>49589<br>49599 | -45116.041<br>-45116.449<br>-45116.864<br>-45117.287<br>-45117.710 | 22.495<br>22.586<br>22.687<br>22.772<br>22.887 | -360.729<br>-360.748<br>-360.761<br>-360.773<br>-360.784 |                                                                         |
| Sep<br>Sep<br>Oct<br>Oct        | 14<br>24<br>4<br>14<br>24 | 49609<br>49619<br>49629<br>49639<br>49649 | -45118.140<br>-45118.565<br>-45118.992<br>-45119.422<br>-45119.847 | 22.984<br>23.082<br>23.171<br>23.248<br>23.340 | -360.797<br>-360.800<br>-360.803<br>-360.806<br>-360.812 | 17999675.05<br>17999675.28<br>17999675.42                               |
| Nov<br>Nov<br>Nov<br>Dec<br>Dec | 3<br>13<br>23<br>3<br>13  | 49659<br>49669<br>49679<br>49689<br>49699 | -45120.277<br>-45120.703<br>-45121.131<br>-45121.562<br>-45121.999 | 23.416<br>23.501<br>23.607<br>23.701<br>23.795 | -360.823<br>-360.828<br>-360.834<br>-360.835<br>-360.827 | 17999675.34<br>17999675.24<br>17999675.45                               |
| Dec                             | 23                        | 49709                                     | -45122.440                                                         | 23.865                                         | -360.826                                                 | -                                                                       |


<sup>\*</sup> TA(NISA) designates the scale AT1 of NIST.

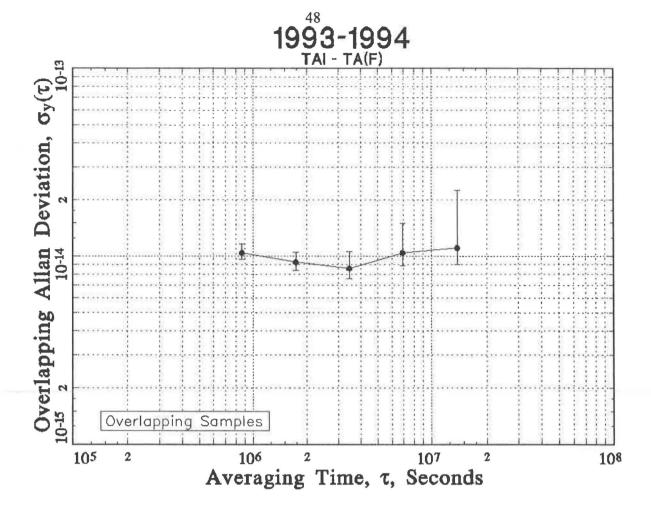

TABLE 8. (CONT.)

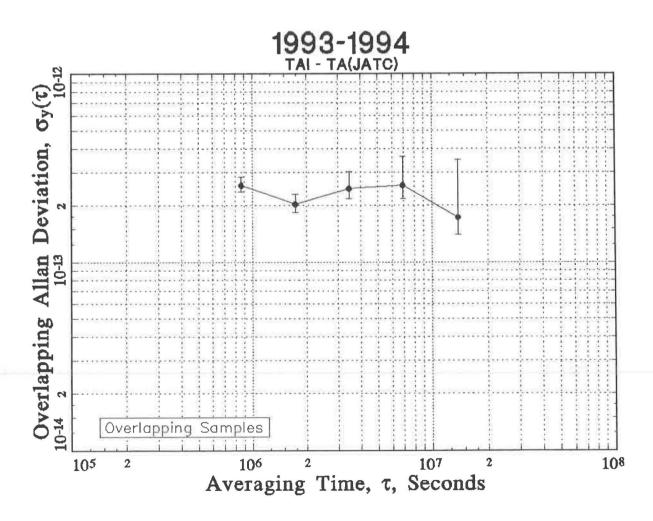

Unit is one microsecond

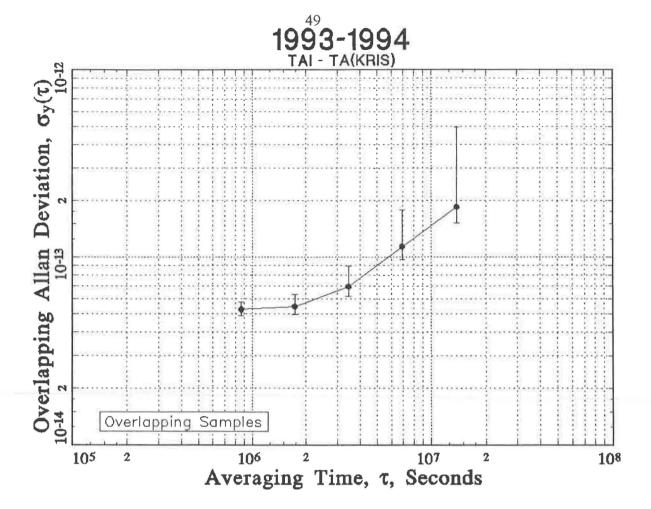
| 19  | te<br>94 | MJD    |         | TAI - TA(k) |            |
|-----|----------|--------|---------|-------------|------------|
| Uh  | UTC      |        | \$0     | SU          | USNO<br>*  |
| Jan | 7        | 49359  | -45.46  | 2827247.330 | -34690.429 |
| Jan | 17       | 49369  | -45.43  | 2827247.239 | -34691.099 |
| Jan | 27       | 49379  | -45.45  | 2827247.150 | -34691.785 |
| Feb | 6        | 49389  | -45.43  | 2827247.058 | -34692.464 |
| Feb | 16       | 49399  | -45.48  | 2827246.968 | -34693.146 |
| Feb | 26       | 49409  | -45.48  | 2827246.884 | -34693.826 |
| Mar | 8        | 49419  | -45.42  | 2827246.794 | -34694.505 |
| Mar | 18       | 49429  | -45.44  | 2827246.713 | -34695.183 |
| Mar | 28       | 49439  | -45.43  | 2827246.625 | -34695.858 |
| Apr | 7        | 49449  | -       | 2827246.539 | -34696.529 |
| ДРІ | ,        | 73773  |         | 2027240.333 | -34030.323 |
| Apr | 17       | 49459  | -45.40  | 2827246.452 | -34697.211 |
| Apr | 27       | 49469  | -45.45  | 2827246.376 | -34697.880 |
| May | 7        | 49479  | -45.49  | 2827246.288 | -34698.552 |
| May | 17       | 49489  | -45.47  | 2827246.200 | -34699.223 |
| May | 27       | 49499  | -45.46  | 2827246.116 | -34699.894 |
|     |          | 15 155 | 10.10   | 20272101110 | 010331031  |
| Jun | 6        | 49509  | -45.47  | 2827246.029 | -34700.567 |
| Jun | 16       | 49519  | -45.46  | 2827245.942 | -34701.245 |
| Jun | 26       | 49529  | -45.49  | 2827245.859 | -34701.914 |
| Jul | 6        | 49539  | -45.52  | 2827245.772 | -34702.587 |
| Jul | 16       | 49549  | -45.56  | 2827245.681 | -34703.262 |
|     |          |        |         |             |            |
| Jul | 26       | 49559  | -45.53  | 2827245.590 | -34703.934 |
| Aug | 5        | 49569  | -45.54  | 2827245.499 | -34704.612 |
| Aug | 15       | 49579  | -45.58  | 2827245.407 | -34705.287 |
| Aug | 25       | 49589  | -45.55  | 2827245.315 | -34705.961 |
| Sep | 4        | 49599  | -45.54  | 2827245.222 | -34706.629 |
|     |          |        |         |             |            |
| Sep | 14       | 49609  | -45.58  | 2827245.133 | -34707.303 |
| Sep | 24       | 49619  | -45.57  | 2827245.042 | -34707.974 |
| 0ct | 4        | 49629  | -45.58  | 2827244.946 | -34708.643 |
|     | 14       |        | -45.58  |             |            |
| 0ct | 24       |        | -45.63  | 2827244.770 | -34709.987 |
| UCL | 24       | 73073  | -43.03  | 2027244.770 | -34709.907 |
| Nov | 3        | 49659  | -45.59  | 2827244.672 | -34710.660 |
| Nov | 13       | 49669  | -45.59  |             | -34711.328 |
| Nov | 23       |        |         | 2827244.484 | -34711.999 |
| Dec | 3        | 49689  | -45 54  | 2827244.387 |            |
| Dec | 13       |        |         | 2827244.295 | -34713.337 |
| Dec | 13       | 73033  | - 40,01 | 2027244.235 | ~37/13.33/ |
| Dec | 23       | 49709  | -45.51  | 2827244.201 | -34714.007 |

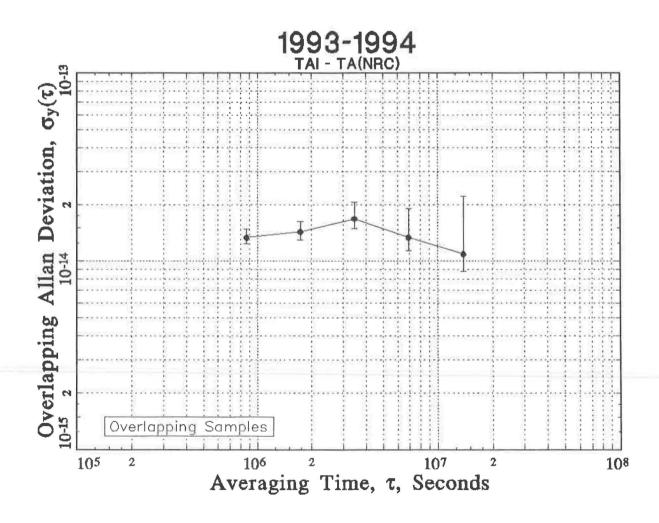

<sup>\*</sup> TA(USNO) designates the scale A1(MEAN) of USNO.

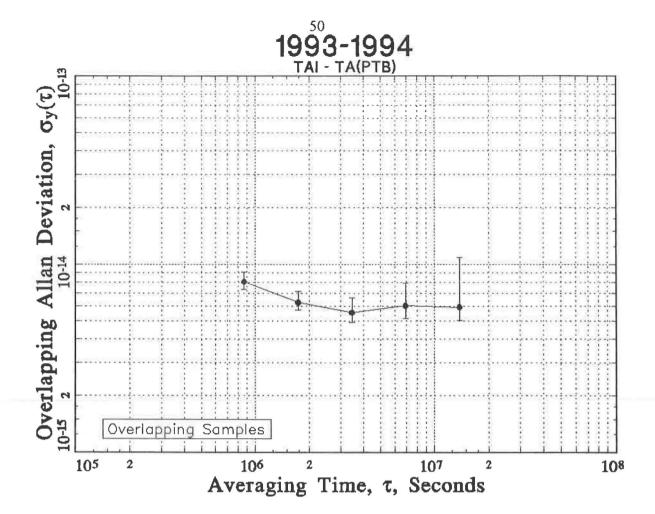


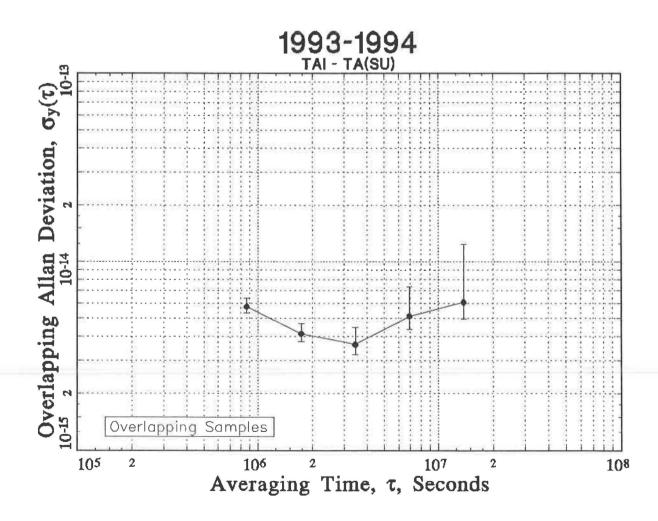


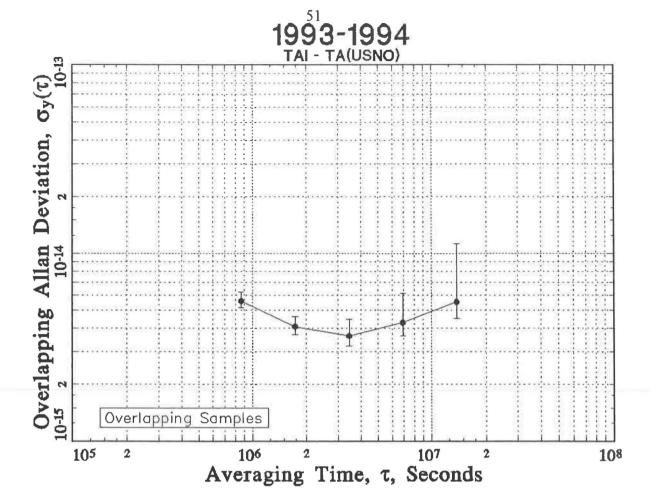













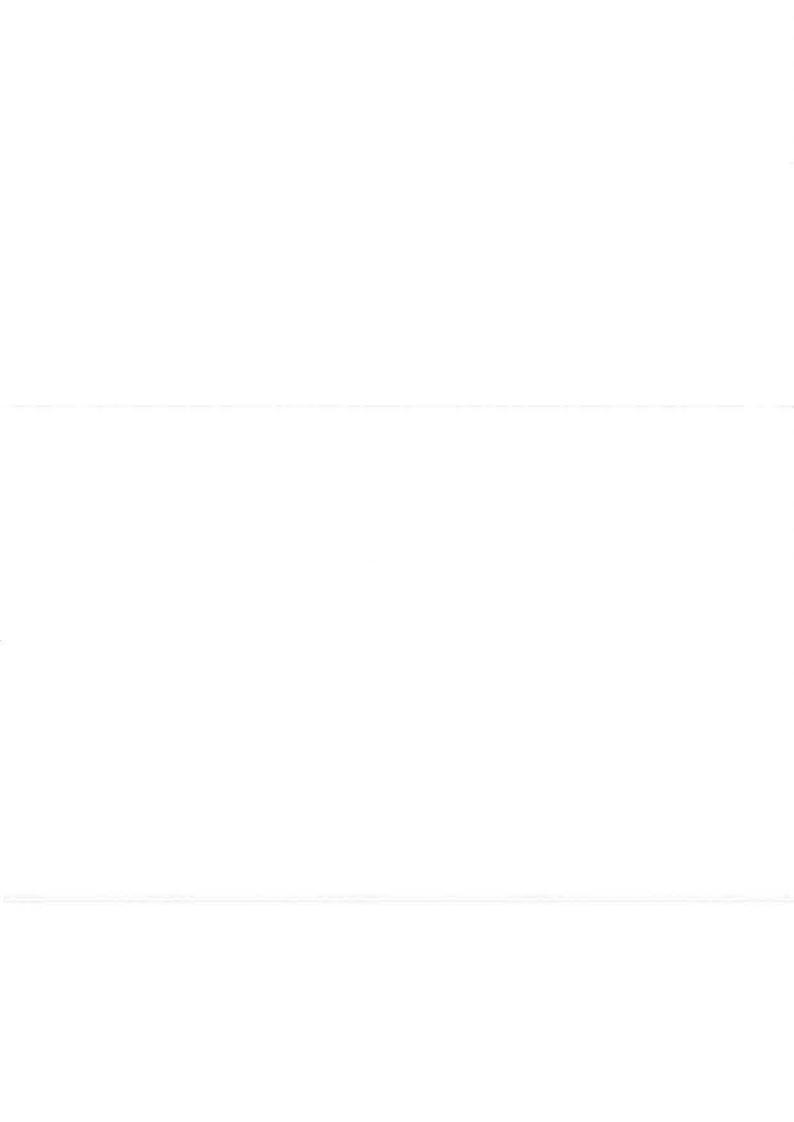




TABLE 9. LOCAL REPRESENTATIONS OF UTC : VALUES OF CUTC - UTC(K)]

(File available via Internet under the name UTC94.AR)

The following table gives the values of [UTC - UTC(k)], where UTC(k) denotes the approximation to UTC kept by laboratory k. The values are given within  $\pm$  1 ns for the most accurate time links.

Unit is one microsecond.

|       | te<br>94 | MJD   |        |            | UTC - UT | C(k)   |        |        |
|-------|----------|-------|--------|------------|----------|--------|--------|--------|
|       | UTC      | MUU   | AOS    | APL        | AUS      | BEV    | CAO    | СН     |
| • • • |          |       | ,,,,,  | / <b>L</b> | (1)      |        | (2)    | (3)    |
| Jan   | 7        | 49359 | -1.393 | 1.145      | 0.517    | 9.52   | -5.013 | 1.096  |
| Jan   | 17       | 49369 | -1.402 | 1.221      | 0.499    | 9.56   | -5.213 | 1.196  |
| Jan   | 27       | 49379 | -1.582 | 1.306      | 0.529    | 9.37   | -5.451 | 1.354  |
| Feb   | 6        | 49389 | -1.642 | 1.363      | 0.594    | 9.17   | -5.655 | 1.472  |
| Feb   | 16       | 49399 | -1.252 | 1.370      | 0.634    | 9.29   | -5.843 | 1.564  |
|       |          | 13033 | 21202  | 1.070      | 0.00.    | 3.23   | 0.0.0  | 2.001  |
| Feb   | 26       | 49409 | -0.772 | 1.353      | 0.627    | -      | -6.090 | 1.655  |
| Mar   | 8        | 49419 | -0.841 | 1.335      | 0.604    | -      | -6.361 | 1.749  |
| Mar   | 18       | 49429 | -1.022 | 1.293      | 0.561    | -      | -6.592 | 1.836  |
| Mar   | 28       | 49439 | -1.153 | 1.249      | 0.498    | -      | -6.872 | 1.929  |
| Apr   | 7        | 49449 | -1.377 | 1.181      | 0.476    | -      | -7.066 | 1.921  |
|       |          |       |        |            |          |        |        |        |
| Apr   | 17       | 49459 | -1.520 | 1.126      | 0.447    | -      | -7.233 | 1.826  |
| Apr   | 27       | 49469 | -1.701 | 1.061      | 0.408    | -      | -7.483 | 1.693  |
| May   | 7        | 49479 | -1.591 | 1.054      | 0.357    | -      | -7.706 | 1.603  |
| May   | 17       | 49489 | -1.184 | 1.115      | 0.336    | -      | -7.992 | 1.507  |
| May   | 27       | 49499 | -1.095 | 1.203      | 0.296    | -      | -0.289 | 1.381  |
| _     |          |       |        |            |          |        |        |        |
| Jun   | 6        | 49509 | -0.810 | 1.315      | 0.305    | -      | -0.501 | 1.297  |
| Jun   | 16       | 49519 | -0.703 | 1.327      | 0.245    | -      | -0.733 | 1.151  |
| Jun   | 26       | 49529 | -0.892 | 1.266      | 0.246    | -      | -0.950 | 1.010  |
| Jul   | 6        | 49539 | -1.484 | 1.202      | 0.222    | -      | -1.217 | 0.863  |
| Jul   | 16       | 49549 | -1.619 | 1.152      | 0.231    | -      | -1.044 | 0.742  |
|       |          |       |        |            |          |        |        |        |
| Jul   | 26       | 49559 | -1.490 | 1.165      | 0.198    | -      | -1.379 | 0.598  |
| Aug   | 5        | 49569 | -1.108 | 1.163      | 0.205    | 3      | -1.648 | 0.484  |
| Aug   | 15       | 49579 | -1.155 | 1.150      | 0.165    | 4      | -1.885 | 0.372  |
| Aug   | 25       | 49589 | -1.492 | 1.056      | 0.116    | -      | -2.106 | 0.252  |
| Sep   | 4        | 49599 | -1.515 | 0.921      | 0.086    | -      | -2.276 | 0.091  |
|       |          |       |        |            |          |        |        |        |
| Sep   | 14       | 49609 | -1.444 | 0.780      | 0.018    | -      | -2.513 | -0.060 |
| Sep   | 24       | 49619 | -1.245 | 0.786      | -0.037   | -16.48 | -2.753 | -0.117 |
| 0ct   | 4        | 49629 | -1.159 | 0.776      | -0.080   | -16.85 | -3.046 | -0.121 |
| 0ct   | 14       | 49639 | -1.347 | 0.757      | -0.158   | -17.13 | -3.274 | -0.120 |
| 0ct   | 24       | 49649 | -1.470 | 0.759      | -0.226   | -17.34 | -3.515 | -0.117 |
|       | _        | 10    |        |            |          |        |        |        |
| Nov   | 3        | 49659 | -1.443 | 0.759      | -0.287   | -17.63 | -3.773 | -0.110 |
| Nov   | 13       | 49669 | -1.343 | 0.762      | -0.374   | -18.03 | -4.046 | -0.117 |
| Nov   | 23       | 49679 | -1.175 | 0.752      | -0.428   | -18.41 | -4.313 | -0.095 |
| Dec   | 3        | 49689 | -1.086 | 0.785      | -0.496   |        | -4.486 | -0.067 |
| Dec   | 13       | 49699 | -1.013 | 0.797      | -0.485   | *      | -4.751 | -0.022 |
| Dec   | 23       | 49709 | -1.067 | 0.804      | -0.469   | -      | -4.987 | 0.024  |

TABLE 9. (CONT.)

Unit is one microsecond.

|     | te<br>94 | MJD    |       |        | UTC - UTC   | C(k)       |            |            |
|-----|----------|--------|-------|--------|-------------|------------|------------|------------|
|     | UTC      | 7100   | CRL   | CSA0   | CSIR<br>(4) | FTZ<br>(5) | GUM<br>(6) | IEN<br>(7) |
| Jan | 7        | 49359  | 2.274 | -0.847 | -3.429      | -0.020     | 0.155      | -0.065     |
| Jan | 17       | 49369  | 2.250 | -0.837 | -3.464      | -0.032     | 0.021      | -0.056     |
| Jan | 27       | 49379  | 2.210 | -0.727 | -3.418      | -0.019     | 0.025      | -0.054     |
| Feb | 6        | 49389  | 2.179 | -0.663 | -3.103      | -0.050     | 0.028      | -0.032     |
| Feb | 16       | 49399  | 2.143 | -0.626 | -3.109      | -0.058     | 0.190      | -0.032     |
|     |          |        |       |        |             | -0.050     |            | -0.030     |
| Feb | 26       | 49409  | 2.114 | -0.583 | -3.271      | -0.061     | 0.374      | 0.015      |
| Mar | 8        | 49419  | 2.095 | -0.521 | -3.450      | -0.037     | 0.581      | 0.042      |
| Mar | 18       | 49429  | 2.072 | -0.504 | -3.174      | 0.000      | 0.502      | 0.049      |
| Mar | 28       | 49439  | 2.053 | -0.477 | -3.061      | 0.040      | 0.454      | 0.065      |
| Apr | 7        | 49449  | 2.024 | -0.452 | -2.924      | 0.092      | 0.373      | 0.103      |
|     |          |        |       |        |             |            |            |            |
| Apr | 17       | 49459  | 2.010 | -0.407 | -2.865      | 0.161      | 0.241      | 0.131      |
| Apr | 27       | 49469  | 2.025 | -0.402 | -2.826      | 0.228      | 0.212      | 0.177      |
| May | 7        | 49479  | 1.983 | -0.441 | -2.856      | 0.306      | 0.301      | 0.254      |
| May | 17       | 49489  | 1.960 | -0.440 | -2.852      | 0.281      | 0.185      | 0.297      |
| May | 27       | 49499  | 1.926 | -0.369 | -2.926      | 0.295      | 0.085      | 0.335      |
|     |          | 13 133 | 1.520 | 0.505  | 2.520       | 0.233      | 0.003      | 0.555      |
| Jun | 6        | 49509  | 1.894 | -0.175 | -2.958      | 0.298      | -0.032     | 0.361      |
| Jun | 16       | 49519  | 1.860 | -0.178 | -2.903      | 0.306      | -0.072     | 0.434      |
| Jun | 26       | 49529  | 1.832 | -0.180 | -2.862      | 0.299      | -0.095     | 0.501      |
| Jul | 6        | 49539  | 1.788 | -0.252 | -3.701      | 0.277      | 0.426      | 0.562      |
| Jul | 16       | 49549  | 1.770 | -0.294 | -3.969      | 0.241      | 0.941      | 0.664      |
|     |          |        |       |        |             |            |            |            |
| Jul | 26       | 49559  | 1.746 | -0.334 | -4.235      | 0.220      | 0.956      | 0.732      |
| Aug | 5        | 49569  | 1.720 | -0.329 | -4.249      | 0.194      | 1.033      | 0.827      |
| Aug | 15       | 49579  | 1.699 | -0.343 | -4.110      | 0.191      | 1.056      | 0.846      |
| Aug | 25       | 49589  | 1.672 | -0.361 | -3.585      | 0.157      | 0.517      | 0.763      |
| Sep | 4        | 49599  | 1.649 | -0.426 | -3.124      | 0.161      | -0.150     | 0.612      |
| Sep | 14       | 49609  | 1.629 | -0.381 | -2.747      | 0.136      | -0.539     | 0.598      |
| Sep | 24       | 49619  | 1.601 | -0.402 | -2.455      | 0.113      | -0.324     | 0.594      |
| 0ct | 4        | 49629  | 1.576 | -0.514 | -2.279      | 0.102      | 0.249      | 0.575      |
| 0ct | 14       | 49639  | 1.564 | -0.470 | -2.813      | 0.099      | 0.757      | 0.578      |
| 0ct | 24       | 49649  | 1.539 | -0.456 | -2.816      | 0.105      | 1.002      | 0.587      |
| oct | 24       | 43043  | 1.555 | -0.450 | -2.010      | 0.105      | 1.002      | 0.567      |
| Nov | 3        | 49659  | 1.513 | -0.458 | -2.781      | 0.072      | 1.321      | 0.594      |
| Nov | 13       | 49669  | 1.486 | -0.438 | -2.703      | 0.092      | 1.576      | 0.599      |
| Nov | 23       | 49679  | 1.467 | -0.461 | -2.658      | 0.090      | 1.294      | 0.596      |
| Dec | 3        | 49689  | 1.443 | -0.473 | -2.528      | 0.075      | 0.812      | 0.592      |
| Dec | 13       | 49699  | 1.410 | -0.424 | -2.433      | 0.057      | 0.207      | 0.586      |
|     |          |        |       |        |             |            |            |            |
| Dec | 23       | 49709  | 1.381 | -0.339 | -2.246      | 0.058      | -0.402     | 0.579      |

Table 9. (Cont.)

Unit is one microsecond.

|     | ite<br>194 | MJD   |             |          | UTC - U | TC(k)  |        |        |
|-----|------------|-------|-------------|----------|---------|--------|--------|--------|
|     | UTC        | 1100  | IFAG<br>(8) | IGMA (9) | INPL    | JATC   | KRIS   | LDS    |
| Jan | 7          | 49359 | 0.749       | -2.32    | -0.586  | -2.943 | -0.270 | -0.042 |
| Jan | 17         | 49369 | 0.480       | -2.37    | -0.668  | -3.156 | -0.321 | -0.065 |
| Jan | 27         | 49379 | 0.212       | -2.52    | -0.722  | -3.065 | -0.361 | -0.089 |
| Feb | 6          | 49389 | -0.083      | -2.61    | -0.799  | -2.912 | -0.402 | -0.146 |
| Feb | 16         | 49399 | -0.380      | -2.72    | -0.873  | -3.330 | -0.378 | -0.160 |
| Feb | 26         | 49409 | -0.623      | -2.88    | -0.940  | -3.222 | -0.353 | -0.181 |
| Mar | 8          | 49419 | -0.639      | -3.02    | -1.006  | -3.122 | -0.337 | -0.193 |
| Mar | 18         | 49429 | -0.629      | -3.11    | -1.104  | -2.541 | -0.311 | -0.229 |
| Mar | 28         | 49439 | -0.598      | -3.14    | -1.135  | -1.891 | -0.276 | -0.282 |
| Apr | 7          | 49449 | -0.575      | -3.14    | -1.280  | -1.283 | -0.289 | -0.281 |
| Apr | 17         | 49459 | -0.569      | -3.13    | -1.398  | -0.397 | -0.264 | -0.323 |
| Apr | 27         | 49469 | -0.522      | -3.15    | -1.474  | 0.365  | -0.251 | -0.356 |
| May | 7          | 49479 | -0.392      | -3.11    | -1.521  | 0.783  | -0.244 | -0.353 |
| May | 17         | 49489 | -0.261      | -3.06    | -1.571  | 0.826  | -0.202 | -0.385 |
| May | 27         | 49499 | 0.010       | -3.02    | -1.587  | 0.991  | -0.192 | -0.403 |
| Jun | 6          | 49509 | 0.248       | -2.98    | -1.560  | 1.163  | -0.171 | -0.410 |
| Jun | 16         | 49519 | 0.487       | -2.96    | -1.463  | 1.011  | -0.179 | -0.436 |
| Jun | 26         | 49529 | 0.825       | -2.96    | -1.305  | 0.879  | -0.162 | -0.450 |
| Jul | 6          | 49539 | 1.362       | -3.01    | -1.131  | 0.456  | -0.171 | -0.467 |
| Jul | 16         | 49549 | 1.869       | -3.04    | -0.955  | 0.023  | -0.190 | -0.460 |
| Jul | 26         | 49559 | 2.363       | -3.08    | -0.731  | -0.228 | -0.197 | -0.495 |
| Aug | 5          | 49569 | 2.955       | -3.10    | -0.609  | -0.535 | -0.201 | -0.484 |
| Aug | 15         | 49579 | 3.540       | -3.15    | -0.538  | -0.147 | -0.177 | -0.499 |
| Aug | 25         | 49589 | 3.946       | -3.17    | -0.390  | 0.291  | -0.189 | -0.507 |
| Sep | 4          | 49599 | 0.321       | -3.20    | -0.262  | 0.587  | -0.188 | -0.530 |
| Sep | 14         | 49609 | 0.134       | -3.22    | -0.111  | 0.627  | -0.210 | -0.527 |
| Sep | 24         | 49619 | -0.189      | -3.19    | 0.022   | 0.364  | -0.238 | -0.526 |
| 0ct | 4          | 49629 | -0.436      | -3.13    | 0.122   | 0.079  | -0.205 | -0.573 |
| 0ct | 14         | 49639 | -0.897      | -2.92    | 0.232   | 0.038  | -0.167 | -0.591 |
| 0ct | 24         | 49649 | -1.383      | -2.78    | 0.282   | 0.036  | -0.151 | -0.612 |
| Nov | 3          | 49659 | -1.877      | -2.63    | 0.230   | 0.043  | -0.159 | -0.633 |
| Nov | 13         | 49669 | -2.365      | -2.39    | 0.122   | 0.120  | -0.144 | -0.678 |
| Nov | 23         | 49679 | -2.883      | -2.30    | -0.010  | 0.210  | -0.104 | -0.689 |
| Dec | 3          | 49689 | -3.502      | -2.46    | -0.179  | 0.301  | -0.090 | -0.701 |
| Dec | 13         | 49699 | -3.958      | -2.66    | -0.437  | 0.380  | -0.070 | -0.734 |
| Dec | 23         | 49709 | -4.672      | -2.67    | -0.662  | 0.462  | -0.052 | -0.726 |

Table 9. (Cont.)

Unit is one microsecond.

|     | te<br>94 | MJD   |        |        | UTC - UTC    | C(k)        |        |     |
|-----|----------|-------|--------|--------|--------------|-------------|--------|-----|
|     | UTC      | MUU   | MSL    | NAOM   | NAOT<br>(10) | NIM<br>(11) | NIST   | NMC |
| Jan | 7        | 49359 | -0.972 | -1.355 | -1.411       | 8.15        | 0.039  | -   |
| Jan | 17       | 49369 | -0.875 | -1.329 | -0.613       | 7.60        | 0.044  | -   |
| Jan | 27       | 49379 | -0.801 | -1.357 | 0.167        | 7.36        | 0.042  | _   |
| Feb | 6        | 49389 | -0.796 | -1.371 | 0.119        | 7.37        | 0.040  | _   |
| Feb | 16       | 49399 | -0.581 | -1.382 | -0.046       | 7.37        | 0.026  | -   |
|     |          | 13033 | 0.001  | 1.002  | 0.010        | 7.07        | 0.020  |     |
| Feb | 26       | 49409 | -0.561 | -1.403 | -0.148       | 7.25        | 0.013  |     |
| Mar | 8        | 49419 | -0.481 | -1.404 | -0.290       | 7.54        | -0.006 | -   |
| Mar | 18       | 49429 | -0.523 | -1.427 | -0.484       | 7.72        | -0.029 | -   |
| Mar | 28       | 49439 | -0.434 | -1.436 | -0.661       | 7.78        | -0.051 | -   |
| Apr | 7        | 49449 | -0.431 | -1.477 | -0.876       | 7.82        | -0.068 | -   |
|     |          |       |        | _,     |              |             |        |     |
| Apr | 17       | 49459 | -0.388 | -1.513 | -1.035       | 7.78        | -0.086 | -   |
| Apr | 27       | 49469 | -0.346 | -1.539 | -1.262       | 7.80        | -0.094 |     |
| May | 7        | 49479 | -0.395 | -1.573 | -1.486       | 7.84        | -0.103 | _   |
| May | 17       | 49489 | -0.512 | -1.588 | -1.628       | 7.91        | -0.101 | -   |
| May | 27       | 49499 | -0.501 | -1.599 | -1.827       | 7.96        | -0.109 | -   |
|     |          |       |        |        |              |             |        |     |
| Jun | 6        | 49509 | -0.552 | -1.613 | -2.084       | 8.11        | -0.109 | -   |
| Jun | 16       | 49519 | -0.701 | -1.631 | -2.371       | 8.18        | -0.116 | -   |
| Jun | 26       | 49529 | -0.692 | -1.642 | -2.629       | 8.33        | -0.104 | -   |
| Jul | 6        | 49539 | -0.793 | -1.653 | -2.869       | 8.37        | -0.086 | -   |
| Jul | 16       | 49549 | -1.016 | -1.667 | -2.733       | 8.45        | -0.067 | -   |
|     |          |       |        |        |              |             |        |     |
| Jul | 26       | 49559 | -1.099 | -1.662 | -2.547       | 8.69        | -0.046 | -   |
| Aug | 5        | 49569 | -1.157 | -1.650 | -2.406       | 8.42        | -0.030 | -   |
| Aug | 15       | 49579 | -1.292 | -1.651 | -2.276       | 8.21        | -0.015 | -   |
| Aug | 25       | 49589 | -1.540 | -1.633 | -2.141       | 8.18        | -0.008 | -   |
| Sep | 4        | 49599 | -1.616 | -1.602 | -2.183       | 8.25        | -0.004 | -   |
| c 2 | 1.4      | 40600 | 1 000  | 1 600  | 2 202        | 0 07        | 0.014  |     |
| Sep | 14       | 49609 | -1.860 | -1.600 | -2.202       | 8.27        | -0.014 | -   |
| Sep | 24       | 49619 | -1.968 | -1.593 | -2.175       | 8.25        | -0.019 | -   |
| Oct | 4        | 49629 | -2.145 | -1.638 | -2.136       | -           | -0.026 | -   |
| Oct | 14       | 49639 | -2.367 |        |              | =           | -0.036 | -   |
| 0ct | 24       | 49649 | -2.428 | -1.678 | -2.014       | -           | -0.041 | -   |
| Nov | 3        | 49659 | -2.457 | -1.698 | -1.928       | 7.27        | -0.051 | _   |
| Nov | 13       | 49669 | -2.487 | -1.701 | -1.847       |             |        | _   |
| Nov | 23       | 49679 | -2.592 | -1.715 |              |             |        | -   |
| Dec | 3        | 49689 | 0 000  | -1.748 |              |             |        |     |
| Dec | 13       | 49699 | -2.762 | -1.759 |              | 7.32        |        | -   |
|     |          | 10000 | -1702  | 21700  | 2.070        | ,           | 0.001  |     |
| Dec | 23       | 49709 | -2.822 | -1.791 | -1.437       | 7.38        | -0.092 | -   |

Table 9. (Cont.)

Unit is one microsecond.

|     | te<br>194 | MJD    |        |         | UTC - UT | C(k)    |       |      |
|-----|-----------|--------|--------|---------|----------|---------|-------|------|
|     | UTC       | MOD    | NPL    | NPLI    | NRC      | NRLM    | ОМН   | ONBA |
| 011 | 0.0       |        | (12)   | 111 - 2 | (13)     | (14)    | 01111 | (15) |
| Jan | 7         | 49359  | 0.105  | -3.796  | 4.495    | -7.270  | 5.821 | 2.02 |
| Jan | 17        | 49369  | 0.113  | -3.695  | 4.545    | -7.542  | 5.974 | 2.49 |
| Jan | 27        | 49379  | 0.117  | -3.652  | 4.630    | -7.830  | 6.122 | 2.64 |
| Feb | 6         | 49389  | 0.126  | -3.549  | 4.736    | -8.130  | 6.184 | 3.35 |
| Feb | 16        | 49399  | 0.127  | -3.430  | 4.845    | -8.425  | 6.321 | 3.83 |
|     |           |        |        |         |          |         |       |      |
| Feb | 26        | 49409  | 0.135  | -3.317  | 4.956    | -8.736  | 6.530 | 4.24 |
| Mar | 8         | 49419  | 0.124  | -3.29   | 5.075    | -9.033  | 6.547 | 4.75 |
| Mar | 18        | 49429  | 0.124  | -3.03   | 5.169    | -9.338  | 6.487 | 5.35 |
| Mar | 28        | 49439  | 0.119  | -3.12   | 5.265    | -9.641  | 6.489 | 5.65 |
| Apr | 7         | 49449  | 0.116  | -3.22   | 5.367    | -9.937  | 6.510 | 5.57 |
|     |           | 40.450 |        |         |          |         |       |      |
| Apr | 17        | 49459  | 0.114  | -       | 5.468    | -10.233 | 6.502 | 5.70 |
| Apr | 27        | 49469  | 0.113  | -3.182  | 5.567    | -10.521 | 6.559 | 5.48 |
| May | 7         | 49479  | 0.100  | -3.023  | 5.662    | -10.836 | 6.562 | 5.55 |
| May | 17        | 49489  | 0.090  | -2.991  | 5.769    | -11.117 | 6.572 | 5.47 |
| May | 27        | 49499  | 0.086  | -2.940  | 5.873    | -11.410 | 6.585 | 5.50 |
| Jun | 6         | 49509  | 0.079  | -2.817  | 5.966    | -13.953 | 6.553 | 5.23 |
| Jun | 16        | 49519  | 0.069  | - 2.017 | 6.062    | -13.795 | 6.511 | 5.03 |
| Jun | 26        | 49529  | 0.063  | -2.628  | 6.153    | -13.628 | 6.513 | 4.59 |
| Jul | 6         | 49539  | 0.049  | -2.020  | 6.306    | -13.464 | 6.576 | 3.85 |
| Jul | 16        | 49549  | 0.043  | 2       | 6.293    | -13.307 | 6.615 | 3.16 |
| out | 10        | 73373  | 0.030  |         | 0.233    | -13.307 | 0.013 | 3.10 |
| Jul | 26        | 49559  | 0.024  |         | 6.223    | -13.135 | 6.603 | 2.67 |
| Aug | 5         | 49569  | 0.006  | 5=      | 6.141    | -12.979 | 6.588 | 1.95 |
| Aug | 15        | 49579  | -0.009 | -       | 6.070    | -12.819 | 6.617 | 1.51 |
| Aug | 25        | 49589  | -0.026 | -       | 5.994    | -12.666 | 6.616 | 1.03 |
| Sep | 4         | 49599  | -0.036 | ·       | 5.923    | -12.497 | 6.593 | 0.41 |
|     |           | 40000  | 0.044  |         |          |         |       |      |
| Sep | 14        | 49609  | -0.041 | -       | 5.849    | -12.322 | 6.543 | 0.13 |
| Sep | 24        | 49619  | -0.048 | -       | 5.773    | -12.170 | 6.604 | 0.28 |
| 0ct | 4         | 49629  | -0.054 | -       | 5.689    | -11.993 | 6.637 | 0.32 |
| 0ct | 14        | 49639  | -0.043 | -       | 5.593    | -11.828 | 6.753 | 0.43 |
| 0ct | 24        | 49649  | -0.043 | -       | 5.514    | -11.666 | 6.891 | 0.53 |
| Nov | 3         | 49659  | -0.037 | ow:     | 5.417    | -11.510 | 7.125 | 0.32 |
| Nov | 13        | 49669  | -0.030 | -       | 5.330    | -11.349 | 7.339 | 0.70 |
| Nov | 23        | 49679  | -0.027 | *       | 5.263    | -11.188 | 7.520 | 1.03 |
| Dec | 3         | 49689  | -0.014 | 4       | 5.183    | -11.033 | 7.587 | 1.35 |
| Dec | 13        | 49699  | -0.009 |         | 5.102    | -10.871 | 7.799 | 1.88 |
|     |           |        | 0.003  | 249     | J.102    | 10.0/1  | / 55  | 1.00 |
| Dec | 23        | 49709  | -0.001 | -       | 5.001    | -10.717 | 8.010 | 2.37 |

Table 9. (Cont.)

Unit is one microsecond.

|            | ite<br>194 | MJD            |                    |                  | UTC - UTC        | (k)            |                |                |
|------------|------------|----------------|--------------------|------------------|------------------|----------------|----------------|----------------|
|            | UTC        | MOD            | ONRJ               | OP<br>(16)       | ORB<br>(17)      | PTB            | RC             | ROA            |
| Jan        | 7          | 49359          | -10.081            | -0.160           | -1.583           | 2.735          | -3.35          | 2.576          |
| Jan<br>Jan | 17<br>27   | 49369<br>49379 | -10.488<br>-10.780 | -0.151<br>-0.133 | -1.580<br>-1.593 | 2.732          | -3.53<br>-3.19 | 2.591<br>2.605 |
| Feb        | 6          | 49389          | -11.462            | -0.117           | -1.573           | 2.739          | -3.19          | 2.617          |
| Feb        | 16         | 49399          | -11.878            | -0.102           | -1.543           | 2.742          | -3.18          | 2.628          |
| Feb        | 26         | 49409          | -12.437            | -0.088           | -1.509           | 2.749          | -3.12          | 2.622          |
| Mar<br>Mar | 8<br>18    | 49419<br>49429 | -12.783<br>-13.343 | -0.080<br>-0.059 | -1.637<br>-1.686 | 2.745<br>2.746 | -2.78<br>-2.54 | 2.607<br>2.601 |
| Mar        | 28         | 49439          | -13.877            | -0.047           | -1.673           | 2.748          | -2.36          | 2.615          |
| Apr        | 7          | 49449          | •                  | -0.029           | -1.712           | 2.753          | -3.00          | 2.610          |
| Apr        | 17         | 49459          | ,#2                | -0.010           | -1.666           | 2.754          | -3.08          | 2.632          |
| Apr        | 27         | 49469          | 1 <del>=</del> 70  | 0.005            | -1.755           | 2.772          | -2.80          | 2.637          |
| May<br>May | 7<br>17    | 49479<br>49489 | -:<br>-:           | 0.002            | -1.796<br>-1.801 | 2.757<br>2.739 | -              | 2.600<br>2.573 |
| May        | 27         | 49499          | 21                 | 0.007            | -1.862           | 2.735          | -              | 2.553          |
| Jun        | 6          | 49509          | <b>.</b>           | 0.012            | -1.841           | 2.722          |                | 2.510          |
| Jun        | 16         | 49519          | -17.719            | 0.008            | -1.857           | 2.714          | -              | 2.496          |
| Jun        | 26<br>6    | 49529<br>49539 | -18.158            | 0.004            | -1.948           | 2.708          | -              | 2.514          |
| Jul<br>Jul | 16         | 49539          | -18.610<br>-18.965 | 0.001<br>-0.014  | -0.205<br>-0.177 | 2.697<br>2.686 | -              | 2.482<br>2.410 |
| Jul        | 26         | 49559          | -19.401            | -0.024           | -0.204           | 2.671          | -              | 2.339          |
| Aug        | 5          | 49569          | -19.744            | -0.016           | -0.187           | 2.652          |                | 2.249          |
| Aug        | 15         | 49579          | -20.111            | -0.027           | -0.206           | 2.639          | ±.             | 2.164          |
| Aug<br>Sep | 25<br>4    | 49589<br>49599 | -20.418<br>-20.663 | -0.029<br>-0.036 | -0.184<br>-0.176 | 2.627<br>2.616 | -              | 2.114 2.054    |
| Jep        | 7          | 43333          |                    | -0.030           |                  | 2.010          | 127            | 2.034          |
| Sep        | 14         | 49609          | -20.957            | -0.038           | -0.205           | 2.603          |                | 1.960          |
| Sep        | 24<br>4    | 49619<br>49629 | -21.143            | -0.051           | -0.189           | 2.600          | 0.71           | 1.948          |
| Oct<br>Oct | 14         | 49629          | -21.425<br>-21.573 | -0.061<br>-0.072 | -0.226<br>-0.197 | 2.597<br>2.594 | -0.71<br>-0.46 | 1.975<br>2.012 |
| 0ct        | 24         | 49649          | -21.409            | -0.065           | -0.219           | 2.588          | -0.25          | 2.057          |
| Nov        | 3          | 49659          | -21.319            | -0.083           | -0.287           | 2.577          | -0.36          | 2.101          |
| Nov        | 13         | 49669          | -21.050            | -0.088           | -0.308           | 2.572          | -0.50          | 2.106          |
| Nov        | 23         | 49679          | -20.725            | -0.090           | -0.325           | 2.566          | -0.33          | 2.123          |
| Dec<br>Dec | 3<br>13    | 49689<br>49699 | -20.368<br>-19.943 | -0.099<br>-0.100 | -0.283<br>-0.262 | 2.565<br>2.573 | -              | 2.187<br>2.218 |
|            |            |                |                    |                  |                  |                | -              |                |
| Dec        | 23         | 49709          | -19.437            | -0.105           | -0.232           | 2.574          | -              | 2.210          |

Table 9. (Cont.)

Unit is one microsecond.

|            | ite<br>994 | MJD            |                  |                | UTC - UT     | C(k)             |                  |                  |
|------------|------------|----------------|------------------|----------------|--------------|------------------|------------------|------------------|
|            | UTC        | MUU            | SCL<br>(18)      | SNT<br>(19)    | <b>S</b> 0   | SU               | TL<br>(20)       | TP<br>(21)       |
| Jan        | 7          | 49359          | -0.207           | 0.163          | 2.16         | -2.670           | -2.387           | -1.262           |
| Jan        | 17         | 49369          | -0.256           | 0.206          | 2.19         | -2.761           | -2.399           | -1.251           |
| Jan<br>Feb | 27<br>6    | 49379<br>49389 | -0.399<br>-0.412 | 0.180<br>0.155 | 2.14<br>2.18 | -2.850<br>-2.942 | -2.507<br>-2.719 | -1.237<br>-1.222 |
| Feb        | 16         | 49399          | -0.192           | 0.141          | 2.13         | -3.032           | -2.952           | -1.217           |
| Feb        | 26         | 49409          | -0.070           | 0.103          | 2.11         | -3.116           | -3.184           | -1.191           |
| Mar        | 8          | 49419          | -0.035           | 0.110          | 2.15         | -3.206           | -3.259           | -1.179           |
| Mar        | 18<br>28   | 49429          | 0.016            | 0.075          | 2.11 2.14    | -3.287           | -3.186           | -1.158           |
| Mar<br>Apr | 7          | 49439<br>49449 | 0.034<br>0.107   | 0.065<br>0.085 | -            | -3.375<br>-3.461 | -3.106<br>-3.049 | -1.147<br>-1.135 |
| Apr        | 17         | 49459          | 0.177            | 0.086          | 2.16         | -3.548           | -2.985           | -1.098           |
| Apr        | 27         | 49469          | 0.424            | 0.067          | 2.14         | -3.624           | -2.914           | -1.069           |
| May        | 7          | 49479          | 0.664            | 0.092          | 2.10         | -3.712           | -2.844           | -1.073           |
| May        | 17         | 49489          | 0.905            | 0.080          | 2.10         | -3.800           | -2.772           | -1.079           |
| May        | 27         | 49499          | 1.006            | 0.083          | 2.13         | -3.884           | -2.703           | -1.069           |
| Jun        | 6          | 49509          | 0.976            | 0.084          | 2.16         | -3.971           | -2.626           | -1.053           |
| Jun        | 16         | 49519          | 0.889            | 0.062          | 2.16         | -4.058           | -2.557           | -1.047           |
| Jun        | 26         | 49529          | 0.694            | 0.076          | 2.13         | -4.141           | -2.472           | -1.023           |
| Jul        | 6          | 49539          | 0.496            | 0.109          | 2.11         | -4.228           | -2.401           | -0.997           |
| Jul        | 16         | 49549          | 0.224            | 0.136          | 2.07         | -4.319           | -2.352           | -0.993           |
| Jul        | 26         | 49559          | 0.029            | 0.094          | 2.07         | -4.410           | -2.282           | -0.987           |
| Aug        | 5          | 49569          | -0.047           | 0.099          | 2.07         | -4.501           | -2.211           | -0.973           |
| Aug        | 15         | 49579          | -0.256           | 0.160          | 2.04         | -4.593           | -2.122           | -0.972           |
| Aug        | 25         | 49589          | -0.267           | 0.179          | 2.04         | -4.685           | -2.068           | -0.953           |
| Sep        | 4          | 49599          | -0.262           | 0.145          | 2.04         | -4.778           | -1.989           | -0.935           |
| Sep        | 14         | 49609          | -0.255           | 0.142          | 2.04         | -4.867           | -1.915           | -0.910           |
| Sep        | 24         | 49619          | -0.343           | 0.150          | 2.07         | -4.958           | -1.843           | -0.895           |
| 0ct        | 4          | 49629          | -0.480           | 0.159          | 2.07         | -5.054           | -1.772           | -0.891           |
| 0ct        | 14         | 49639          | -0.558           | 0.108          | 2.08         | -5.139           | -1.699           | -0.875           |
| 0ct        | 24         | 49649          | -0.671           | 0.084          | 2.06         | -5.230           | -1.624           | -0.862           |
| Nov        | 3          | 49659          | -0.832           | 0.034          | 2.06         | -5.328           | -1.560           | -0.857           |
| Nov        | 13         | 49669          | -0.864           | -0.017         | 2.04         | -5.421           | -1.479           | -0.827           |
| Nov        | 23         | 49679          | -0.582           | -0.015         | 2.05         | -5.516           | -1.405           | -0.824           |
| Dec        | 3          | 49689          | -0.295           | -0.016         | 2.07         | -5.613           | -1.319           | -0.808           |
| Dec        | 13         | 49699          | 0.071            | -0.042         | 2.08         | -5.705           | -1.251           | -0.807           |
| Dec        | 23         | 49709          | 0.125            | -0.091         | 2.07         | -5.799           | -1.202           | -0.781           |

Table 9. (Cont.)

Unit is one microsecond.

|     | te<br>94 | MJD   |        |              | UTC - UTC( | (k)    |
|-----|----------|-------|--------|--------------|------------|--------|
|     | UTC      | 1100  | TUG    | UME          | USNO       | VSL    |
| OII | 010      |       | (22)   | (23)         | 03110      | (24)   |
| lan | 7        | 49359 | 3.925  |              | 0.061      | -0.300 |
| Jan |          |       |        | -            |            |        |
| Jan | 17       | 49369 | 3.986  | -            | 0.071      | -0.286 |
| Jan | 27       | 49379 | 4.052  |              | 0.071      | -0.219 |
| Feb | 6        | 49389 | 4.110  | -            | 0.067      | -0.145 |
| Feb | 16       | 49399 | 4.179  | -            | 0.061      | -0.061 |
| Feb | 26       | 49409 | 4.247  | -            | 0.056      | -0.025 |
| Mar | 8        | 49419 | 4.321  | c =          | 0.048      | 0.031  |
| Mar | 18       | 49429 | 4.410  |              | 0.045      | 0.074  |
| Mar | 28       | 49439 | 4.481  | 0 <b>-</b> 0 | 0.045      | 0.094  |
| Apr | 7        | 49449 | 4.564  | -            | 0.051      | 0.132  |
|     |          |       |        |              |            |        |
| Apr | 17       | 49459 | 4.643  | -            | 0.051      | 0.166  |
| Apr | 27       | 49469 | 4.739  | 12           | 0.057      | 0.174  |
| May | 7        | 49479 | 4.834  | -            | 0.061      | 0.217  |
| May | 17       | 49489 | 4.922  | =            | 0.061      | 0.223  |
| May | 27       | 49499 | -3.994 | =            | 0.063      | 0.216  |
| Jun | 6        | 49509 | -3.895 | -            | 0.060      | 0.174  |
| Jun | 16       | 49519 | -3.825 | -            | 0.054      | 0.202  |
| Jun | 26       | 49529 | -3.737 | =            | 0.055      | 0.243  |
| Jul | 6        | 49539 | -3.648 | -            | 0.046      | 0.316  |
| Jul | 16       | 49549 | -3.568 | 2            | 0.034      | 0.339  |
| Jul | 26       | 49559 | -3.485 | -            | 0.033      | 0.388  |
| Aug | 5        | 49569 | -3.393 |              | 0.022      | 0.470  |
| Aug | 15       | 49579 | -3.297 | -            | 0.013      | 0.499  |
| Aug | 25       | 49589 | -3.200 | -            | 0.000      | 0.504  |
| Sep | 4        | 49599 | -3.101 | -            | -0.006     | 0.485  |
| Sep | 14       | 49609 | -3.013 | -1.876       | -0.015     | 0.504  |
| Sep | 24       | 49619 | -2.911 | -1.932       | -0.019     | 0.528  |
| 0ct | 4        | 49629 | -2.801 | -2.009       | -0.014     | 0.567  |
| 0ct |          | 49639 |        |              | -0.012     |        |
| 0ct |          | 49649 | -2.595 |              |            |        |
| Nov | 3        | 49659 | -2.480 | -2.207       |            | 0.692  |
| Nov | 13       | 49669 | -2.364 | -2.270       | 0.005      | 0.700  |
| Nov | 23       | 49679 |        |              | 0.008      | 0.727  |
| Dec | 3        |       |        |              | 0.015      |        |
| Dec | 13       | 49699 |        |              | 0.018      |        |
| Dec | 23       | 49709 | -1.918 | -2.527       | 0.018      | 1.005  |

Table 9. (Cont.)

NOTES

(1) AUS . Introduction of a master clock on MJD = 49353.0 at Orroral Observatory, Belconnen, Australia, as source of UTC(AUS). Frequency steps of UTC(AUS) in ns/d :

| MJD   | Freq. step |
|-------|------------|
| 49409 | +7.08      |
| 49449 | -1.64      |
| 49499 | -2.16      |
| 49579 | +2.68      |
| 49639 | +1.12      |
| 49689 | -7.08      |

- (2) CAO . Time step of UTC(CAO) of 8.00 microseconds on MJD = 49495.
- (3) CH . Frequency step of UTC(CH) in ns/d:

| MJD   | Freq. step |
|-------|------------|
| 49383 | +10        |
| 49443 | +20        |
| 49613 | -11        |
| 49673 | -4         |

- (4) CSIR. Apparent time step of UTC-UTC(CSIR) of +0.250 microsecond on MJD = 49383 due to a simultaneous change of GPS time receiver and master clock. Change of GPS time receiver on MJD = 49537.59 Change of master clock on MJD = 49636.0
- (5) FTZ. Change of master clock on MJD = 49429.4 Frequency steps of UTC(FTZ) in ns/d:

- (6) GUM . Glówny Urzad Miar, (Central Office of Measures), Warszawa, Polska. Formerly PKNM.
- (7) IEN. Change of master clock on MJD = 49596.5
- (8) IFAG. Time step of UTC(IFAG) of + 2 microseconds on MJD = 49355.6 Frequency step of UTC(IFAG) of 27 ns/d on MJD = 49406.71 Time step of UTC(IFAG) of + 4 microseconds on MJD = 49597.48
- (9) IGMA. Apparent time step of UTC-UTC(IGMA) between MJD = 49349 and MJD = 49359 due to change of GPS receiver.
- (10) NAOT. Frequency steps of UTC(NAOT) of +78.624 ns/d on MJD = 49380.1 and of 22.464 ns/d on MJD = 49539.1
- (11) NIM . GPS time link since MJD = 49659.

(12) NPL . Frequency steps of UTC(NPL) in ns/d:

MJD Freq. step

49407 +1.0
49603.65 -1.0
49624.49 -0.4
49650.74 -0.4

- (13) NRC . Frequency step of UTC(NRC) of + 17.28 ns/d on MJD = 49541.
- (14) NRLM. Change of master clock on MJD = 49503.
- (15) ONBA. Apparent time step of UTC-UTC(ONBA) between MJD = 49349 and MJD = 49359 due to change of GPS receiver at IGMA.
- (16) OP . Change of master clock on MJD = 49474.351
- (17) ORB . Change of master clok on MJD = 49538. Time step of UTC(ORB) of - 2.0 microseconds on MJD = 49538.35
- (18) SCL . Change of master clock on MJD = 49495.304 Frequency step of UTC(SCL) in ns/d:

| MJD       | Freq. | step |
|-----------|-------|------|
| 40204 200 | 20    | 0.4  |
| 49384.328 | -30   |      |
| 49408.160 | +12.  | .96  |
| 49582.031 | -17   | . 28 |
| 49660.349 | -17   | . 28 |
| 49671.048 | -32   | . 44 |
| 49701.044 | +35   | .00  |

(19) SNT . Change of master clock on MJD = 49699. Frequency steps of UTC(SNT) in ns/d:

| MJD      | Freq. step |
|----------|------------|
| 49366.58 | -4         |
| 49369.46 | +8         |
| 49411.50 | -2         |
| 49582.33 | +7         |
| 49630.58 | +5         |
| 49663.54 | -5         |

- (20) TL . Change of master clock on MJD = 49413.
- (21) TP . Change of master clock on MJD = 49354.0
- (22) TUG. Time step of UTC(TUG) of +9.00 microseconds on MJD = 49496.51
- (23) UME . Ulusai Metroloji Enstitüsü.

  Marmara Research Centre, National Metrology Institute,
  Gebze-Kocaeli (Turkey).
- (24) VSL . Frequency steps of UTC(VSL) in ns/d:

| MJD                  | Freq. | step |
|----------------------|-------|------|
| 49436.70<br>49474.64 | +6.00 | -    |

TABLE 10. INTERNATIONAL GPS TRACKING SCHEDULE N°23 FOR MJD = 49533 (1994 JUNE 30) AT OHUTC

This is a suggested tracking schedule for international time comparisons in common view of GPS satellites between ten areas of the globe.

| Area                      |     | Participating laboratories                                                                        |
|---------------------------|-----|---------------------------------------------------------------------------------------------------|
| Europe                    | E   | AOS, CAO, CH, FTZ, GUM*, IEN, IFAG, LDS, Mad*, NPL, OMH, OP, ORB, PTB, ROA, SNT, SU, TP, TUG, VSL |
| East North America        | ENA | AO*, APL, NRC, USNO                                                                               |
| West North America        | WNA | Gold*, NIST, WWV*                                                                                 |
| Hawaii                    | Н   | WWVH*                                                                                             |
| East Asia                 | EA  | CRL, CSAO, KRIS, NAOM, NAOT,<br>NIM, NRLM, SCL, SO, TL                                            |
| Australia and New Zealand | Α   | Can*, ATC*, ORR*, MSL, NML*                                                                       |
| India                     | I   | NPLI                                                                                              |
| Middle East               | ME  | INPL                                                                                              |
| South Africa              | SAF | CSIR                                                                                              |
| South America             | SAM | IGMA, ONBA, ONRJ, Kou*                                                                            |

\* Mad, Gold, Can : JPL Deep Space Network, Madrid,

Goldstone, Canberra.

WWV, WWVH: NIST stations in Colorado and Hawaii.

AO : Arecibo Observatory. Kou : CNES Kourou Center.

ATC, ORR and NML: Australian Consortium of laboratories.

GUM : Glówny Urzad Miar (Central Office of Measures).

Warszawa. Poland. Formerly PKNM

Other laboratories are designated by their usual acronyms.

The start times of the tracks are referenced to UTC. Suggested track duration is 15 minutes. Data taking is to start 2 minutes after the start of the track to allow time to lock on to the satellite signal. The data length is therefore 13 minutes; it has been chosen in order to ensure use of the most current ionospheric correction which is transmitted every 12.5 min. All the track time should be decremented 4 minutes each day, to account for the GPS sidereal orbits. The track times were chosen to maximize elevation angles between pairs of stations. The class bytes are such that in association with the satellite number they form a unique identifyer for each common view.

The European area having numerous possible connections has a heavy schedule. The establishment of sub-schedules permits the sharing of the work. European laboratories are contacted to ensure the coordination of sub-schedules.

TABLE 10. SCHEDULE N° 23, 1994 JUNE 30 (CONT.)

| **    | * Eu | rope | 9 <b>**</b> 1 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |      |    |
|-------|------|------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------|----|
| Class |      |      |               | Connects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sul | schedi | ıles |    |
|       |      | h    | m             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E1  | E2     | E3   | E4 |
|       |      |      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |      |    |
| 10    | 18   | 00   | 16            | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | *    |    |
| 10    | 19   | 01   | 04            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 08    | 26   | 01   | 36            | WNA, ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   | *      | *    | *  |
| 10    | 27   | 02   | 80            | EA, ME, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *   | *      | *    | *  |
| 19    | 9    | 03   | 12            | ENA, WNA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |      | *  |
| 68    | 12   | 03   | 44            | ENA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | *      |      |    |
| 10    | 2    | 04   | 00            | EA, ME, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *   | *      | *    | *  |
| 00    | 23   | 04   | 16            | ENA, WNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | *      |      |    |
| 80    | 12   | 04   | 48            | WNA, ENA, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | *      |      |    |
| 10    | 7    | 05   | 20            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | *      |      |    |
| 00    | 5    | 05   | 36            | ENA, ME, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *   | *      | *    | *  |
| E4    | 12   | 06   | 24            | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *   | *      | *    | *  |
| 10    | 4    | 06   | 40            | EA,I,ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 19    | 20   | 06   | 56            | ENA, WNA, ME, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *   | *      | *    | *  |
| 7C    | 1    | 07   | 12            | WNA, SAM, ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *   | *      | *    | *  |
| BC    | 9    | 07   | 28            | ME, SAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 4C    | 12   | 07   | 44            | SAF,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |      | *  |
| 10    | 24   | 08   | 00            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 00    | 6    | 08   | 32            | ENA, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 10    | 5    | 80   | 48            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |      | *  |
| 00    | 25   | 09   | 04            | ENA, WNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   | *      | *    | *  |
| 10    | 16   | 10   | 56            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 00    | 22   | 11   | 12            | ENA, WNA, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *   | *      | *    | *  |
| 10    | 6    | 11   | 28            | EA.ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 18    | 28   | 12   | 16            | ENA, WNA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | *      |      |    |
| 4C    | 23   | 12   | 32            | SAF, ME, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | *    |    |
| 10    | 17   | 13   | 04            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 4C    | 21   | 13   | 20            | SAF, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 4C    | 22   | 13   | 52            | SAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |      | *  |
| 00    | 31   | 14   | 80            | ENA, WNA, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *   | *      | *    | *  |
| 10    | 23   | 14   | 24            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 80    | 15   | 15   | 28            | WNA, ENA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *   | *      | *    | *  |
| 10    | 21   | 16   | 16            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 18    | 2    | 16   | 32            | ENA, WNA, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | *      |      |    |
| 10    | 1    | 17   | 04            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 4C    | 31   | 17   | 20            | SAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |      | *  |
| 00    | 14   | 18   | 24            | ENA, WNA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *   | *      | *    | *  |
| 00    | 7    | 18   | 56            | ENA, WNA, SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *   | *      | *    | *  |
| 4C    | 15   | 19   | 12            | SAF,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |      | *  |
| 10    | 25   | 19   | 28            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 54    | 18   | 19   | 44            | SAM, SAF, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |      | *  |
| 00    | 4    | 20   | 32            | ENA, WNA, ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *   | *      | *    | *  |
| 10    | 14   |      | 48            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | *    |    |
| 00    | 18   |      | 36            | ENA,ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *   | *      | *    | *  |
| 10    | 29   | 21   | 52            | EA,ME,I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   | *      | *    | *  |
| 4C    | 19   |      | 80            | SAF,ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |      | *  |
| 08    | 24   |      | 24            | WNA, ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   | *      | *    | *  |
| 80    | 16   | 23   |               | WNA, ENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   | *      | *    | *  |
|       |      |      |               | or acceptable to the control of the |     |        |      |    |

TABLE 10. SCHEDULE N° 23, 1994 JUNE 30 (CONT.)

| *** E | . No | rth | Ame | rica *** *      | *** W. | Noi | rth | Ame | rica ***        | ***  | Eas | st A | \sia | ***         |
|-------|------|-----|-----|-----------------|--------|-----|-----|-----|-----------------|------|-----|------|------|-------------|
| Class | PRN  | Sta | rt  | Connects C      | Class  | PRN | Sta | irt | Connects C      | lass | PRN | Sta  | rt ( | Connects    |
|       |      | h   | m   |                 |        |     | h   | m   |                 |      |     | h    | m    |             |
| 08    | 26   | 01  | 36  | E, WNA          | 80     | 22  | 01  | 20  | A,EA,H          | 10   | 18  | 00   | 16   | E           |
| 34    | 28   | 02  | 40  | H, WNA, EA      | 80     | 26  | 01  | 36  | E, ENA          | 98   | 29  | 00   | 48   | A, I        |
| 18    | 17   | 02  | 56  | WNA, SAM        | 34     | 28  | 02  | 40  | H, ENA, EA      | 10   | 19  | 01   | 04   | E,ME,I      |
| 19    | 9    | 03  | 12  | WNA, E, SAM     | 18     | 17  | 02  | 56  | ENA, SAM        | 80   | 22  | 01   | 20   | WNA,A,H     |
| 18    | 21   | 03  | 28  | WNA,H           | 19     | 9   | 03  | 12  | ENA, E, SAM     | 10   | 27  | 02   | 80   | E,ME,I      |
| 68    | 12   | 03  | 44  | SAM, E          | 18     | 21  | 03  | 28  | ENA,H           | 34   | 28  | 02   | 40   | H, WNA, ENA |
| 00    | 23   | 04  | 16  | E, WNA          | 00     | 23  | 04  | 16  | E, ENA          | 10   | 2   | 04   | 00   | E,ME,I      |
| 80    | 12   | 04  | 48  | E, WNA, ME      | 80     | 12  | 04  | 48  | E,ENA,ME        | 98   | 14  | 04   | 32   | Α           |
| 00    | 5    | 05  | 36  | E,ME,SAM        | 20     | 15  | 06  | 80  | EA, ENA, H      | 98   | 31  | 05   | 04   | A,H         |
| 20    | 15   | 06  | 80  | EA, WNA, H      | 19     | 20  | 06  | 56  | ENA, E, ME, SAM | 10   | 7   | 05   | 20   | E,ME,I      |
| 19    | 20   | 06  | 56  | WNA, E, ME, SAM | 1 7C   | 1   | 07  | 12  | SAM, E, ENA     | 20   | 15  | 06   | 80   | ENA, WNA, H |
| 7C    | 1    | 07  | 12  | WNA, SAM, E     | 28     | 14  | 07  | 28  | EA,ENA,H        | 36   | 14  | 06   | 24   | Н           |
| 28    | 14   | 07  | 28  | EA, WNA, H      | 00     | 25  | 09  | 04  | E, ENA          | 10   | 4   | 06   | 40   | E,I,ME      |
| 00    | 6    | 80  |     | E,ME            | 28     | 18  | 10  | 80  | EA, ENA, H      | 98   | 2   | 06   | 56   | A           |
| 00    | 25   | 09  | 04  | E, WNA          | 00     | 22  | 11  | 12  | E, ENA, ME      | 28   | 14  | 07   | 28   | WNA, ENA, H |
| 28    | 18   | 10  |     | EA, WNA, H      | 68     | 31  | 11  | 28  | ENA, SAM        | 10   | 24  | 80   | 00   | E,ME,I      |
| 00    | 22   | 11  |     | E, WNA, ME      | 18     | 29  | 11  | 44  | ENA, SAM        | 10   | 5   | 80   | 48   | E,ME,I      |
| 68    | 31   | 11  |     | SAM, WNA        | 18     | 18  | 12  | 00  | ENA             | 28   | 18  | 10   | 80   | WNA, ENA, H |
| 18    | 29   | 11  |     | WNA, SAM        | 18     | 28  | 12  | 16  | ENA, E, SAM     | 10   | 16  | 10   | 56   | E,ME,I      |
| 18    | 18   | 12  |     | WNA             | 18     | 19  | 12  | 32  | ENA,H           | 98   | 26  | 11   | 12   | A,I         |
| 18    | 28   | 12  |     | WNA,E,SAM       | 18     | 27  | 12  | 48  | ENA,H.EA        | 10   | 6   | 11   | 28   | E,ME,I      |
| 18    | 19   | 12  |     | WNA,H           | 68     | 18  | 13  | 36  | ENA,SAM         | 18   | 27  | 12   | 48   | ENA, WNA, H |
| 18    | 27   | 12  |     | WNA,H,EA        | 00     | 31  | 14  | 08  | E, ENA, ME      | 10   | 17  | 13   | 04   | E,ME,I      |
| 68    | 18   | 13  |     | SAM, WNA        | 80     | 15  | 15  | 28  | E, ENA, SAM     | 98   | 9   | 13   | 52   | A           |
| 00    | 31   | 14  |     | E, WNA, ME      | 28     | 26  | 15  |     | EA,H            | 10   | 23  | 14   | 24   | E,ME,I      |
| 80    | 15   | 15  |     | E, WNA, SAM     | 18     | 2   | 16  |     | ENA,H,E         | 98   | 12  | 14   | 40   | A           |
| 18    | 2    | 16  |     | WNA,H,E         | 20     | 12  | 17  |     | ENA, EA, H      | 28   | 26  | 15   | 44   | WNA,H       |
| 20    | 12   | 17  |     | EA, WNA, H      | 20     | 9   | 17  |     | ENA, EA, H      | 10   | 21  | 16   | 16   | E,ME,I      |
| 20    | 9    | 17  |     | EA,WNA,H        | 00     | 14  | 18  |     | E,ENA,SAM       | 10   | 1   | 17   | 04   | E,ME,I      |
| 00    | 14   | 18  |     | E, WNA, SAM     | 00     | 7   | 18  | 56  | E, ENA, SAM     | 98   | 20  | 17   | 20   | A           |
| 00    | 7    | 18  |     | E, WNA, SAM     | 20     | 5   | 19  |     | ENA, EA, H      | 20   | 12  | 17   | 36   | ENA, WNA, H |
| 20    | 5    | 19  |     | EA,WNA,H        | 18     | 24  | 19  |     | ENA,H           | 20   | 9   | 17   | 52   | ENA, WNA, H |
| 18    | 24   | 19  |     | WNA,H           | 28     | 20  | 20  |     | EA,H,ENA        | 20   | 5   |      | 12   | ENA, WNA, H |
| 28    | 20   | 20  |     | WNA,EA,H        | 00     | 4   | 20  |     | E,ENA,ME        | 10   | 25  | 19   | 28   | E,ME,I      |
| 00    | 4    | 20  |     | E, WNA, ME      | 28     | 6   | 21  |     | EA,H            | 98   | 22  |      | 44   | A           |
| 00    | 18   | 21  |     | E,ME            | 80     | 17  | 21  |     | A,H             | 28   | 20  |      | 16   | WNA,H,ENA   |
| 08    | 24   | 22  |     | E, WNA          | 80     | 24  | 22  |     | E, ENA          | 10   | 14  |      | 48   | E,ME,I      |
| 18    | 16   | 22  |     | WNA             | 18     | 16  | 22  |     | ENA             | 98   | 1   |      | 04   | A           |
| 28    | 17   | 23  |     | WNA,EA,H        | 28     | 17  | 23  |     | EA,H,ENA        | 28   | 6   |      | 36   | H, ANW      |
| 08    | 16   | 23  | 44  | E, WNA          | 80     | 16  | 23  | 44  | E,ENA           | 10   | 29  |      | 52   | E,ME,I      |
|       |      |     |     |                 |        |     |     |     |                 | 98   | 28  |      | 24   | A.I         |
|       |      |     |     |                 |        |     |     |     |                 | 98   | 25  |      | 12   | A,H         |
|       |      |     |     |                 |        |     |     |     |                 | 28   | 17  | 23   | 28   | WNA,H,ENA   |

TABLE 10. SCHEDULE N° 23, 1994 JUNE 30 (CONT.)

| *** Hawaii *** |     |     | *** | Australia    |       |     | *** | *** India *** |            |       |     |     |    |           |
|----------------|-----|-----|-----|--------------|-------|-----|-----|---------------|------------|-------|-----|-----|----|-----------|
| Class          | PRN | Sta | rt  | Connects     | Class | PRN | Sta | rt            | Connects   | Class | PRN | Sta | rt | Connects  |
|                |     | h   | m   |              |       |     | h   | m             |            |       |     | h   | m  |           |
| 80             | 22  | 01  | 20  | WNA,A,EA     | 98    | 29  | 00  | 48            | EA,I       | 98    | 29  | 00  | 48 | EA.A      |
| 34             | 28  | 02  | 40  | WNA, ENA, EA | 80    | 22  | 01  | 20            | WNA, EA, H | 10    | 19  | 01  | 04 | E,EA,ME   |
| 18             | 21  | 03  | 28  | ENA, WNA     | 98    | 14  | 04  | 32            | EA         | 10    | 27  | 02  | 80 | E,EA,ME   |
| 98             | 31  | 05  | 04  | EA.A         | 98    | 31  | 05  | 04            | EA.H       | 10    | 2   | 04  | 00 | E,EA,ME   |
| 20             | 15  | 06  | 80  | EA, ENA, WNA | F9    | 19  | 06  | 24            | Α          | 10    | 7   | 05  | 20 | E,EA,ME   |
| 36             | 14  | 06  | 24  | EA           | 98    | 2   | 06  | 56            | EA         | 10    | 4   | 06  | 40 | E,EA,ME   |
| 28             | 14  | 07  | 28  | EA, WNA, ENA | F9    | 27  | 08  | 00            | A          | 4C    | 12  | 07  | 44 | E,SAF,ME  |
| 3C             | 19  | 08  | 48  | A            | 3C    | 19  | 08  | 48            | Н          | 10    | 24  | 08  | 00 | E,EA,ME   |
| 28             | 18  | 10  | 80  | EA, WNA, ENA | 98    | 26  | 11  | 12            | EA,I       | 10    | 5   | 08  | 48 | E,EA,ME   |
| 18             | 19  | 12  | 32  | ENA, WNA     | F9    | 12  | 13  | 20            | A          | 10    | 16  | 10  | 56 | E,EA,ME   |
| 18             | 27  | 12  | 48  | ENA, WNA, EA | 98    | 9   | 13  | 52            | EA         | 98    | 26  | 11  | 12 | EA,A      |
| 28             | 26  | 15  | 44  | WNA, EA      | 98    | 12  | 14  | 40            | EA         | 10    | 6   | 11  | 28 | E,EA,ME   |
| 18             | 2   | 16  | 32  | ENA, WNA, E  | 98    | 20  | 17  | 20            | EA         | 4C    | 23  | 12  | 32 | E,SAF,ME  |
| 20             | 12  | 17  | 36  | ENA, EA, WNA | F9    | 23  | 19  | 12            | A          | 10    | 17  | 13  | 04 | E,EA,ME   |
| 20             | 9   | 17  | 52  | ENA, EA, WNA | 98    | 22  | 19  | 44            | EA         | 10    | 23  | 14  | 24 | E, EA, ME |
| 20             | 5   | 19  | 12  | ENA, EA, WNA | 98    | 1   | 21  | 04            | EA         | BC    | 1   | 14  | 56 | ME,SAF    |
| 18             | 24  | 19  | 28  | ENA, WNA     | 80    | 17  | 21  | 52            | WNA,H      | 10    | 21  | 16  | 16 | E,EA,ME   |
| 28             | 20  | 20  | 16  | WNA, EA, ENA | 98    | 28  | 22  | 24            | EA,I       | 10    | 1   | 17  | 04 | E,EA,ME   |
| 28             | 6   | 21  | 36  | EA, WNA      | 98    | 25  | 23  | 12            | EA,H       | 4C    | 15  | 19  | 12 | E,SAF,ME  |
| 80             | 17  | 21  | 52  | WNA,A        |       |     |     |               |            | 10    | 25  | 19  | 28 | E,EA,ME   |
| 98             | 25  | 23  | 12  | EA.A         |       |     |     |               |            | 10    | 14  | 20  | 48 | E,EA,ME   |
| 28             | 17  | 23  | 28  | WNA, EA, ENA |       |     |     |               |            | 10    | 29  | 21  | 52 | E,EA,ME   |
|                |     |     |     |              |       |     |     |               |            | 98    | 28  | 22  | 24 | EA,A      |

TABLE 10. SCHEDULE N° 23, 1994 JUNE 30 (CONT.)

| ***   | st *** | ***  | South Africa *** |       |     |     | *** South America *** |          |       |     |     |    |                 |
|-------|--------|------|------------------|-------|-----|-----|-----------------------|----------|-------|-----|-----|----|-----------------|
| Class | PRN    | Star | t Connects       | Class | PRN | Sta | rt                    | Connects | Class | PRN | Sta | rt | Connects        |
|       |        | h i  | n                |       |     | h   | m                     |          |       |     | h   | m  |                 |
| 10    | 19     | 01 0 | E,EA,I           | BC    | 7   | 02  | 40                    | ME       | F8    | 12  | 02  | 40 | SAM             |
| 10    | 27     | 02 0 | B E,EA,I         | BC    | 9   | 07  | 28                    | ME,E     | 18    | 17  | 02  | 56 | ENA, WNA        |
| BC    | 7      | 02 4 | SAF              | 4C    | 12  | 07  | 44                    | E,ME,I   | 19    | 9   | 03  | 12 | ENA, WNA, E     |
| 10    | 2      | 04 0 | D E.EA.I         | 4C    | 23  | 12  | 32                    | E,ME,I   | 68    | 12  | 03  | 44 | ENA,E           |
| 08    | 12     | 04 4 | B E,WNA,ENA      | 4C    | 21  | 13  | 20                    | E,ME     | 00    | 5   | 05  | 36 | E, ENA, ME      |
| 10    | 7      | 05 2 | D E.EA,I         | 4C    | 22  | 13  | 52                    | E        | 19    | 20  | 06  | 56 | ENA, WNA, E, ME |
| 00    | 5      | 05 3 | 6 E.ENA.SAM      | BC    | 1   | 14  | 56                    | ME,I     | 7C    | 1   | 07  | 12 | WNA, E, ENA     |
| 10    | 4      | 06 4 | D E,EA,I         | 4C    | 31  | 17  | 20                    | E        | 68    | 31  | 11  | 28 | ENA, WNA        |
| 19    | 20     | 06 5 | ENA, WNA, E.S.   | AM CA | 19  | 18  | 40                    | SAM      | 18    | 29  | 11  | 44 | ENA, WNA        |
| BC    | 9      | 07 2 | S SAF,E          | 4C    | 15  | 19  | 12                    | E,ME,I   | 18    | 28  | 12  | 16 | ENA, WNA, E     |
| 4C    | 12     | 07 4 | E,SAF,I          | 54    | 18  | 19  | 44                    | E,SAM,ME | 68    | 18  | 13  | 36 | ENA, WNA        |
| 10    | 24     | 08 0 | D E,EA,I         | 4C    | 19  | 22  | 80                    | E,ME     | 80    | 15  | 15  | 28 | E, WNA, ENA     |
| 00    | 6      | 08 3 | 2 E,ENA          | BC    | 14  | 22  | 24                    | ME       | 00    | 14  | 18  | 24 | E, ENA, WNA     |
| 10    | 5      | 08 4 | B E,EA,I         | BC    | 4   | 22  | 56                    | ME       | CA    | 19  | 18  | 40 | SAF             |
| 10    | 16     | 10 5 | E.EA.I           |       |     |     |                       |          | 00    | 7   | 18  | 56 | E, ENA, WNA     |
| 00    | 22     | 11 1 | E,ENA,WNA        |       |     |     |                       |          | 54    | 18  | 19  | 44 | E,SAF,ME        |
| 10    | 6      | 11 2 | B E.EA.I         |       |     |     |                       |          |       |     |     |    |                 |
| 4C    | 23     | 12 3 | E,SAF,I          |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 17     | 13 0 | E.EA.I           |       |     |     |                       |          |       |     |     |    |                 |
| 4C    | 21     | 13 2 | D E.SAF          |       |     |     |                       |          |       |     |     |    |                 |
| 00    | 31     | 14 0 | B E,ENA,WNA      |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 23     | 14 2 | E,EA,I           |       |     |     |                       |          |       |     |     |    |                 |
| BC    | 1      | 14 5 | SAF,I            |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 21     | 16 1 | 6 E,EA,I         |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 1      | 17 O | 4 E.EA.I         |       |     |     |                       |          |       |     |     |    |                 |
| 4C    | 15     | 19 1 | E,SAF,I          |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 25     | 19 2 |                  |       |     |     |                       |          |       |     |     |    |                 |
| 54    | 18     | 19 4 | E,SAM,SAF        |       |     |     |                       |          |       |     |     |    |                 |
| 00    | 4      | 20 3 | Z E,ENA,WNA      |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 14     | 20 4 | B E,EA,I         |       |     |     |                       |          |       |     |     |    |                 |
| 00    | 18     | 21 3 | 6 E,ENA          |       |     |     |                       |          |       |     |     |    |                 |
| 10    | 29     | 21 5 | 2 E,EA,I         |       |     |     |                       |          |       |     |     |    |                 |
| 4C    | 19     | 22 0 |                  |       |     |     |                       |          |       |     |     |    |                 |
| BC    | 14     | 22 2 | 4 SAF            |       |     |     |                       |          |       |     |     |    |                 |
| BC    | 4      | 22 5 | S SAF            |       |     |     |                       |          |       |     |     |    |                 |
|       |        |      |                  |       |     |     |                       |          |       |     |     |    |                 |

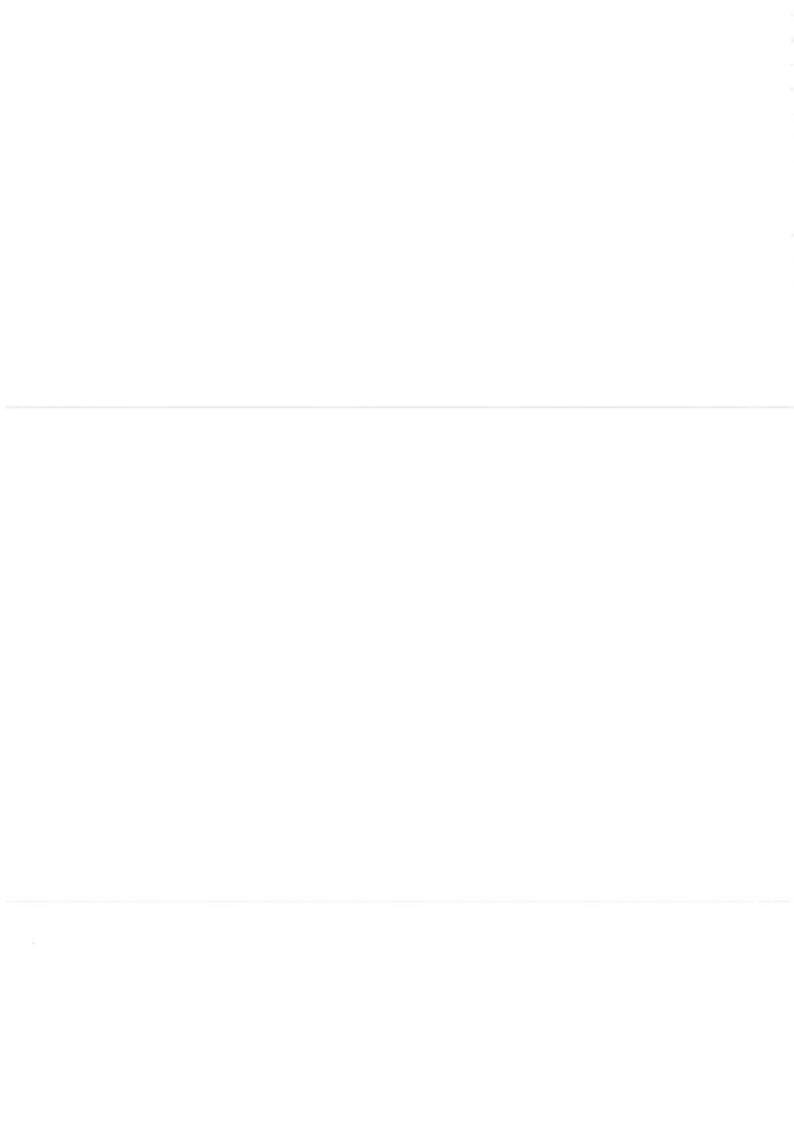



TABLE 11. INTERNATIONAL GPS TRACKING SCHEDULE N° 24 FOR MJD = 49702 (1994 DECEMBER 16) AT OHUTC

This is a suggested tracking schedule for international time comparisons in common view of GPS satellites between ten areas of the globe.

| Area                      | Participating laboratories |                                                                                                      |  |  |  |  |  |
|---------------------------|----------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Europe                    | E                          | AOS, CAO, CH, FTZ, GUM, IEN, IFAG, LDS, Mad*, NPL, OMH, OPORB, PTB, ROA, SNT, SU, TP, TUG, UME*, VSL |  |  |  |  |  |
| East North America        | ENA                        | AO*, APL, NRC, USNO                                                                                  |  |  |  |  |  |
| West North America        | WNA                        | Gold*, NIST, WWV*                                                                                    |  |  |  |  |  |
| Hawaii                    | н                          | WWVH*                                                                                                |  |  |  |  |  |
| East Asia                 | EA                         | CRL, CSAO, KRIS, NAOM, NAOT,<br>NIM, NRLM, SCL, SO, TL                                               |  |  |  |  |  |
| Australia and New Zealand | Α                          | Can*, ATC*, ORR*, MSL, NML*                                                                          |  |  |  |  |  |
| India                     | I                          | NPLI                                                                                                 |  |  |  |  |  |
| Middle East               | ME                         | INPL                                                                                                 |  |  |  |  |  |
| South Africa              | SAF                        | CSIR                                                                                                 |  |  |  |  |  |
| South America             | SAM                        | IGMA, ONBA, ONRJ, Kou*                                                                               |  |  |  |  |  |

\* Mad, Gold, Can : JPL Deep Space Network, Madrid,

Goldstone. Canberra.

WWV, WWVH: NIST stations in Colorado and Hawaii.

AO : Arecibo Observatory. Kou : CNES Kourou Center.

ATC, ORR and NML: Australian Consortium of laboratories.
UME: Ulusai Metroloji Enstitüsü (Marmara Research Centre,
National Metrology Institute), Gebze-Kocaeli, Turkey.

Other laboratories are designated by their usual acronyms.

The start times of the tracks are referenced to UTC. Suggested track duration is 15 minutes. Data taking is to start 2 minutes after the start of the track to allow time to lock on to the satellite signal. The data length is therefore 13 minutes; it has been chosen in order to ensure use of the most current ionospheric correction which is transmitted every 12.5 min. All the track time should be decremented 4 minutes each day, to account for the GPS sidereal orbits. The track times were chosen to maximize elevation angles between pairs of stations. The class bytes are such that in association with the satellite number they form a unique identifyer for each common view.

The European area having numerous possible connections has a heavy schedule. The establishment of sub-schedules permits the sharing of the work. European laboratories are contacted to ensure the coordination of sub-schedules.

TABLE 11. SCHEDULE N° 24, 1994 DECEMBER 16 (CONT.)

| **    | * Eu | rope * | **                |    |        |        |    |
|-------|------|--------|-------------------|----|--------|--------|----|
| Class | PRN  | Start  | Connects          | S  | ubsche | edules |    |
|       |      | h m    |                   | E1 | E2     | E3     | E4 |
|       |      |        |                   |    |        |        |    |
| 18    | 28   | 00 48  | ENA, WNA, SAM     |    | *      |        |    |
| 4C    | 23   | 01 04  | SAF,ME,I          |    |        | *      |    |
| 10    | 17   | 01 36  | EA,ME,I           | *  | *      | *      | *  |
| 4C    | 21   | 01 52  | SAF,ME            | *  | *      | *      | *  |
| 4C    | 22   | 02 24  | SAF               |    |        |        | *  |
| 00    | 31   | 02 40  | ENA, WNA, ME      | *  | *      | *      | *  |
| 10    | 23   | 02 56  | EA,ME,I           | *  | *      | *      | *  |
| 80    | 15   | 04 00  | WNA, ENA, SAM     | *  | *      | *      | *  |
| 10    | 21   | 04 48  | EA,ME,I           |    |        | *      |    |
| 18    | 2    | 05 04  | ENA, WNA, H       |    | *      |        |    |
| 10    | 1    | 05 36  | EA,ME,I           |    |        | *      |    |
| 4C    | 31   | 05 52  | SAF               |    |        |        | *  |
| 00    | 14   | 06 56  | ENA, WNA, SAM     | *  | *      | *      | *  |
| 00    | 7    | 07 28  | ENA, WNA, SAM     | *  | *      | *      | *  |
| 4C    | 15   | 07 44  | SAF,ME,I          |    |        |        | *  |
| 10    | 25   | 08 00  | EA,ME,I           |    |        | *      |    |
| 54    | 18   | 08 16  | SAM, SAF, ME      |    |        |        | *  |
| 00    | 4    | 09 04  | ENA, WNA, ME      | *  | *      | *      | *  |
| 10    | 14   | 09 20  | EA,ME,I           |    |        | *      |    |
| 00    | 18   | 10 08  | ENA, ME           | *  | *      | *      | *  |
| 10    | 29   | 10 24  | EA,ME,I           | *  | *      | *      | *  |
| 4C    | 19   | 10 40  | SAF,ME            |    |        |        | *  |
| 08    | 24   | 10 56  | WNA, ENA          | *  | *      | *      | *  |
| 08    | 16   | 12 16  | WNA, ENA          | *  | *      | *      | *  |
| 10    | 18   | 12 48  | EA                |    |        | *      |    |
| 10    | 19   | 13 36  | EA,ME,I           | *  | *      | *      | *  |
| 80    | 26   | 14 08  | WNA, ENA          | *  | *      | *      | *  |
| 10    | 27   | 14 40  | EA,ME,I           | *  | *      | *      | *  |
| 19    | 9    | 15 44  | ENA, WNA, SAM     |    |        |        | *  |
| 68    | 12   | 16 16  | ENA, SAM          |    | *      |        |    |
| 10    | 2    | 16 32  | EA,ME,I           | *  | *      | *      | *  |
| 00    | 23   | 16 48  | ENA, WNA          |    | *      |        |    |
| 80    | 12   | 17 20  | WNA, ENA, ME      |    | *      |        |    |
| 10    | 7    | 17 52  | EA,ME,I           |    | *      |        |    |
| 00    | 5    | 18 08  | ENA, ME, SAM      | *  | *      | *      | *  |
| E4    | 12   | 18 56  |                   | *  | *      | *      | *  |
| 10    | 4    | 19 12  | EA,I,ME           |    |        | *      |    |
| 19    | 20   | 19 28  | ENA, WNA, ME, SAM | *  | *      | *      | *  |
| 7C    | 1    | 19 44  |                   | *  | *      | *      | *  |
| BC    | 9    | 20 00  |                   | *  | *      | *      | *  |
| 4C    | 12   | 20 16  |                   |    |        |        | *  |
| 10    | 24   | 20 32  |                   |    |        | *      |    |
| 00    | 6    | 21 04  |                   | *  | *      | *      | *  |
| 10    | 5    | 21 20  |                   |    |        |        | *  |
| 00    | 25   | 21 36  |                   | *  | *      | *      | *  |
| 10    | 16   | 23 12  |                   |    |        | *      |    |
| 00    | 22   | 23 28  |                   | *  | *      | *      | *  |
| 10    | 6    | 23 44  |                   |    |        | *      |    |
| 10    | J    | 23 74  | LA, HL, I         |    |        | 100 M  |    |

TABLE 11. SCHEDULE N° 24, 1994 DECEMBER 16 (CONT.)

| Class PRN Start Connects Class PRN Start Connects Class PRN Start h m h m h | m<br>20 ENA,WNA,H |
|-----------------------------------------------------------------------------|-------------------|
|                                                                             |                   |
| 10 20 00 10 UNA CAM                                                         | 20 ENA, WNA, H    |
| 18 29 00 16 WNA, SAM 18 29 00 16 ENA, SAM 18 27 01                          |                   |
| 18 18 00 32 WNA 18 18 00 32 ENA 10 17 01                                    | 36 E.ME.I         |
| 18 28 00 48 WNA,E,SAM 18 28 00 48 ENA,E,SAM 98 9 02                         | 24 A              |
| 18 19 01 04 WNA,H 18 19 01 04 ENA,H 10 23 02                                | 56 E,ME,I         |
| 18 27 01 20 WNA,H,EA 18 27 01 20 ENA,H,EA 98 12 03                          | 12 A              |
| 68 18 02 08 SAM, WNA 68 18 02 08 ENA, SAM 28 26 04                          | 16 WNA,H          |
| 00 31 02 40 E,WNA,ME 00 31 02 40 E,ENA,ME 10 21 04                          | 48 E,ME,I         |
| 08 15 04 00 E,WNA,SAM 08 15 04 00 E,ENA,SAM 10 1 05                         | 36 E.ME.I         |
| 18 2 05 04 WNA,H,E 28 26 04 16 EA,H 98 20 05                                | 52 A              |
| 20 12 06 08 EA, WNA, H 18 2 05 04 ENA, H, E 20 12 06                        | OB ENA, WNA, H    |
| 20 9 06 24 EA, WNA, H 20 12 06 08 ENA, EA, H 20 9 06                        | 24 ENA, WNA, H    |
| 00 14 06 56 E, WNA, SAM 20 9 06 24 ENA, EA, H 20 5 07                       | 44 ENA, WNA, H    |
| 00 7 07 28 E, WNA, SAM 00 14 06 56 E, ENA, SAM 10 25 08                     | 00 E,ME,I         |
| 20 5 07 44 EA, WNA, H 00 7 07 28 E, ENA, SAM 98 22 08                       | 16 A              |
| 18 24 08 00 WNA,H 20 5 07 44 ENA,EA,H 28 20 08                              | 48 WNA,H,ENA      |
| 28 20 08 48 WNA,EA,H 18 24 08 00 ENA,H 10 14 09                             | 20 E.ME,I         |
| 00 4 09 04 E,WNA,ME 28 20 08 48 EA,H,ENA 98 1 09                            | 36 A              |
| 00 18 10 08 E,ME 00 4 09 04 E,ENA,ME 28 6 10                                | 08 WNA,H          |
| 08 24 10 56 E, WNA 28 6 10 08 EA, H 10 29 10                                | 24 E.ME.I         |
| 18 16 11 12 WNA 80 17 10 24 A,H 98 28 10                                    | 56 A,I            |
| 28 17 12 00 WNA,EA,H 08 24 10 56 E,ENA 98 25 11                             | 44 A,H            |
| 08 16 12 16 E,WNA 18 16 11 12 ENA 28 17 12                                  | 00 WNA,H,ENA      |
| 08 26 14 08 E,WNA 28 17 12 00 EA,H,ENA 10 18 12                             | 48 E              |
| 34 28 15 12 H, WNA, EA 08 16 12 16 E, ENA 98 29 13                          | 20 A,I            |
| 18 17 15 28 WNA, SAM 80 22 13 52 A, EA, H 10 19 13                          | 36 E,ME,I         |
| 19 9 15 44 WNA,E,SAM 08 26 14 08 E,ENA 80 22 13                             | 52 WNA,A,H        |
| 18 21 16 00 WNA,H 34 28 15 12 H,ENA,EA 10 27 14                             | 40 E,ME,I         |
| 68 12 16 16 SAM,E 18 17 15 28 ENA,SAM 34 28 15                              | 12 H, WNA, ENA    |
| 00 23 16 48 E,WNA 19 9 15 44 ENA,E,SAM 10 2 16                              | 32 E,ME,I         |
| 08 12 17 20 E, WNA, ME 18 21 16 00 ENA, H 98 14 17                          | 04 A              |
| 00 5 18 08 E,ME,SAM 00 23 16 48 E,ENA 98 31 17                              | 36 A,H            |
|                                                                             | 52 E,ME,I         |
|                                                                             | 40 ENA, WNA, H    |
|                                                                             | 56 H              |
|                                                                             | 12 E,I,ME         |
|                                                                             | 28 A              |
|                                                                             | OO WNA,ENA,H      |
|                                                                             | 32 E,ME,I         |
|                                                                             | 20 E,ME,I         |
| 68 31 23 44 SAM, WNA 68 31 23 44 ENA, SAM 28 18 22                          | 40 WNA, ENA, H    |
|                                                                             | 12 E,ME,I         |
| 98 26 23                                                                    | 28 A,I            |
| 10 6 23                                                                     | 44 E.ME.I         |

TABLE 11. SCHEDULE N° 24, 1994 DECEMBER 16 (CONT.)

| *** Hawaii |     | 11  | *** | *** Australia *** |       |     |     |    | *** India *** |       |     |     |     |           |
|------------|-----|-----|-----|-------------------|-------|-----|-----|----|---------------|-------|-----|-----|-----|-----------|
| Class      | PRN | Sta | rt  | Connects          | Class | PRN | Sta | rt | Connects      | Class | PRN | Sta | art | Connects  |
|            |     | h   | m   |                   |       |     | h   | m  |               |       |     | h   | m   |           |
| 18         | 19  | 01  | 04  | ENA, WNA          | F9    | 12  | 01  | 52 | Α             | 4C    | 23  | 01  | 04  | E,SAF,ME  |
| 18         | 27  | 01  | 20  | ENA, WNA, EA      | 98    | 9   | 02  | 24 | EA            | 10    | 17  | 01  | 36  | E,EA,ME   |
| 28         | 26  | 04  | 16  | WNA, EA           | 98    | 12  | 03  | 12 | EA            | 10    | 23  | 02  | 56  | E,EA,ME   |
| 18         | 2   | 05  | 04  | ENA, WNA, E       | 98    | 20  | 05  | 52 | EA            | BC    | 1   | 03  | 28  | ME, SAF   |
| 20         | 12  | 06  | 80  | ENA, EA, WNA      | F9    | 23  | 07  | 44 | Α             | 10    | 21  | 04  | 48  | E,EA,ME   |
| 20         | 9   | 06  | 24  | ENA, EA, WNA      | 98    | 22  | 80  | 16 | EA            | 10    | 1   | 05  | 36  | E,EA,ME   |
| 20         | 5   | 07  | 44  | ENA, EA, WNA      | 98    | 1   | 09  | 36 | EA            | 4C    | 15  | 07  | 44  | E,SAF,ME  |
| 18         | 24  | 08  | 00  | ENA, WNA          | 80    | 17  | 10  | 24 | WNA,H         | 10    | 25  | 08  | 00  | E,EA,ME   |
| 28         | 20  | 08  | 48  | WNA, EA, ENA      | 98    | 28  | 10  | 56 | EA,I          | 10    | 14  | 09  | 20  | E,EA,ME   |
| 28         | 6   | 10  | 80  | EA, WNA           | 98    | 25  | 11  | 44 | EA,H          | 10    | 29  | 10  | 24  | E,EA,ME   |
| 80         | 17  | 10  | 24  | WNA,A             | 98    | 29  | 13  | 20 | EA,I          | 98    | 28  | 10  | 56  | EA,A      |
| 98         | 25  | 11  | 44  | EA.A              | 80    | 22  | 13  | 52 | WNA, EA, H    | 98    | 29  | 13  | 20  | EA.A      |
| 28         | 17  | 12  | 00  | WNA, EA, ENA      | 98    | 14  | 17  | 04 | EA            | 10    | 19  | 13  | 36  | E,EA,ME   |
| 80         | 22  | 13  | 52  | WNA,A,EA          | 98    | 31  | 17  | 36 | EA,H          | 10    | 27  | 14  | 40  | E, EA, ME |
| 34         | 28  | 15  | 12  | WNA, ENA, EA      | F9    | 19  | 18  | 56 | Α             | 10    | 2   | 16  | 32  | E,EA,ME   |
| 18         | 21  | 16  | 00  | ENA, WNA          | 98    | 2   | 19  | 28 | EA            | 10    | 7   | 17  | 52  | E,EA,ME   |
| 98         | 31  | 17  | 36  | EA.A              | F9    | 27  | 20  | 32 | Α             | 10    | 4   | 19  | 12  | E,EA,ME   |
| 20         | 15  | 18  | 40  | EA, ENA, WNA      | 30    | 19  | 21  | 20 | Н             | 4C    | 12  | 20  | 16  | E,SAF,ME  |
| 36         | 14  | 18  | 56  | EA                | 98    | 26  | 23  | 28 | EA,I          | 10    | 24  | 20  | 32  | E,EA,ME   |
| 28         | 14  | 20  | 00  | EA, WNA, ENA      |       |     |     |    |               | 10    | 5   | 21  | 20  | E,EA,ME   |
| 3C         | 19  | 21  | 20  | Α                 |       |     |     |    |               | 10    | 16  | 23  | 12  | E,EA,ME   |
| 28         | 18  | 22  | 40  | EA,WNA,ENA        |       |     |     |    |               | 98    | 26  | 23  | 28  | EA.A      |
|            |     |     |     |                   |       |     |     |    |               | 10    | 6   | 23  | 44  | E, EA, ME |

TABLE 11. SCHEDULE N° 24, 1994 DECEMBER 16 (CONT.)

| ***   | Middi | le E | ast | ***             | ***   | Sou | th / | \fr | ica ***  | ***   | Sout | h Ar | neri | ca ***          |
|-------|-------|------|-----|-----------------|-------|-----|------|-----|----------|-------|------|------|------|-----------------|
| Class | PRN   | Sta  | rt  | Connects        | Class | PRN | Sta  | art | Connects | Class | PRN  | Sta  | rt   | Connects        |
|       |       | h    | m   |                 |       |     | h    | m   |          |       |      | h    | m    |                 |
| 4C    | 23    | 01   | 04  | E,SAF,I         | 4C    | 23  | 01   | 04  | E,ME,I   | 18    | 29   | 00   | 16   | ENA, WNA        |
| 10    | 17    | 01   | 36  | E,EA,I          | 4C    | 21  | 01   | 52  | E,ME     | 18    | 28   | 00   | 48   | ENA, WNA, E     |
| 4C    | 21    | 01   | 52  | E,SAF           | 4C    | 22  | 02   | 24  | E        | 68    | 18   | 02   | 80   | ENA, WNA        |
| 00    | 31    | 02   | 40  | E, ENA, WNA     | BC    | 1   | 03   | 28  | ME,I     | 80    | 15   | 04   | 00   | E, WNA, ENA     |
| 10    | 23    | 02   | 56  | E,EA,I          | 4C    | 31  | 05   | 52  | E        | 00    | 14   | 06   | 56   | E.ENA.WNA       |
| BC    | 1     | 03   | 28  | SAF,I           | CA    | 19  | 07   | 12  | SAM      | CA    | 19   | 07   | 12   | SAF             |
| 10    | 21    | 04   | 48  | E,EA,I          | 4C    | 15  | 07   | 44  | E,ME,I   | 00    | 7    | 07   | 28   | E, ENA, WNA     |
| 10    | 1     | 05   | 36  | E,EA,I          | 54    | 18  | 80   | 16  | E,SAM,ME | 54    | 18   | 08   | 16   | E,SAF,ME        |
| 4C    | 15    | 07   | 44  | E,SAF,I         | 4C    | 19  | 10   | 40  | E.ME     | F8    | 12   | 15   | 12   | SAM             |
| 10    | 25    | 08   | 00  | E,EA,I          | BC    | 14  | 10   | 56  | ME       | 18    | 17   | 15   | 28   | ENA, WNA        |
| 54    | 18    | 80   | 16  | E,SAM,SAF       | BC    | 4   | 11   | 28  | ME       | 19    | 9    | 15   | 44   | ENA, WNA, E     |
| 00    | 4     | 09   | 04  | E, ENA, WNA     | BC    | 7   | 15   | 12  | ME       | 68    | 12   | 16   | 16   | ENA,E           |
| 10    | 14    | 09   | 20  | E,EA,I          | BC    | 9   | 20   | 00  | ME,E     | 00    | 5    | 18   | 80   | E, ENA, ME      |
| 00    | 18    | 10   | 80  | E,ENA           | 4C    | 12  | 20   | 16  | E,ME,I   | 19    | 20   | 19   | 28   | ENA, WNA, E, ME |
| 10    | 29    | 10   | 24  | E,EA,I          |       |     |      |     |          | 7C    | 1    | 19   | 44   | WNA, E, ENA     |
| 4C    | 19    | 10   | 40  | E,SAF           |       |     |      |     |          | 68    | 31   | 23   | 44   | ENA, WNA        |
| BC    | 14    | 10   | 56  | SAF             |       |     |      |     |          |       |      |      |      |                 |
| BC    | 4     | 11   | 28  | SAF             |       |     |      |     |          |       |      |      |      |                 |
| 10    | 19    | 13   | 36  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 10    | 27    | 14   | 40  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| BC    | 7     | 15   | 12  | SAF             |       |     |      |     |          |       |      |      |      |                 |
| 10    | 2     | 16   | 32  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 80    | 12    | 17   | 20  | E, WNA, ENA     |       |     |      |     |          |       |      |      |      |                 |
| 10    | 7     | 17   | 52  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 00    | 5     | 18   | 80  | E, ENA, SAM     |       |     |      |     |          |       |      |      |      |                 |
| 10    | 4     | 19   | 12  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 19    | 20    | 19   | 28  | ENA, WNA, E, SA | M     |     |      |     |          |       |      |      |      |                 |
| BC    | 9     | 20   | 00  | SAF,E           |       |     |      |     |          |       |      |      |      |                 |
| 4C    | 12    | 20   | 16  | E,SAF,I         |       |     |      |     |          |       |      |      |      |                 |
| 10    | 24    | 20   | 32  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 00    | 6     | 21   | 04  | E, ENA          |       |     |      |     |          |       |      |      |      |                 |
| 10    | 5     | 21   |     | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 10    | 16    | 23   | 12  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
| 00    | 22    | 23   | 28  | E, ENA, WNA     |       |     |      |     |          |       |      |      |      |                 |
| 10    | 6     | 23   | 44  | E,EA,I          |       |     |      |     |          |       |      |      |      |                 |
|       |       |      |     |                 |       |     |      |     |          |       |      |      |      |                 |

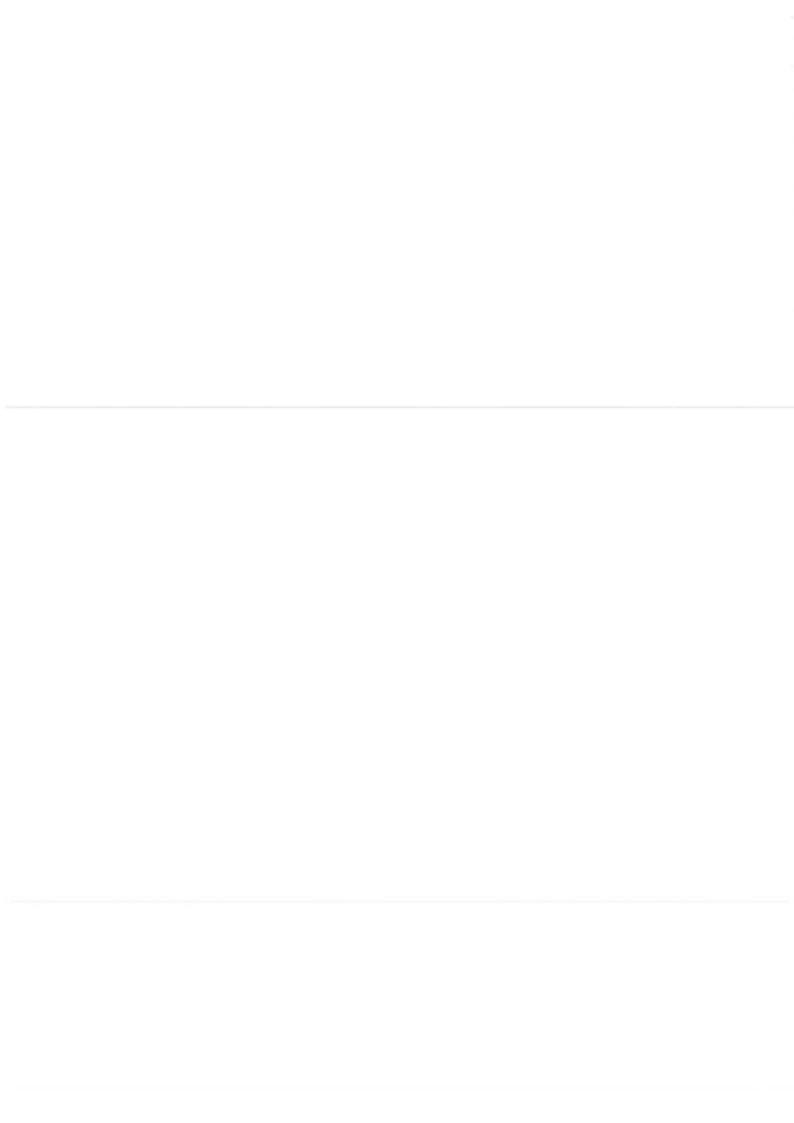



TABLE 12. [TAI - GPS time] AND [UTC - GPS time]

(FILE AVAILABLE VIA INTERNET UNDER THE NAME UTCGPS94.AR)

The GPS satellites disseminate a common time scale designated as 'GPS time'. The relation between GPS time and TAI is:

[TAI - GPS time] = 19 s + CO.

where the time difference of 19 seconds is kept constant and CO is a quantity of the order of a few hundreds of nanoseconds, varying with time.

The relation between GPS time and UTC involves a variable number of seconds as a consequence of the leap seconds of the UTC system and is as follows:

from 1993 July 1. Oh UTC, until 1994 July 1. Oh UTC:

[UTC - GPS time] = -9 s + C0

from 1994 July 1, Oh UTC, until further notice:

[UTC - GPS time] = -10 s + CO.

Here CO is given at Oh UTC every day.

CO is computed as follows: the GPS data taken at the Paris Observatory, from satellites with highest elevation, are first corrected for precise satellite ephemerides and for measured ionospheric delays, and then smoothed to obtain daily values of [UTC(OP) - GPS time] at Oh UTC. Daily values of CO are derived from them using linear interpolation of [UTC - UTC(OP)] from Table 9.

For a given day, where N measurements are used for estimation of CO : - the dispersion of individual measurements is characterized by a standard deviation  $\sigma_{\rm c}$ 

- the daily CO value is characterized by the standard deviation of the mean  $\sigma/\sqrt{N}$  .

TABLE 12. (CONT.)

| Date           |       |                                        |               |          |
|----------------|-------|----------------------------------------|---------------|----------|
| 1994           | MJD   | CO                                     | σ             | σ/√N     |
| Oh UTC         |       | (ns)                                   | (ns)          | (ns)     |
| .5             |       | ••••••                                 |               |          |
| Jan 1          | 49353 | 89                                     | 34            | 7        |
| Jan 2          | 49354 | 86                                     | 31            | 7        |
| Jan 3          | 49355 | 93                                     | 51            | 11       |
| Jan 4          | 49356 | 100                                    | 30            | 6        |
| Jan 5          | 49357 | 102                                    | 40            | 9        |
| Jan 6          | 49358 | 101                                    | 46            | 10       |
| Jan 7          | 49359 | 101                                    | 43            | 9        |
| Jan 8          | 49360 | 101                                    | 42            | 9        |
| Jan 9          | 49361 | 98                                     | 45            | 10       |
| Jan 10         | 49362 | 96                                     | 23            | 5        |
|                |       |                                        | <u>-</u> _    |          |
| Jan 11         | 49363 | 97                                     | 49            | 11       |
| Jan 12         | 49364 | 98                                     | 29            | 6        |
| Jan 13         | 49365 | 95                                     | 31            | 7        |
| Jan 14         | 49366 | 103                                    | 54            | 11       |
| Jan 15         | 49367 | 111                                    | 27            | 6        |
| Jan 16         | 49368 | 107                                    | 37            | 8        |
| Jan 17         | 49369 | 104                                    | 45            | 10       |
| Jan 18         | 49370 | 110                                    | 37            | 8        |
| Jan 19         | 49371 | 111                                    | 40            | 9        |
| Jan 20         | 49372 | 105                                    | 50            | 11       |
|                |       |                                        |               |          |
| Jan 21         | 49373 | 100                                    | 34            | 7        |
| Jan 22         | 49374 | 100                                    | 37            | 8        |
| Jan 23         | 49375 | 104                                    | 56            | 12       |
| Jan 24         | 49376 | 104                                    | 47            | 10       |
| Jan 25         | 49377 | 101                                    | 44            | 10       |
| Jan 26         | 49378 | 98                                     | 50            | 11       |
| Jan 27         | 49379 | 100                                    | 33            | 7        |
| Jan 28         | 49380 | 107                                    | 38            | 8        |
| Jan 29         | 49381 | 112                                    | 45            | 10       |
| Jan 30         | 49382 | 113                                    | 60            | 13       |
| 1-10001 301 17 |       | ************************************** | Leville, Dold | totomes* |
| Jan 31         | 49383 | 111                                    | 47            | 10       |
|                |       |                                        |               |          |

TABLE 12. (CONT.)

| Date    | MID   | 00   | _    | - / fN |
|---------|-------|------|------|--------|
| 1994    | MJD   | CO   | σ    | σ/√N   |
| Oh UTC  |       | (ns) | (ns) | (ns)   |
| Feb 1   | 49384 | 113  | 36   | 8      |
| Feb 2   | 49385 | 114  | 37   | 8      |
| Feb 3   | 49386 | 113  | 37   | 9      |
| Feb 4   | 49387 | 109  | 44   | 9      |
| Feb 5   | 49388 | 104  | 49   | 10     |
| Feb 6   | 49389 | 100  | 34   | 7      |
| Feb 7   | 49390 | 96   | 36   | 8      |
| Feb 8   | 49391 | 90   | 38   | 9      |
| Feb 9   | 49392 | 89   | 37   | 8      |
| Feb 10  | 49393 | 93   | 35   | 8      |
| Feb 11  | 49394 | 96   | 37   | 8      |
| Feb 12  | 49395 | 90   | 43   | 9      |
| Feb 13  | 49396 | 87   | 33   | 7      |
| Feb 14  | 49397 | 96   | 45   | 10     |
| Feb 15  | 49398 | 108  | 53   | 11     |
| Feb 16  | 49399 | 110  | 35   | 8      |
| Feb 17  | 49400 | 107  | 52   | 11     |
| Feb 18  | 49401 | 105  | 43   | 9      |
| Feb 19  | 49402 | 104  | 34   | 7      |
| Feb 20  | 49403 | 104  | 35   | 8      |
| Feb 21  | 49404 | 103  | 48   | 10     |
| Feb 22  | 49405 | 105  | 42   | 9      |
| Feb 23  | 49406 | 107  | 38   | 8      |
| Feb 24  | 49407 | 103  | 46   | 10     |
| Feb 25  | 49408 | 99   | 42   | 9      |
| Feb 26  | 49409 | 94   | 24   | 5      |
| Feb 27  | 49410 | 91   | 52   | 12     |
| Feb 28  | 49411 | 90   | 40   | 9      |
| 1 ED 50 | 42411 | 30   | 40   | 3      |

TABLE 12. (CONT.)

| Dat<br>199<br>0h l | 94       | MJD            | CO<br>(ns) | σ<br>(ns) | σ/√N<br>(ns) |
|--------------------|----------|----------------|------------|-----------|--------------|
| Mar                | 1        | 49412          | 86         | 45        | 10           |
| Mar                | 2        | 49413          | 85         | 34        | 8            |
| Mar                | 3        | 49414          | 93         | 45        | 10           |
| Mar                | 4        | 49415          | 100        | 38        | 9            |
| Mar                | 5        | 49416          | 101        | 46        | 10           |
| Mar                | 6        | 49417          | 100        | 44        | 10           |
| Mar                | 7        | 49418          | 100        | 37        | 8            |
| Mar                | 8        | 49419          | 95         | 38        | 8            |
| Mar                | 9        | 49420          | 88         | 30        | 7            |
| Mar                | 10       | 49421          | 84         | 37        | 8            |
|                    |          |                |            |           | _            |
| Mar                | 11       | 49422          | 84         | 34        | 8            |
| Mar                | 12       | 49423          | 82         | 38        | 8            |
| Mar                | 13       | 49424          | 80         | 33        | 8            |
| Mar                | 14       | 49425          | 77         | 29        | 6            |
| Mar                | 15       | 49426          | 77         | 39        | 9            |
| Mar                | 16       | 49427          | 77         | -         | - 10         |
| Mar                | 17       | 49428          | 77         | 49        | 13           |
| Mar<br>Mar         | 18<br>19 | 49429          | 79         | 53        | 12           |
| Mar                | 20       | 49430<br>49431 | 82<br>83   | 38<br>37  | 9<br>9       |
| mar                | 20       | 49431          | 03         | 3/        | 9            |
| Mar                | 21       | 49432          | 82         | 39        | 9            |
| Mar                | 22       | 49433          | 76         | 42        | 9            |
| Mar                | 23       | 49434          | 67         | 44        | 10           |
| Mar                | 24       | 49435          | 64         | 34        | 7            |
| Mar                | 25       | 49436          | 66         | 42        | 9            |
| Mar                | 26       | 49437          | 65         | 47        | 10           |
| Mar                | 27       | 49438          | 61         | 34        | 7            |
| Mar                | 28       | 49439          | 61         | 51        | 11           |
| Mar                |          | 49440          | 61         | 31        | 7            |
| Mar                |          | 49441          | 60         | 48        | 11           |
| Mar                | 31       | 49442          | 63         | 40        | 10           |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTC | MJD            | CO<br>(ns) | σ<br>(ns) | σ/√N<br>(ns) |
|------------------------|----------------|------------|-----------|--------------|
| Apr 1                  | 49443          | 70         | 44        | 11           |
| Apr 2                  | 49444          | 73         | 41        | 10           |
| Apr 3                  | 49445          | 73         | 50        | 12           |
| Apr 4                  | 49446          | 75         | 42        | 11           |
| Apr 5                  | 49447          | 80         | 53        | 13           |
| Apr 6                  | 49448          | 81         | 40        | 10           |
| Apr 7                  | 49449          | 80         | 37        | 10           |
| Apr 8                  | 49450          | 83         | 48        | 12           |
| Apr 9                  | 49451          | 91         | 45        | 12           |
| Apr 10                 | 49452          | 101        | 46        | 11           |
| A 11                   | 40450          | 104        | 20        | 1.0          |
| Apr 11                 | 49453          | 104        | 39        | 10           |
| Apr 12                 | 49454          | 96         | 34        | 9            |
| Apr 13<br>Apr 14       | 49455<br>49456 | 92<br>96   | 42<br>35  | 11<br>9      |
| Apr 14<br>Apr 15       | 49456          | 96<br>97   | 29        | 7            |
| Apr 16                 | 49458          | 97<br>97   | 38        | 9            |
| Apr 17                 | 49459          | 97         | 45        | 11           |
| Apr 18                 | 49460          | 90         | 39        | 10           |
| Apr 19                 | 49461          | 81         | 20        | 5            |
| Apr 20                 | 49462          | 76         | 42        | 10           |
|                        |                | . •        |           |              |
| Apr 21                 | 49463          | 75         | 45        | 11           |
| Apr 22                 | 49464          | 75         | 50        | 12           |
| Apr 23                 | 49465          | 72         | 47        | 11           |
| Apr 24                 | 49466          | 70         | 50        | 12           |
| Apr 25                 | 49467          | 75         | 48        | 11           |
| Apr 26                 | 49468          | 79         | 43        | 11           |
| Apr 27                 | 49469          | 73         | 42        | 10           |
| Apr 28                 | 49470          | 66         | 30        | 6            |
| Apr 29                 | 49471          | 67         | 22        | 4            |
| Apr 30                 | 49472          | 71         | 33        | 7            |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTC                                                | MJD                                                                                    | CO<br>(ns)                                           | σ<br>(ns)                                                | σ/√N<br>(ns)                                    |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|
| May 1 May 2 May 3 May 4 May 5 May 6 May 7 May 8 May 9 May 10          | 49473<br>49474<br>49475<br>49476<br>49477<br>49478<br>49479<br>49480<br>49481<br>49482 | 74<br>74<br>73<br>78<br>80<br>83<br>87<br>88<br>91   | 33<br>35<br>52<br>27<br>33<br>41<br>34<br>37<br>41<br>36 | 7<br>8<br>11<br>6<br>7<br>9<br>8<br>8<br>9      |
| May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 | 49483<br>49484<br>49485<br>49486<br>49487<br>49488<br>49489<br>49490<br>49491<br>49492 | 108<br>104<br>95<br>95<br>99<br>97<br>88<br>81<br>78 | 45<br>30<br>29<br>22<br>33<br>42<br>31<br>26<br>34<br>40 | 10<br>6<br>7<br>5<br>7<br>9<br>7<br>6<br>7      |
| May 21 May 22 May 23 May 24 May 25 May 26 May 27 May 28 May 29 May 30 | 49493<br>49494<br>49495<br>49496<br>49497<br>49498<br>49499<br>49500<br>49501<br>49502 | 81<br>83<br>80<br>75<br>74<br>74<br>74<br>79<br>87   | 26<br>32<br>16<br>27<br>27<br>31<br>34<br>18<br>50<br>36 | 6<br>7<br>3<br>6<br>6<br>7<br>7<br>4<br>11<br>8 |
| May 31                                                                | 49503                                                                                  | 93                                                   | 33                                                       | 7                                               |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTC                                                                           | MJD                                                                                    | CO<br>(ns)                                              | σ<br>(ns)                                                | σ/√N<br>(ns)                                   |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| Jun 1 Jun 2 Jun 3 Jun 4 Jun 5 Jun 6 Jun 7 Jun 8 Jun 9 Jun 10                                     | 49504<br>49505<br>49506<br>49507<br>49508<br>49509<br>49510<br>49511<br>49512          | 91<br>95<br>97<br>99<br>101<br>101<br>101<br>106<br>110 | 23<br>38<br>33<br>36<br>40<br>42<br>30<br>28<br>27<br>24 | 5<br>8<br>7<br>8<br>9<br>9<br>6<br>6<br>5<br>5 |
| Jun 11<br>Jun 12<br>Jun 13<br>Jun 14<br>Jun 15<br>Jun 16<br>Jun 17<br>Jun 18<br>Jun 19<br>Jun 20 | 49514<br>49515<br>49516<br>49517<br>49518<br>49519<br>49520<br>49521<br>49522<br>49523 | 109<br>99<br>86<br>78<br>74<br>73<br>73<br>74<br>74     | 28<br>40<br>35<br>28<br>28<br>34<br>29<br>33<br>22<br>37 | 6<br>8<br>7<br>6<br>6<br>7<br>6<br>7<br>5<br>8 |
| Jun 21<br>Jun 22<br>Jun 23<br>Jun 24<br>Jun 25<br>Jun 26<br>Jun 27<br>Jun 28<br>Jun 29<br>Jun 30 | 49524<br>49525<br>49526<br>49527<br>49528<br>49529<br>49530<br>49531<br>49532<br>49533 | 68<br>67<br>65<br>60<br>60<br>60<br>55<br>51            | 36<br>27<br>27<br>30<br>49<br>18<br>29<br>26<br>22<br>57 | 8<br>6<br>6<br>10<br>4<br>7<br>6<br>6<br>20    |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTC                                                | MJD                                                                                    | CO<br>(ns)                                               | σ<br>(ns)                                                | σ/√N<br>(ns)                                       |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Jul 1 Jul 2 Jul 3 Jul 4 Jul 5 Jul 6 Jul 7 Jul 8 Jul 9 Jul 10          | 49534<br>49535<br>49536<br>49537<br>49538<br>49539<br>49540<br>49541<br>49542<br>49543 | 52<br>52<br>46<br>45<br>48<br>55<br>59<br>56<br>57<br>64 | 34<br>40<br>43<br>60<br>44<br>39<br>45<br>41<br>45       | 9<br>10<br>10<br>14<br>9<br>9<br>12<br>10<br>10    |
| Jul 11 Jul 12 Jul 13 Jul 14 Jul 15 Jul 16 Jul 17 Jul 18 Jul 19 Jul 20 | 49544<br>49545<br>49546<br>49547<br>49548<br>49550<br>49551<br>49552<br>49553          | 70<br>70<br>69<br>69<br>71<br>75<br>75<br>70<br>66       | 31<br>33<br>46<br>47<br>59<br>44<br>53<br>36<br>37<br>40 | 7<br>7<br>11<br>11<br>14<br>10<br>13<br>9<br>9     |
| Jul 21 Jul 22 Jul 23 Jul 24 Jul 25 Jul 26 Jul 27 Jul 28 Jul 29 Jul 30 | 49554<br>49555<br>49556<br>49557<br>49558<br>49559<br>49560<br>49561<br>49562<br>49563 | 63<br>52<br>44<br>46<br>54<br>52<br>39<br>27<br>24<br>28 | 51<br>39<br>40<br>41<br>41<br>51<br>60<br>39<br>38<br>44 | 13<br>12<br>10<br>10<br>15<br>18<br>19<br>12<br>12 |
| Jul 31                                                                | 49564                                                                                  | 31                                                       | 32                                                       | 7                                                  |

TABLE 12. (CONT.)

| Date   |       |      |      |      |
|--------|-------|------|------|------|
| 1994   | MJD   | CO   | σ    | σ/√N |
| Oh UTC |       | (ns) | (ns) | (ns) |
|        |       |      |      |      |
| Aug 1  | 49565 | 31   | 39   | 8    |
| Aug 2  | 49566 | 33   | 39   | 8    |
| Aug 3  | 49567 | 33   | 38   | 8    |
| Aug 4  | 49568 | 35   | 40   | 11   |
| Aug 5  | 49569 | 40   | 44   | 10   |
| Aug 6  | 49570 | 40   | 48   | 10   |
| Aug 7  | 49571 | 41   | 36   | 8    |
| Aug 8  | 49572 | 43   | 41   | 9    |
| Aug 9  | 49573 | 44   | 42   | 9    |
| Aug 10 | 49574 | 41   | 42   | 9    |
|        |       |      |      |      |
| Aug 11 | 49575 | 37   | 50   | 11   |
| Aug 12 | 49576 | 39   | 41   | 9    |
| Aug 13 | 49577 | 42   | 61   | 13   |
| Aug 14 | 49578 | 38   | 54   | 12   |
| Aug 15 | 49579 | 33   | 48   | 10   |
| Aug 16 | 49580 | 28   | 45   | 10   |
| Aug 17 | 49581 | 20   | 62   | 13   |
| Aug 18 | 49582 | 11   | 31   | 7    |
| Aug 19 | 49583 | 10   | 37   | 8    |
| Aug 20 | 49584 | 10   | 38   | 8    |
|        |       |      |      |      |
| Aug 21 | 49585 | 13   | 43   | 9    |
| Aug 22 | 49586 | 17   | 42   | 9    |
| Aug 23 | 49587 | 19   | 35   | 8    |
| Aug 24 | 49588 | 22   | 39   | 8    |
| Aug 25 | 49589 | 25   | 42   | 9    |
| Aug 26 | 49590 | 21   | 60   | 13   |
| Aug 27 | 49591 | 20   | 42   | 9    |
| Aug 28 | 49592 | 19   | 43   | 10   |
| Aug 29 | 49593 | 14   | 46   | 10   |
| Aug 30 | 49594 | 8    | 46   | 10   |
|        |       |      |      |      |
| Aug 31 | 49595 | 3    | 57   | 12   |

TABLE 12. (CONT.)

| Date   |       |      |      |      |
|--------|-------|------|------|------|
| 1994   | MJD   | CO   | σ    | σ/√N |
| Oh UTC |       | (ns) | (ns) | (ns) |
|        |       | J09  |      |      |
| Sep 1  | 49596 | -1   | 37   | 8    |
| Sep 2  | 49597 | -3   | 44   | 9    |
| Sep 3  | 49598 | - 2  | 61   | 13   |
| Sep 4  | 49599 | -1   | 41   | 9    |
| Sep 5  | 49600 | 2    | 39   | 8    |
| Sep 6  | 49601 | 6    | 33   | 7    |
| Sep 7  | 49602 | 9    | 49   | 10   |
| Sep 8  | 49603 | 11   | 49   | 10   |
| Sep 9  | 49604 | 14   | 64   | 13   |
| Sep 10 | 49605 | 16   | 46   | 10   |
| C 11   | 40000 | 1.4  | 22   | 7    |
| Sep 11 | 49606 | 14   | 33   | 7    |
| Sep 12 | 49607 | 9    | 48   | 10   |
| Sep 13 | 49608 | 2    | 34   | 7    |
| Sep 14 | 49609 | - 4  | 39   | 8    |
| Sep 15 | 49610 | - 4  | 46   | 10   |
| Sep 16 | 49611 | -1   | 45   | 10   |
| Sep 17 | 49612 | 1    | 24   | 5    |
| Sep 18 | 49613 | 2    | 7    | 1    |
| Sep 19 | 49614 | 2    | 9    | 2    |
| Sep 20 | 49615 | 2    | 10   | 2    |
| Sep 21 | 49616 | 7    | 9    | 2    |
| Sep 22 | 49617 | 12   | 10   | 2    |
| Sep 23 | 49618 | 14   | 8    | 2    |
| Sep 24 | 49619 | 15   | 35   | 7    |
| Sep 25 | 49620 | 17   | 47   | 10   |
| Sep 26 | 49621 | 15   | 52   | 11   |
| Sep 27 | 49622 | 7    | 36   | 8    |
| Sep 28 | 49623 | -1   | 61   | 13   |
| Sep 29 | 49624 | 2    | 33   | 10   |
| Sep 30 | 49625 | 12   | 65   | 22   |
| 3-P 30 |       |      |      | -    |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTC                                                                           | MJD                                                                                    | CO<br>(ns)                                        | σ<br>(ns)                                                | σ/√N<br>(ns)                                    |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|
| Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 Oct 8 Oct 9 Oct 10                                     | 49626<br>49627<br>49628<br>49629<br>49630<br>49631<br>49632<br>49633<br>49634<br>49635 | 18<br>16<br>8<br>-2<br>-7<br>-3<br>8<br>12<br>9   | 26<br>37<br>81<br>26<br>73<br>50<br>45<br>50<br>38<br>43 | 8<br>12<br>31<br>8<br>28<br>13<br>10<br>11<br>8 |
| Oct 11<br>Oct 12<br>Oct 13<br>Oct 14<br>Oct 15<br>Oct 16<br>Oct 17<br>Oct 18<br>Oct 19<br>Oct 20 | 49636<br>49637<br>49638<br>49639<br>49640<br>49641<br>49642<br>49643<br>49644<br>49645 | 2<br>0<br>3<br>1<br>-8<br>-12<br>-7<br>-4<br>-4   | 46<br>54<br>38<br>45<br>40<br>47<br>43<br>44<br>38       | 10<br>12<br>8<br>10<br>8<br>10<br>10<br>9<br>8  |
| Oct 21<br>Oct 22<br>Oct 23<br>Oct 24<br>Oct 25<br>Oct 26<br>Oct 27<br>Oct 28<br>Oct 29<br>Oct 30 | 49646<br>49647<br>49648<br>49649<br>49650<br>49651<br>49652<br>49653<br>49654<br>49655 | 7<br>14<br>15<br>15<br>15<br>20<br>24<br>23<br>21 | 33<br>36<br>40<br>35<br>52<br>52<br>40<br>45<br>53<br>46 | 7<br>7<br>8<br>7<br>11<br>11<br>9<br>9<br>11    |
| Oct 31                                                                                           | 49656                                                                                  | 22                                                | 43                                                       | 9                                               |

TABLE 12. (CONT.)

| Date<br>1994<br>Oh UTO                                                        | MJD                                                                              | CO<br>(ns)                                               | σ<br>(ns)                                                | σ/√N<br>(ns)                                 |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| Nov 1<br>Nov 2<br>Nov 3<br>Nov 4<br>Nov 5<br>Nov 6<br>Nov 7<br>Nov 8<br>Nov 9 | 2 49658<br>49659<br>49660<br>6 49661<br>6 49662<br>7 49663<br>8 49664<br>9 49665 | 22<br>20<br>20<br>20<br>18<br>20<br>20<br>19<br>13       | 43<br>49<br>37<br>52<br>38<br>45<br>42<br>42<br>26<br>54 | 9<br>10<br>8<br>11<br>8<br>10<br>9<br>9<br>5 |
| Nov 12<br>Nov 12<br>Nov 14<br>Nov 15<br>Nov 16<br>Nov 17<br>Nov 18<br>Nov 19  | 49668<br>49669<br>49670<br>49671<br>49672<br>49673<br>49674<br>49675             | 16<br>17<br>12<br>8<br>10<br>13<br>12<br>11<br>18<br>24  | 42<br>40<br>45<br>35<br>39<br>34<br>36<br>34<br>30<br>50 | 9<br>8<br>9<br>8<br>7<br>8<br>7<br>6         |
| Nov 21<br>Nov 22<br>Nov 24<br>Nov 25<br>Nov 26<br>Nov 27<br>Nov 28<br>Nov 30  | 2 49678<br>49679<br>49680<br>6 49681<br>6 49682<br>7 49683<br>49684<br>49685     | 24<br>21<br>22<br>29<br>35<br>35<br>33<br>34<br>37<br>39 | 42<br>60<br>36<br>35<br>38<br>38<br>44<br>47<br>35<br>33 | 9<br>13<br>7<br>8<br>8<br>8<br>9<br>10<br>7  |

TABLE 12. (CONT.)

| Date   |       |      |      | _    |
|--------|-------|------|------|------|
| 1994   | MJD   | CO   | σ    | σ/√N |
| Oh UTC |       | (ns) | (ns) | (ns) |
| Dec 1  | 49687 | 36   | 41   | 9    |
| Dec 2  | 49688 | 31   | 38   | 8    |
| Dec 3  | 49689 | 32   | 39   | 8    |
| Dec 4  | 49690 | 38   | 41   | 9    |
| Dec 5  | 49691 | 38   | 39   | 8    |
| Dec 6  | 49692 | 32   | 33   | 7    |
| Dec 7  | 49693 | 24   | 43   | 9    |
| Dec 8  | 49694 | 19   | 45   | 10   |
| Dec 9  | 49695 | 19   | 50   | 11   |
| Dec 10 | 49696 | 23   | 55   | 12   |
| Dec 11 | 49697 | 27   | 32   | 7    |
| Dec 12 | 49698 | 28   | 44   | 9    |
| Dec 13 | 49699 | 33   | 42   | 9    |
| Dec 14 | 49700 | 37   | 36   | 8    |
| Dec 15 | 49701 | 29   | 34   | 12   |
| Dec 16 | 49702 | 28   | 42   | 11   |
| Dec 17 | 49703 | 27   | 32   | 7    |
| Dec 18 | 49704 | 28   | 42   | 9    |
| Dec 19 | 49705 | 34   | 35   | 7    |
| Dec 20 | 49706 | 40   | 43   | 10   |
| Dec 21 | 49707 | 45   | 36   | 8    |
| Dec 22 | 49708 | 55   | 44   | 9    |
| Dec 23 | 49709 | 73   | 42   | 9    |
| Dec 23 | 49709 | 74   | 42   | 9    |
| Dec 24 | 49710 | 93   | 35   | 7    |
| Dec 25 | 49711 | 106  | 37   | 8    |
| Dec 26 | 49712 | 118  | 52   | 11   |
| Dec 27 | 49713 | 130  | 33   | 7    |
| Dec 28 | 49714 | 141  | 32   | 7    |
| Dec 29 | 49715 | 152  | 49   | 11   |
| Dec 30 | 49716 | 166  | 45   | 11   |
| Dec 31 | 49717 | 181  | 47   | 11   |

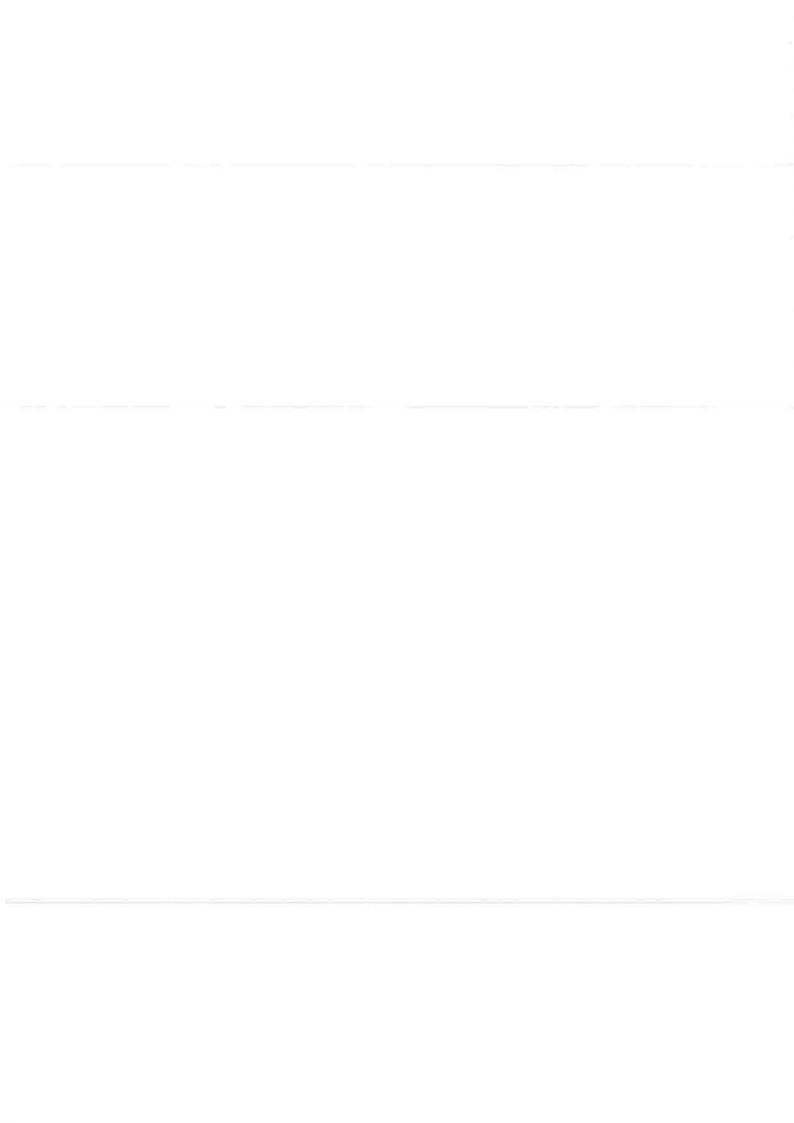



TABLE 13. [UTC - GLONASS time]

(File available via INTERNET under the name UTCGL094.AR)

The GLONASS satellites disseminate a common time scale designated as 'GLONASS time'. The relation between UTC and GLONASS time can be written as:

[UTC - GLONASS time] = C1 (modulo 1 s).

From his current observation of both the GPS and GLONASS satellite systems Prof. P. Daly, University of Leeds, establishes and reports EGPS time - GLONASS time] at ten-day intervals, together with the standard deviation  $\sigma$  of his daily GLONASS data. C1 is then derived using [UTC - GPS time] of Table 12.

| Dat<br>199<br>0h U | 4  | MJD   | C1<br>(µs) | σ<br>(μs) |
|--------------------|----|-------|------------|-----------|
| Jan                | 7  | 49359 | -18.95     | 0.05      |
| Jan                | 17 | 49369 | -18.84     | 0.04      |
| Jan                | 27 | 49379 | -18.74     | 0.03      |
| Feb                | 6  | 49389 | -18.62     | 0.04      |
| Feb                | 16 | 49399 | -18.52     | 0.04      |
| Feb                | 26 | 49409 | -18.44     | 0.04      |
| Mar                | 8  | 49419 | -18.33     | 0.04      |
| Mar                | 18 | 49429 | -18.21     | 0.04      |
| Mar                | 28 | 49439 | -18.12     | 0.04      |
| Apr                | 7  | 49449 | -18.03     | 0.04      |
| Apr                | 17 | 49459 | -17.90     | 0.04      |
| Apr                | 27 | 49469 | -17.81     | 0.04      |
| May                | 7  | 49479 | -17.70     | 0.03      |
| May                | 17 | 49489 | -17.57     | 0.03      |
| May                | 27 | 49499 | -17.46     | 0.04      |
| Jun                | 6  | 49509 | -17.36     | 0.07      |
| Jun                | 16 | 49519 | -17.24     | 0.04      |
| Jun                | 26 | 49529 | -17.14     | 0.03      |
| Jul                | 6  | 49539 | -17.04     | 0.03      |
| Jul                | 16 | 49549 | -16.91     | 0.03      |
| Jul                | 26 | 49559 | -16.85     | 0.07      |
| Aug                | 5  | 49569 | -16.73     | 0.04      |
| Aug                | 15 | 49579 | -16.67     | 0.04      |
| Aug                | 25 | 49589 | -16.55     | 0.03      |
| Sep                | 4  | 49599 | -16.45     | 0.03      |
| Sep                | 14 | 49609 | -16.35     | 0.04      |
| Sep                | 24 | 49619 | -16.22     | 0.05      |
| 0ct                | 4  | 49629 | -16.16     | 0.04      |
| 0ct                | 14 | 49639 | -16.06     | 0.04      |
| 0ct                | 24 | 49649 | -15.97     | 0.04      |
| Nov                | 3  | 49659 | -15.89     | 0.03      |
| Nov                | 13 | 49669 | -15.75     | 0.03      |
| Nov                | 23 | 49679 | -15.65     | 0.04      |
| Dec                | 3  | 49689 | -15.61     | 0.04      |
| Dec                | 13 | 49699 | -15.60     | 0.04      |
| Dec                | 23 | 49709 | -15.56     | 0.03      |

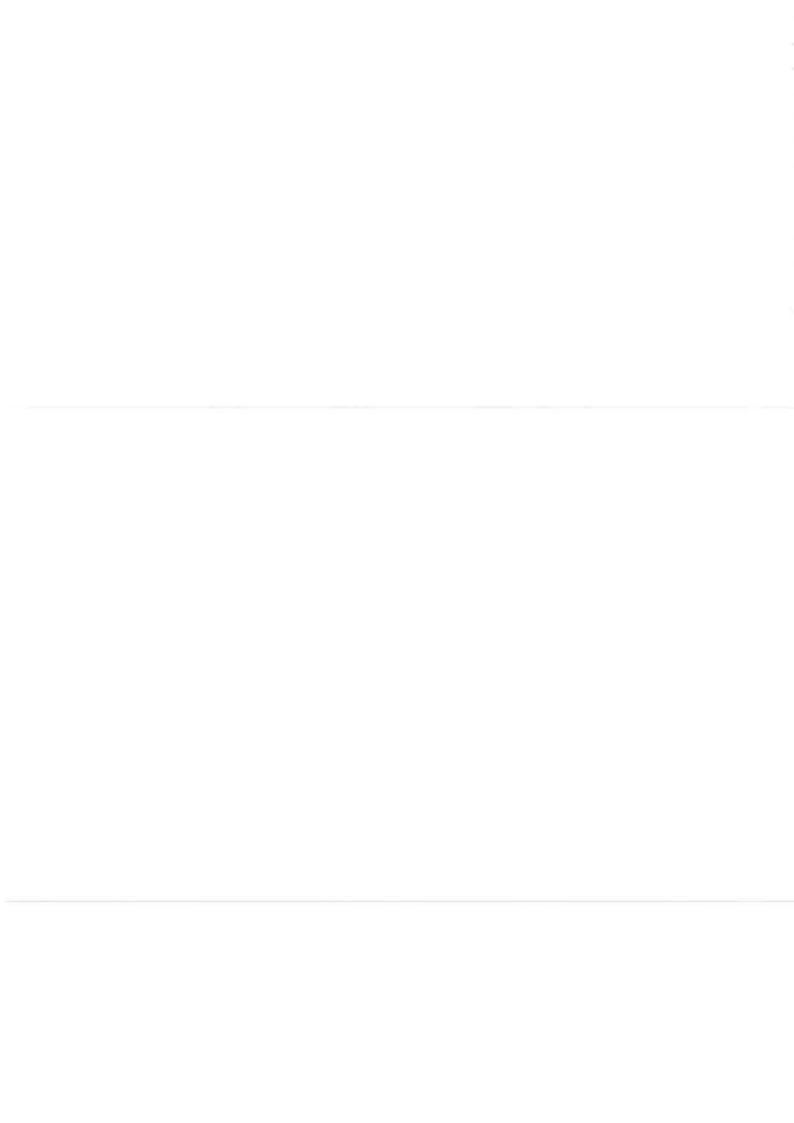



TABLE 14A. RATES RELATIVE TO TAI OF CONTRIBUTING CLOCKS IN 1994

(FILE AVAILABLE VIA INTERNET UNDER THE NAME RTAI94.AR)

Mean clock rates relative to TAI are computed for two-month intervals ending at the dates given in the table.

When an intentional frequency adjustment has been applied to a clock, the data prior to this adjustment are corrected, so that Table 14A gives homogeneous rates for the whole year 1994. For studies including the clock rates of previous years, corrections must be brought to the data published in the Annual Reports for 1988, 1989, 1990, 1991, 1992 and 1993 and in the BIH Annual Reports for the previous years. These corrections are given in Table 14B.

Unit is ns/day, \*\*\* denotes that the clock was not used.

| LAB.                            | CLOCK                                               | 49409                                          | 49469                                          | 49529                                        | 49589                                        | 49649                                        | 49709                                        |
|---------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| AOS<br>APL<br>APL<br>APL        | 23 67<br>14 793<br>31 571<br>40 3101<br>40 3102     | 5.45<br>-7.84<br>-3.79<br>5.07<br>7.17         | -16.07<br>-8.86<br>1.38<br>-5.02<br>-4.12      | 16.35<br>6.17<br>9.95<br>4.86<br>3.67        | -2.26<br>10.60<br>8.50<br>-2.59<br>-9.51     | 2.45<br>11.21<br>11.07<br>-4.37<br>-5.36     | 8.32<br>2.84<br>11.31<br>0.85                |
| APL<br>AUS<br>AUS<br>AUS<br>AUS | 40 3106<br>12 1708<br>14 1443<br>14 2010<br>14 2020 | 8.75<br>***<br>***<br>-112.85<br>***           | -1.09<br>29.33<br>-229.10<br>-110.81<br>-38.97 | -0.05<br>31.07<br>-234.68<br>-115.82         | 3.68<br>35.44<br>***<br>***                  | 6.58<br>-0.63<br>***<br>***                  | 1.77<br>***<br>***<br>***                    |
| AUS<br>AUS<br>AUS<br>AUS<br>AUS | 36 207<br>36 338<br>36 339<br>36 340<br>36 424      | -0.01<br>***<br>***<br>***                     | -6.45<br>31.37<br>-2.06<br>9.39                | -5.32<br>***<br>***<br>8.75<br>***           | -4.29<br>***<br>***<br>7.83<br>***           | -5.76<br>***<br>***<br>8.40<br>-0.64         | -4.44<br>***<br>7.67<br>-0.93                |
| AUS<br>CAO<br>CAO<br>CAO        | 40 5401<br>44 2<br>16 183<br>23 62<br>30 384        | 28.61<br>57.13<br>-20.84<br>-136.55<br>70.39   | 31.90<br>56.86<br>-22.85<br>-132.18<br>65.61   | 33.34<br>57.39<br>-24.87<br>-119.94<br>46.15 | 32.07<br>56.27<br>-25.57<br>-121.29<br>35.99 | 33.69<br>56.00<br>-24.14<br>-127.99<br>41.46 | 33.06<br>55.91<br>-24.32<br>-135.65<br>39.36 |
| CH<br>CH<br>CH<br>CH            | 12 285<br>16 64<br>16 69<br>16 77<br>16 140         | 153.10<br>-68.05<br>-157.17<br>-67.92<br>40.55 | 157.80<br>***<br>-146.99<br>-71.87<br>42.10    | 146.72<br>***<br>-155.40<br>-71.33<br>46.92  | 157.33<br>***<br>-158.44<br>-71.09<br>78.92  | 158.96<br>***<br>-164.43<br>-75.03<br>66.48  | 151.32<br>***<br>-160.71<br>-71.86<br>76.27  |
| CH<br>CH<br>CH<br>CH            | 17 206<br>21 179<br>21 194<br>21 217<br>21 243      | -5.30<br>55.46<br>-87.92<br>74.65<br>203.17    | 10.47<br>64.23<br>-84.06<br>70.80<br>137.45    | -10.85<br>67.56<br>-77.49<br>72.24<br>***    | -44.72<br>72.97<br>-67.92<br>72.80           | -45.70<br>71.64<br>-67.02<br>68.93           | -49.31<br>74.23<br>-62.19<br>75.66           |
| CH<br>CH<br>CH<br>CRL<br>CRL    | 31 403<br>35 413<br>36 354<br>14 764<br>14 865      | -7.65<br>***<br>***<br>5.80<br>-31.20          | -7.45<br>***<br>***<br>7.78<br>***             | -21.92<br>***<br>***<br>9.96<br>***          | -50.36<br>-2.86<br>42.63<br>11.95<br>***     | -45.36<br>-2.10<br>40.76<br>10.31            | -48.58<br>-2.53<br>40.83<br>7.67<br>***      |

TABLE 14A. (CONT.)

| LAB.                                 | CLOCK                                              | 49409                                            | 49469                                            | 49529                                            | 49589                                       | 49649                                    | 49709                                       |
|--------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------|
| CRL<br>CRL<br>CRL<br>CRL             | 14 932<br>14 1729<br>14 2456<br>34 131<br>35 112   |                                                  | *** -57.65 33.64 -284.78 ***                     | *** -55.69 35.28 -283.41 -3.54                   | *** -52.30 36.49 -278.18 -4.99              | 37.65                                    | 7.35<br>38.88<br>-271.35<br>-5.80           |
| CRL<br>CRL<br>CRL<br>CRL<br>CRL      | 35 144<br>35 332<br>35 342<br>35 343<br>40 2008    | 2.40<br>***<br>***<br>***                        | 2.63<br>***<br>***<br>***                        | 2.72<br>***<br>***<br>***                        | 2.32<br>24.01<br>13.66<br>6.14              | 2.44<br>24.78<br>13.89<br>6.74           | 2.88<br>24.42<br>13.06<br>6.74<br>2.95      |
| CSAO<br>CSAO<br>CSAO<br>CSAO<br>CSAO | 12 1646<br>12 1648<br>12 2068<br>30 152<br>40 4902 | -208.28<br>68.76<br>124.66<br>***<br>83.81       | 81.32<br>119.67<br>477.02                        | 80.53<br>121.48<br>492.14                        | *** 77.36 96.20 476.02                      | *** 72.05 81.33 522.81 -9.97             | ***<br>68.10<br>85.79<br>548.99<br>107.96   |
| F<br>F<br>F<br>F                     | 12 2405<br>14 51<br>14 134<br>14 158<br>14 195     | 81.93                                            | *** -128.07 69.43 97.35 -124.26                  | *** -127.54 65.21 *** -126.70                    | 31.84                                       | 21.56                                    | *** -135.27 31.91 *** -132.02               |
| F<br>F<br>F                          | 14 475<br>14 500<br>14 560<br>14 753<br>14 1120    | -38.41<br>-5.68<br>-84.21<br>-39.17<br>-56.32    | -36.56<br>-8.50<br>-81.03<br>-40.32<br>-55.06    | -37.11<br>-8.71<br>-82.06<br>-43.84<br>-53.16    | -44.27<br>***<br>***<br>-47.19<br>-51.81    | ***                                      | -35.71<br>-0.55<br>***<br>-41.87<br>-54.55  |
| F<br>F<br>F<br>F                     | 14 1407<br>14 1645<br>14 1842<br>16 106<br>16 178  | -52.03<br>36.07<br>-54.86<br>-13.38              | -57.37<br>41.02<br>-71.02<br>-12.46<br>1.16      | -55.29<br>41.18<br>***<br>-13.60<br>***          | -56.92<br>55.56<br>2.51<br>***              | -58.16<br>53.46<br>14.10<br>***          | *** 52.56 16.12 -14.90 ***                  |
| F<br>F<br>F<br>F                     | 16 187<br>17 489<br>35 122<br>35 124<br>35 131     | *** 48.87  ***  *** 15.25                        | *** 46.76 -22.28 -3.41 15.65                     | ***<br>-23.04<br>-3.46<br>15.74                  | ***<br>-22.94<br>-4.02<br>14.93             | *** 57.87 -22.37 -4.31 14.47             | -42.15<br>54.33<br>-22.77<br>-4.85<br>15.43 |
| F<br>F<br>F<br>F                     | 35 158<br>35 172<br>35 198<br>35 396<br>40 816     | 10.35<br>-1.37<br>***<br>***                     | 10.59<br>-1.40<br>***<br>***                     | 10.39<br>-1.68<br>***<br>***                     | 10.18<br>-1.37<br>1.17<br>***               | 10.19<br>-0.75<br>0.82<br>4.74<br>-14.92 | 9.75<br>-1.11<br>1.01<br>4.75<br>-16.66     |
| GUM<br>GUM<br>GUM<br>IEN<br>IEN      | 14 1144<br>30 652<br>30 664<br>12 303<br>14 469    | -51.36<br>-52.68<br>-173.11<br>-96.07<br>-238.97 | -52.98<br>-52.04<br>-171.18<br>-99.19<br>-237.51 | -37.90<br>-54.05<br>-170.55<br>-99.15<br>-235.26 | -29.77<br>3.16<br>-148.37<br>***<br>-231.75 | -8.30<br>5.41<br>-162.84<br>***          | -9.93<br>-28.54<br>-183.08<br>***           |

TABLE 14A. (CONT.)

| LAB.                                 | CLOCK                                               | 49409                                          | 49469                                          | 49529                                          | 49589                                          | 49649                                          | 49709                                          |
|--------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| IEN<br>IEN<br>IEN<br>IFAG<br>IFAG    | 14 893<br>31 659<br>35 219<br>14 1105<br>16 131     | 16.99<br>-49.02<br>3.67<br>-41.55<br>-13.73    | 16.41<br>-50.50<br>4.31<br>-37.51<br>-14.26    | 19.58<br>-55.43<br>4.13<br>-16.39<br>-14.25    | 21.68<br>-49.63<br>3.87<br>13.94<br>-8.38      | *** -49.88 -0.62 -11.35 -17.17                 | *** -50.14 -0.14 -35.22 -15.32                 |
| IFAG<br>IFAG<br>IGMA<br>IGMA<br>IGMA | 16 138<br>16 173<br>14 2407<br>16 112<br>17 127     | 137.28<br>170.36<br>-112.00<br>-7.25<br>39.27  | 135.23<br>146.96<br>-112.51<br>-29.27<br>37.47 | 92.43<br>107.39<br>-106.71<br>-15.85<br>39.15  | 53.31<br>82.82<br>-113.64<br>-8.85<br>25.33    | 76.73<br>113.25<br>-101.45<br>3.91<br>36.51    | 130.49<br>153.60<br>-81.11<br>17.01<br>37.80   |
| INPL<br>INPL<br>INPL<br>INPL<br>KRIS | 14 2308<br>14 2426<br>31 145<br>31 619<br>12 1406   | -12.72<br>23.10<br>-100.43<br>-32.27<br>-34.14 | ***<br>***<br>***<br>-36.70                    | -18.87<br>2.71<br>-10.37<br>-33.75<br>-38.65   | -20.77<br>***<br>-12.85<br>-30.85<br>-36.59    | *** 34.54 -25.15 -33.46 -26.97                 | ***<br>32.77<br>-34.24<br>-45.60<br>-8.42      |
| KRIS<br>KRIS<br>KRIS<br>KRIS<br>KRIS | 12 1902<br>12 1903<br>21 280<br>36 321<br>40 5623   | 13.22<br>-24.46<br>58.26<br>***                | 20.15<br>-25.31<br>67.12<br>3.48<br>-4.99      | 34.32<br>-14.82<br>54.75<br>3.14<br>-4.22      | 39.33<br>-12.63<br>42.34<br>1.30<br>-7.34      | 50.14<br>-10.29<br>***<br>2.35<br>-9.22        | 56.79<br>4.51<br>***<br>3.58<br>-11.39         |
| LDS<br>LDS<br>MSL<br>MSL<br>MSL      | 12 202<br>35 289<br>12 381<br>12 933<br>12 1770     | *** -2.69 1.92 9.58 -13.60                     | *** -2.99 -41.79 3.29 -39.68                   | 87.06<br>-1.69<br>-44.86<br>-6.03<br>-42.12    | *** -0.93 *** -13.16 -39.44                    | *** -1.73 *** -15.90 -21.58                    | ***<br>-2.01<br>***<br>-7.04<br>-15.11         |
| MSL<br>NAOM<br>NAOM<br>NAOM<br>NAOT  | 36 274<br>14 885<br>14 1315<br>34 2146<br>31 284    | 12.64<br>-23.28<br>-50.96<br>-73.21<br>-196.11 | 12.12<br>-24.33<br>-52.60<br>-69.60<br>-207.86 | 13.71<br>-18.47<br>-51.65<br>-67.32<br>-211.81 | 9.74<br>-9.44<br>-49.91<br>-70.47<br>-198.49   | -51.19                                         |                                                |
| NAOT<br>NAOT<br>NIM<br>NIM<br>NIM    | 34 1075<br>34 2494<br>12 1615<br>12 1633<br>12 1640 | -20.53<br>-30.53<br>-479.69<br>-3.17<br>-13.31 | -22.21<br>-36.29<br>***<br>16.79<br>5.89       | -22.70<br>-41.71<br>***<br>17.89<br>6.76       | -18.57<br>-41.68<br>***<br>4.94<br>-4.94       | -19.45<br>-34.98<br>***<br>***                 | -18.28<br>-34.98<br>***<br>***                 |
| NIST<br>NIST<br>NIST<br>NIST<br>NIST | 13 61<br>14 324<br>14 601<br>14 1316<br>16 217      | -85.38<br>-40.68<br>8.84<br>-33.79<br>32.83    | -83.04<br>-44.72<br>5.80<br>-31.78<br>30.83    | -87.38<br>-47.44<br>***<br>-29.84<br>31.34     | -90.40<br>***<br>***<br>-27.44<br>27.46        | -91.17<br>***<br>***<br>-28.13<br>19.44        | -87.93<br>***<br>***<br>-32.75<br>29.52        |
| NIST<br>NIST<br>NIST<br>NIST<br>NIST | 18 1007<br>31 569<br>34 493<br>35 132<br>35 182     | -125.86<br>-118.14<br>-86.22<br>***            | -124.23<br>-121.08<br>-87.79<br>***<br>-5.21   | -130.81<br>-121.97<br>-88.59<br>***<br>-5.63   | -146.78<br>-125.14<br>-85.10<br>-6.84<br>-6.33 | -209.79<br>-132.91<br>-86.16<br>-6.44<br>-5.79 | -221.87<br>-132.92<br>-87.69<br>-6.82<br>-5.78 |

TABLE 14A. (CONT.)

| LAB.                              | CLOCK                                            | 49409                                           | 49469                                           | 49529                                           | 49589                                            | 49649                                           | 49709                                           |
|-----------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| NIST<br>NIST<br>NPL<br>NPL<br>NPL | 35 408<br>40 201<br>12 316<br>14 418<br>14 1334  | 5.30<br>-27.89<br>-2.26<br>-157.02              | ***<br>2.73<br>-35.29<br>-10.43<br>-163.37      | -10.29<br>3.16<br>-36.05<br>-13.42<br>-158.65   | -10.77<br>3.10<br>-37.12<br>-12.16<br>-154.24    | -9.61<br>3.70<br>-16.32<br>-5.62<br>-128.34     | -9.93<br>4.93<br>***<br>-3.08<br>-151.64        |
| NPL<br>NPL<br>NPL<br>NPL          | 14 1813<br>14 2064<br>31 328<br>35 123<br>35 404 | -65.57<br>-27.35<br>45.97<br>1.93<br>***        | -64.86<br>-26.84<br>80.00<br>2.62               | -66.88<br>-24.61<br>***<br>2.00<br>16.98        | -68.57<br>-20.84<br>***<br>2.74<br>14.02         | -60.16<br>-15.11<br>***<br>2.82<br>13.73        | -61.48<br>-13.89<br>***<br>2.99<br>13.11        |
| NPL<br>NRC<br>NRC<br>NRC<br>NRLM  | 40 1701<br>14 267<br>35 234<br>90 63<br>14 1632  | -4.38<br>-341.05<br>3.61<br>7.87<br>-29.24      | -4.32<br>-347.60<br>3.32<br>9.09<br>-29.84      | -9.45<br>-341.18<br>3.98<br>8.86<br>-25.29      | -5.50<br>-323.20<br>3.43<br>8.39<br>-19.44       | -5.26<br>-335.84<br>3.63<br>8.35<br>-22.09      | -5.08<br>-360.39<br>2.69<br>8.08<br>-24.67      |
| NRLM<br>NRLM<br>OMH<br>ORB<br>ORB | 31 312<br>35 224<br>12 1067<br>12 205<br>21 312  | 326.52<br>13.34<br>14.13<br>-26.09<br>16.88     | ***<br>0.07<br>-46.26<br>14.14                  | 371.44<br>15.66<br>-0.92<br>***<br>20.54        | 257.02<br>16.08<br>1.29<br>***<br>22.09          | 267.79<br>16.66<br>4.42<br>***<br>23.15         | 290.30<br>15.87<br>17.70<br>***<br>19.37        |
| ORB<br>ORB<br>ORB<br>PTB<br>PTB   | 35 201<br>35 202<br>40 2601<br>14 394<br>14 1103 | -3.22<br>4.38<br>***<br>-32.69<br>-65.28        | -2.55<br>4.05<br>***<br>-14.31<br>-66.83        | -3.71<br>4.40<br>***<br>***                     | -3.59<br>4.20<br>-50.67<br>***<br>-55.47         | -2.61<br>4.44<br>-67.04<br>***                  | -3.01<br>3.85<br>-76.37<br>***                  |
| PTB<br>PTB<br>PTB<br>PTB<br>PTB   | 14 2379<br>35 128<br>35 271<br>35 415<br>40 505  | -58.19<br>15.23<br>-0.71<br>***<br>12.96        | -59.69<br>16.01<br>1.53<br>***<br>14.88         | -55.60<br>15.96<br>3.39<br>***<br>14.67         | -46.91<br>15.22<br>3.74<br>-0.32<br>1.74         | -56.06<br>15.03<br>3.21<br>-0.96<br>-11.69      | -59.28<br>***<br>***<br>-1.14<br>***            |
| PTB<br>PTB<br>PTB<br>RC<br>ROA    | 40 537<br>92 1<br>92 2<br>40 6483<br>12 1223     | -18.21<br>0.85<br>0.28<br>***                   | -12.23<br>0.18<br>0.33<br>-5.11                 | -4.57<br>0.37<br>-1.05<br>***<br>6.50           | 1.76<br>-0.40<br>-1.41<br>***                    | 5.74<br>0.55<br>-0.60<br>***                    | 7.35<br>0.83<br>-0.19<br>***                    |
| ROA<br>ROA<br>ROA<br>ROA          | 14 896<br>14 1569<br>16 113<br>16 121<br>31 422  | -20.61<br>***<br>58.86<br>16.95<br>-4.25        | -23.98<br>***<br>49.25<br>0.38<br>-4.63         | -22.94<br>-21.65<br>41.64<br>-44.75<br>-7.28    | -9.96<br>-16.51<br>41.77<br>-30.32<br>-12.14     | *** -15.20 41.33 -32.45 -8.61                   | 0.01<br>-16.97<br>45.70<br>-8.94<br>-6.68       |
| SCL<br>SCL<br>SNT<br>SNT<br>SNT   | 14 2127<br>31 838<br>14 900<br>14 1376<br>16 137 | 75.42<br>-110.53<br>-66.46<br>-110.16<br>-17.54 | 77.11<br>-121.09<br>-74.37<br>-110.46<br>-14.59 | 94.32<br>-117.42<br>-78.27<br>-110.10<br>-18.35 | 104.35<br>-125.95<br>-82.85<br>-108.15<br>-15.44 | 95.70<br>-132.54<br>-86.73<br>-102.95<br>-16.05 | 92.04<br>-142.10<br>-85.66<br>-103.11<br>-17.27 |

TABLE 14A. (CONT.)

|      | 01.004  | 40400   | 40460   | 40500   | 40500   | 40040        | 40700   |
|------|---------|---------|---------|---------|---------|--------------|---------|
| LAB. | CLOCK   | 49409   | 49469   | 49529   | 49589   | 49649        | 49709   |
| SO   | 12 2067 | -72.14  | ***     | -66.25  | -69.42  | -62.44       | -70.16  |
| SO   | 40 5101 | -68.81  | ***     | -57.75  | -72.16  | -60.01       | -69.40  |
| SU   | 40 3803 | 4.16    | 4.95    | ***     | ***     | ***          | ***     |
|      |         |         | ***     | ***     | ***     | ***          | ***     |
| SU   | 40 3804 | -20.94  |         |         |         |              |         |
| SU   | 40 3805 | -27.64  | -27.46  | -28.05  | -28.29  | -28.59       | -28.68  |
| SU   | 40 3806 | -6.40   | -5.51   | -5.84   | -5.78   | -4.97        | -4.77   |
| SU   | 40 3807 | -11.45  | -10.67  | -10.60  | -9.73   | -8.95        | -8.14   |
| SU   | 40 3808 | -8.77   | -9.67   | -10.85  | -12.61  |              | -15.82  |
| TL   | 12 1455 | -145.86 | -122.81 | -117.21 | ***     | ***          | ***     |
| TĹ   | 12 2276 | ***     | -197.58 | -195.52 | -284.58 | -291.56      | -294.83 |
| 16   | 12 22/0 |         | -137.30 | -195.52 | -204.30 | -231.30      | -234.03 |
| TL   | 16 283  | ***     | ***     | ***     | ***     | 13.35        | 20.69   |
| TL   | 31 317  | -54.70  | -62.26  | -73.38  | -91.78  | -41.92       | -55.42  |
| TL   | 35 160  | 5.87    | 6.45    | 7.27    | 6.85    | 7.34         | ***     |
| TL   | 35 300  | ***     | 13.19   |         | 12.03   | 12.05        | 11.88   |
|      |         |         |         |         |         |              |         |
| TP   | 12 335  | -101.82 | -104.42 | -102.66 | -96.57  | -95.34       | -90.25  |
| TP   | 36 154  | 13.76   | 13.92   | 12.75   | 12.29   | 13.83        | 10.82   |
| TP   | 36 163  | 10.41   | 10.23   | 8.51    | 8.29    | 10.29        | 10.39   |
| TP   | 36 326  | ***     | 12.34   | 11.18   | 11.39   | 11.84        | 11.70   |
| TUG  | 14 1654 | 29.62   | 30.33   | 28.92   | 28.75   | 30.31        | 27.44   |
|      |         |         |         |         |         |              |         |
| TUG  | 18 108  | 689.74  | 706.69  | 722.61  | 737.52  | 746.53       | 774.94  |
| TUG  | 35 107  | -0.84   | -0.98   | -0.49   | -0.16   | 0.11         | -0.23   |
| TUG  | 35 247  | 6.41    | 8.12    | 8.71    | 8.88    | 10.11        | 11.37   |
| UME  | 35 251  | ***     | ***     | ***     | ***     | ***          | 10.31   |
| UME  | 35 252  | ***     | ***     | ***     | ***     | ***          | -6.56   |
|      |         |         |         | ***     | ***     | ***          | -0.50   |
| USNO | 14 532  | -221.00 | -222.86 |         | ^^^     | ^^^          | ***     |
| USNO | 14 654  | -79.91  | ***     | -77.49  | -75.42  | -74.55       | -75.48  |
| USNO | 14 656  | 94.58   | ***     | ***     | 32.83   | ***          | ***     |
| USNO | 14 752  | 121.12  | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 837  | -135.44 | ***     | ***     | ***     | ***          | ***     |
|      |         |         |         |         |         |              |         |
| USNO | 14 862  | -11.92  | -8.01   | -18.50  | ***     | -14.53       | -34.23  |
| USNO | 14 1100 | -153.23 | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 1255 | -49.34  | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 1264 | 48.94   | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 1423 | -39.35  |         | -39.62  | ***     | -32.62       | -30.80  |
|      |         |         | -33.03  |         |         |              |         |
| USNO | 14 1653 | -45.28  | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 2314 | -2.55   | -4.74   | -11.62  | ***     | -15.30       | -4.49   |
| USNO | 14 2481 | -95.51  | ***     | 38.03   | ***     | 20.45        | 12.91   |
|      | 14 2482 |         | -75.22  | 30.03   | ***     | ZU.45<br>*** | ***     |
| USNO |         | -80.23  |         |         |         |              |         |
| USNO | 14 2484 | -89.36  | ***     | ***     | ***     | ***          | ***     |
| USNO | 14 2485 | 38.06   | ***     | ***     | ***     | ***          | ***     |
| USNO | 31 333  | ***     | -48.10  | -56.34  | ***     | -60.49       | -59.03  |
| USNO | 31 336  | -157.08 | ***     | ***     | ***     | ***          | ***     |
|      |         |         | ***     | ***     | ***     | ***          | ***     |
| USNO | 31 340  | -26.50  |         |         |         |              |         |
| USNO | 31 341  | ***     | ***     | ***     | -25.42  | -25.54       | -19.83  |
| USNO | 31 527  | 28.59   | ***     | ***     | ***     | ***          | ***     |

TABLE 14A. (CONT.)

| LAB. | CLO  | CK   | 49409  | 49469   | 49529   | 49589  | 49649  | 49709   |
|------|------|------|--------|---------|---------|--------|--------|---------|
| USNO | 31 2 | 483  | ***    | ***     | 72.36   | 77.16  | ***    | ***     |
| USNO |      | 651  | -68.00 | -67.19  | ***     | ***    | ***    | ***     |
| USNO |      | 653  |        | -26.47  | -25.63  | -25.48 | -24.78 | -26.30  |
| USNO | 34 1 |      | ***    | -400.09 | -408.97 | ***    |        | -434.37 |
| USNO | 34 1 |      | ***    | ***     | -34.34  | -34.83 | -36.16 | -34.52  |
| USNO | 34 1 | 605  | -72.54 | ***     | ***     | -83.69 | ***    | ***     |
| USNO | 34 1 |      | -22.77 | ***     | ***     | -57.85 |        | ***     |
| USNO | 34 1 | .809 | -45.99 | ***     | ***     | ***    | ***    | ***     |
| USNO | 34 2 | 2081 | -34.30 | -27.35  | -23.40  | ***    | -16.82 | -15.64  |
| USNO | 34 2 | 2100 | 6.70   | 6.63    | 3.76    | -1.33  | 1.02   | 6.31    |
| USNO | 34 2 | 2312 | 72.04  | ***     | ***     | ***    | ***    | ***     |
| USNO | 34 2 |      | ***    | ***     | 48.71   | 50.15  | 48.63  | 46.68   |
| USNO | 34 2 |      | 14.06  | ***     | ***     | ***    | ***    | ***     |
| USNO | 34 2 |      | 3.27   | 7.50    | 7.95    | ***    | ***    | ***     |
| USNO | 34 2 | 2487 | -7.93  | ***     | -37.51  | -37.84 | -37.26 | -35.74  |
| USNO | 34 2 | 488  | -64.27 | -59.75  | -50.86  | -44.24 | -42.74 | -38.66  |
| USNO |      | 101  | ***    | 17.39   | 17.04   | 17.40  | 17.26  | 16.75   |
| USNO |      | 104  | 12.31  | 12.69   | 12.67   | 13.02  | 12.70  | ***     |
| USNO | 35   | 106  | ***    | ***     | 10.46   | 9.55   | 9.51   | 9.62    |
| USNO | 35   | 108  | 14.15  | 14.04   | 14.28   | 13.60  | 13.21  | 13.58   |
| USNO | 35   | 114  | 15.83  | 16.71   | 17.19   | 16.66  | 17.79  | 17.84   |
| USNO |      | 142  | 3.29   | 3.85    | 4.53    | 3.91   | 4.76   | 4.86    |
| USNO |      | 145  | 1.78   | 1.20    | 1.52    | 2.07   | 1.92   | 1.83    |
| USNO | 35   | 146  | 1.14   | 2.35    | 2.93    |        | 3.13   | 4.02    |
| USNO | 35   | 148  | -16.96 | -17.10  | -16.77  | -17.05 | -17.32 | -17.70  |
| USNO | 35   | 150  | 21.92  | 21.78   | 21.33   | 20.61  | 21.96  | 21.41   |
| USNO | 35   | 152  | 4.07   | 1.83    | -0.87   | ***    | -0.07  | 1.50    |
| USNO | 35   | 153  | 18.34  | 17.68   | 17.46   | 16.54  | ***    | ***     |
| USNO |      | 156  | 6.24   | 6.95    | 6.31    | 6.11   | 5.90   | 6.25    |
| USNO | 35   | 161  | 2.91   | 2.89    | 2.94    | 2.21   | 2.99   | 2.91    |
| USNO | 35   | 164  | 6.60   | 7.42    | 7.16    | 6.91   | 7.41   | 7.33    |
| USNO |      | 165  | 19.66  | 20.43   |         | 19.75  | 19.63  | 19.75   |
| USNO |      | 166  |        | -3.46   |         |        |        | -3.26   |
| USNO |      | 167  | 11.32  |         | 11.73   |        |        |         |
| USNO | 35   | 169  | -7.84  | -7.58   | -7.60   | -7.42  | -7.58  | -8.51   |
| USNO | 35   | 171  | 13.30  | 14.35   | 16.44   | 17.27  | 18.89  | 19.42   |
| USNO | 35   | 213  | -10.71 |         |         | -11.97 |        |         |
| USNO | 35   | 217  |        | -6.51   |         | -6.44  |        | -5.62   |
| USNO |      | 225  |        |         |         | ***    |        | 7.14    |
| USNO | 35   | 226  | -0.21  | -0.12   | -0.54   | 0.33   | 0.00   | 0.58    |
| USNO | 35   | 227  | 9.21   | 9.63    | 9.48    | ***    | 10.68  | 11.09   |
| USNO |      | 229  |        | 14.02   |         | 14.41  |        | 14.97   |
| USNO |      | 231  |        | -28.41  |         | -28.96 |        |         |
| USNO |      | 233  | -0.43  | -0.72   | 0.02    | -1.09  |        |         |
| USNO | 35   | 242  | 13.95  | 14.54   | 15.66   | 16.55  | 17.27  | 18.16   |

TABLE 14A. (CONT.)

| LAB.                                 | CLOCK                                            | 49409                    | 49469                                       | 49529                                       | 49589                                       | 49649                                        | 49709                                        |
|--------------------------------------|--------------------------------------------------|--------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| USNO<br>USNO<br>USNO                 | 35 244<br>35 246<br>35 249                       | ***                      | 14.77<br>***<br>-4.62                       | 14.60<br>***<br>-4.21                       | 14.92<br>5.97<br>-5.15                      | 14.07<br>4.92<br>-5.28                       | 14.08<br>4.99<br>-5.08                       |
| USNO<br>USNO                         | 35 253<br>35 254                                 | -9.54                    | -9.23<br>-0.53                              | -9.15<br>-0.72                              | -9.80<br>***                                | -9.69<br>-3.60                               | -9.13<br>-3.48                               |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 35 255<br>35 256<br>35 260<br>35 266<br>35 268   | -14.52<br>3.54<br>***    | -10.28<br>-17.62<br>2.87<br>***<br>2.62     | -10.69<br>-19.94<br>3.31<br>1.56<br>2.84    | -11.82<br>-22.25<br>3.92<br>0.27<br>2.72    | -12.07<br>-21.69<br>3.28<br>2.07<br>2.39     | -12.49<br>-21.21<br>3.41<br>2.21<br>2.11     |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 35 270<br>35 279<br>35 389<br>35 392<br>35 394   | -16.34<br>***<br>***     | 5.96<br>-15.77<br>***<br>***                | 6.34<br>-16.01<br>***<br>1.33<br>13.38      | 6.09<br>-15.85<br>***<br>-0.30<br>13.17     | 6.14<br>-15.58<br>***<br>-0.90<br>13.70      | 6.08<br>-15.66<br>-15.71<br>-0.80<br>13.12   |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 35 416<br>40 702<br>40 703<br>40 704<br>40 705   | -0.10<br>***<br>-54.98   | ***<br>-0.35<br>***<br>-55.21<br>-31.28     | ***<br>-1.07<br>1.46<br>-55.36<br>-31.28    | ***<br>-2.22<br>***<br>-55.77<br>-31.81     | -1.16<br>-2.61<br>-1.86<br>-55.50<br>-31.91  | ***<br>-3.09<br>-1.31<br>-55.53<br>-32.12    |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 40 708<br>40 709<br>40 710<br>40 711<br>40 712   | -44.02<br>-26.37<br>1.94 | ***<br>-45.50<br>-27.09<br>***              | -28.15<br>-47.32<br>-27.61<br>***<br>-10.30 | -30.14<br>-49.26<br>-28.16<br>***           | -30.99<br>-49.86<br>-27.37<br>4.33<br>-16.30 | -31.71<br>-50.94<br>-26.71<br>5.40<br>-18.48 |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 40 718<br>40 719<br>40 722<br>40 723<br>40 6201  | -25.50<br>-31.41         | -27.14<br>-28.28<br>-35.96<br>4.26<br>8.89  | -29.14<br>-32.46<br>-41.06<br>-0.62         | -33.26<br>-36.66<br>-46.73<br>-6.32         | ***<br>-53.52<br>-11.93<br>-26.02            | ***<br>-61.26<br>-15.99<br>***               |
| VSL<br>VSL<br>VSL<br>VSL             | 12 1489<br>14 1034<br>21 125<br>31 288<br>35 179 | -56.90<br>68.49<br>-3.01 | -55.52<br>-55.61<br>66.29<br>11.94<br>22.85 | -39.44<br>-53.28<br>66.64<br>17.98<br>22.92 | -34.32<br>-49.00<br>70.15<br>46.16<br>22.69 | *** -50.14 68.78 52.01 22.33                 | *** -48.05 70.09 66.70 21.40                 |
| VSL                                  | 35 456                                           | ***                      | ***                                         | ***                                         | ***                                         | ***                                          | 10.70                                        |

The clocks are designated by their type (2 digits) and serial number in the type. The codes for the types are:

12 HEWLETT-PACKARD 5061A
13 EBAUCHES, OSCILLATOM B5000
14 HEWLETT-PACKARD 5061A OPT. 4
16 OSCILLOQUARTZ 3200

17 OSCILLOQUARTZ 3000 18 FREQ. AND TIME SYSTEMS INC. 4000

4x HYGROGEN MASERS

9x PRIMARY CLOCKS AND PROTOTYPES

21 OSCILLOQUARTZ 3210

23 OSCILLOQUARTZ EUDICS 3020

30 HEWLETT-PACKARD 5061B

31 HEWLETT-PACKARD 5061B OPT. 4

34 H-P 5061A/B WITH 5071A TUBE

35 HEWLETT-PACKARD 5071A High perf.

36 HEWLETT-PACKARD 5071A Low. perf.

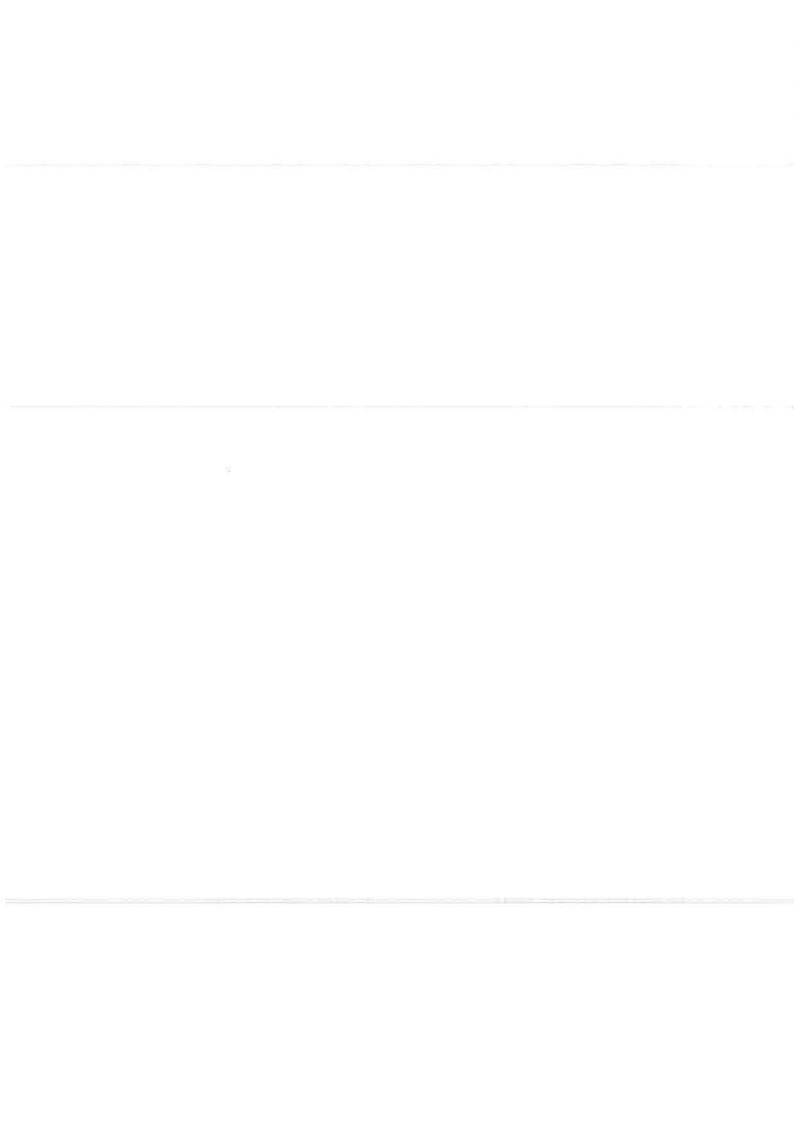



TABLE 14B. CORRECTIONS FOR AN HOMOGENEOUS USE OF THE CLOCK RATES PUBLISHED IN THE CURRENT AND PREVIOUS ANNUAL REPORTS.

Each line refers to the same clock working without interruption.

|      | 1994                                           | 1993                                           | 1992                                           | 1991                                                                         |
|------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
|      | clock n°                                       | clock n° corr.<br>(ns/d)                       | clock n° corr.<br>(ns/d)                       | clock n° corr.<br>(ns/d)                                                     |
| APL  | 40 3101<br>40 3102<br>40 3106                  | 40 3101<br>40 3102<br>40 3106                  | 40 3101<br>40 3102<br>40 3106                  | 40 3101(1) +18.00<br>40 3102(2) +12.00<br>40 3106(3) +10.00                  |
| СН   | 16 69<br>21 243                                | 16 69<br>21 243 +70.00                         | 16 69<br>21 243 +70.00                         | 16 69(4) -28.00<br>21 243(5) +70.00                                          |
| CRL  | 14 764<br>14 1729<br>14 865                    | 14 764<br>14 1729<br>14 865                    | 14 764<br>14 1729<br>14 865 +23.39             | 14 764(6)<br>14 1729(7)<br>14 865(8) +23.39                                  |
| CSA0 | 12 1646<br>12 1648                             | 12 1646<br>12 1648                             | 12 1646<br>12 1648                             | 12 1646(9) +31.60<br>12 1648(10)                                             |
| IFAG | 14 1105                                        | 14 1105                                        | 14 1105 +27.00                                 |                                                                              |
| NIST | 13 61<br>14 324<br>14 601<br>14 1316<br>16 217 | 13 61<br>14 324<br>14 601<br>14 1316<br>16 217 | 13 61<br>14 324<br>14 601<br>14 1316<br>16 217 | 13 61(11) -25.32<br>14 324(12)<br>14 601 +17.28<br>14 1316(13)<br>16 217(14) |
| NPL  | 14 1813<br>40 1701                             | 14 1813 -40.00<br>40 1701                      | 14 1813 -40.00<br>40 1701                      | 14 1813(15) -40.00<br>40 1701 +27.00                                         |
| ROA  | 16 121                                         | 16 121 -113.00                                 | 16 121 -113.00                                 | 16 121(16) -113.00                                                           |
| SNT  | 14 900                                         | 14 900                                         | 14 900 +14.00                                  | 14 900(17) +14.00                                                            |
| SU   | 40 3806                                        | 40 3806                                        | 40 3806 -13.00                                 | 40 3806 -13.00                                                               |
| VSL  | 31 288                                         | 31 288                                         | 31 288                                         | 31 288 -30.00                                                                |

<sup>(1)</sup> A correction of +7.0 ns/d has to be applied in 1990 and for the last two-month interval of 1989.

<sup>(2)</sup> A correction of +8.0 ns/d has to be applied in 1990.

<sup>(3)</sup> A correction of +10.0 ns/d has to be applied in 1990 and for the last two-month interval of 1989.

<sup>(4)</sup> A correction of -28.00 ns/d has to be applied in 1990 and in 1989.

<sup>(5)</sup> A correction of +70.00 ns/d has to be applied in 1990, 1989, 1988 and 1987.

<sup>(6)</sup> A correction of +40.02 ns/d has to be applied in 1990 and for the last five two-month intervals of 1989.

<sup>(7)</sup> A correction of +51.40 ns/d has to be applied in 1990, 1989, 1988 and for the last two-month interval of 1987.

<sup>(8)</sup> A correction of +23.39 ns/d has to be applied in 1990, 1989, 1988 and for the last two-month interval of 1987.

- (9) A correction of +31.60 ns/d has to be applied in 1990, 1989 and 1988. A correction of +73.20 ns/d has to be applied in 1987 and for the last three two-month intervals of 1986.
- (10) A correction of +98.60 ns/d has to be applied in 1990, 1989, 1988, 1987 1986 and 1985.
- (11) A correction of -25.32 ns/d has to be applied in 1990 and 1989.
- (12) A correction of +17.07 ns/d has to be applied in 1990.
- (13) A correction of +10.70 ns/d has to be applied in 1990. A correction of +27.63 ns/d has to be applied in 1989, 1988, 1987, 1986, 1985 and for the last three two-month intervals of 1984.
- (14) A correction of +58.63 ns/d has to be applied in 1990. A correction of +52.50 ns/d has to be applied in 1989 and 1988.
- (15) A correction of -40.00 ns/d has to be applied in 1990 and for the last four two-month intervals of 1989.
- (16) A correction of -113.00 ns/d has to be applied in 1990, 1989, 1988, 1987, and 1986.
- (17) A correction of +14.00 ns/d has to be applied in 1990, 1989, 1988, 1987, 1986, 1985 and 1984.

TABLE 15A. WEIGHTS OF CONTRIBUTING CLOCKS IN 1994

(FILE AVAILABLE VIA INTERNET UNDER THE NAME WTAI94.AR)

Clock weights are computed for two-month intervals ending at the dates given in the table.

Since 1988 January 1st, the absolute weight of a given clock cannot exceed the value 100. For the year 1994, it corresponds to a maximum relative weight of about  $0.8\ \%$ .

\*\*\* denotes that the clock was not used.

| LAB.                            | CLOCK                                               | 49409                         | 49469                         | 49529                          | 49589                           | 49649                         | 49709                         |
|---------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------|
| AOS<br>APL<br>APL<br>APL<br>APL | 23 67<br>14 793<br>31 571<br>40 3101<br>40 3102     | 33<br>17<br>40<br>100         | 0<br>11<br>100<br>53<br>50    | 6<br>11<br>46<br>50<br>50      | 9<br>13<br>35<br>40<br>21       | 9<br>13<br>26<br>44<br>25     | 8<br>13<br>26<br>50           |
| APL<br>AUS<br>AUS<br>AUS<br>AUS | 40 3106<br>12 1708<br>14 1443<br>14 2010<br>14 2020 | 67<br>***<br>***<br>49<br>*** | 53<br>0<br>0<br>71<br>0       | 48<br>0<br>0<br>94<br>***      | 48<br>50<br>***<br>***          | 63<br>0<br>***<br>***         | 68<br>***<br>***<br>***       |
| AUS<br>AUS<br>AUS<br>AUS        | 36 207<br>36 338<br>36 339<br>36 340<br>36 424      | 87<br>***<br>***<br>***       | 100<br>0<br>0<br>0<br>***     | 100<br>***<br>***<br>0<br>***  | 100<br>***<br>***<br>100<br>*** | 100<br>***<br>***<br>100<br>0 | 100<br>***<br>***<br>100<br>0 |
| AUS<br>CAO<br>CAO<br>CAO        | 40 5401<br>44 2<br>16 183<br>23 62<br>30 384        | 100<br>100<br>90<br>0         | 100<br>100<br>100<br>0<br>0   | 100<br>100<br>100<br>7<br>0    | 100<br>100<br>100<br>10<br>3    | 100<br>100<br>100<br>17<br>4  | 100<br>100<br>100<br>20<br>5  |
| CH<br>CH<br>CH<br>CH            | 12 285<br>16 64<br>16 69<br>16 77<br>16 140         | 0<br>46<br>4<br>49<br>15      | 3<br>***<br>4<br>29<br>11     | 4<br>***<br>4<br>23<br>9       | 4<br>***<br>4<br>21<br>0        | 8<br>***<br>5<br>49<br>4      | 45<br>***<br>29<br>100<br>3   |
| CH<br>CH<br>CH<br>CH            | 17 206<br>21 179<br>21 194<br>21 217<br>21 243      | 3<br>4<br>57<br>11<br>0       | 2<br>3<br>69<br>26<br>0       | 3<br>31<br>22<br>***           | 2<br>5<br>11<br>22<br>***       | 2<br>14<br>9<br>37<br>***     | 2<br>20<br>9<br>100<br>***    |
| CH<br>CH<br>CH<br>CRL<br>CRL    | 31 403<br>35 413<br>36 354<br>14 764<br>14 865      | 100<br>***<br>***<br>64<br>0  | 71<br>***<br>***<br>68<br>*** | 33<br>***<br>***<br>100<br>*** | 0<br>0<br>0<br>79<br>***        | 3<br>0<br>0<br>91<br>***      | 100<br>100<br>100<br>***      |

TABLE 15A. (CONT.)

| LAB.                                 | CLOCK                                              | 49409                           | 49469                          | 49529                          | 49589                         | 49649                          | 49709                         |
|--------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|
| CRL<br>CRL<br>CRL<br>CRL<br>CRL      | 14 932<br>14 1729<br>14 2456<br>34 131<br>35 112   | 100<br>6<br>100<br>56<br>***    | ***<br>5<br>100<br>46<br>***   | ***<br>5<br>100<br>35<br>0     | ***<br>10<br>100<br>46<br>0   | ***<br>36<br>84<br>30<br>100   | ***<br>0<br>100<br>26<br>100  |
| CRL<br>CRL<br>CRL<br>CRL<br>CRL      | 35 144<br>35 332<br>35 342<br>35 343<br>40 2008    | 100<br>***<br>***<br>***        | 100<br>***<br>***<br>***       | 100<br>***<br>***<br>***       | 100<br>0<br>0<br>0<br>***     | 100<br>0<br>0<br>0<br>***      | 100<br>100<br>100<br>100<br>0 |
| CSAO<br>CSAO<br>CSAO<br>CSAO<br>CSAO | 12 1646<br>12 1648<br>12 2068<br>30 152<br>40 4902 | 0<br>11<br>5<br>***             | ***<br>5<br>8<br>0<br>***      | ***<br>3<br>8<br>0<br>***      | ***<br>3<br>6<br>6            | ***<br>5<br>3<br>0             | ***<br>29<br>3<br>1           |
| F<br>F<br>F<br>F                     | 12 2405<br>14 51<br>14 134<br>14 158<br>14 195     | 31<br>100<br>4<br>6<br>46       | 100<br>4<br>7<br>100           | ***<br>91<br>12<br>***<br>100  | ***<br>85<br>0<br>***<br>100  | ***<br>70<br>2<br>***<br>100   | ***<br>63<br>2<br>***         |
| F<br>F<br>F<br>F                     | 14 475<br>14 500<br>14 560<br>14 753<br>14 1120    | 100<br>100<br>100<br>100<br>100 | 85<br>100<br>100<br>100<br>100 | 79<br>100<br>100<br>100<br>100 | 99<br>***<br>***<br>97<br>100 | 100<br>***<br>***<br>68<br>100 | 84<br>0<br>***<br>88<br>100   |
| F<br>F<br>F<br>F                     | 14 1407<br>14 1645<br>14 1842<br>16 106<br>16 178  | 100<br>100<br>0<br>0            | 54<br>55<br>0<br>84<br>0       | 56<br>53<br>***<br>100<br>***  | 68<br>0<br>0<br>***           | 95<br>12<br>0<br>***           | ***<br>15<br>9<br>0<br>***    |
| F<br>F<br>F<br>F                     | 16 187<br>17 489<br>35 122<br>35 124<br>35 131     | ***<br>9<br>***<br>***          | ***<br>15<br>0<br>0<br>100     | ***<br>***<br>0<br>0<br>100    | ***<br>100<br>100<br>100      | ***<br>0<br>100<br>100<br>100  | 0<br>0<br>100<br>100<br>100   |
| F<br>F<br>F<br>F                     | 35 158<br>35 172<br>35 198<br>35 396<br>40 816     | 100<br>100<br>***<br>***        | 100<br>100<br>***<br>***       | 100<br>100<br>***<br>***       | 100<br>100<br>0<br>***        | 100<br>100<br>0<br>0           | 100<br>100<br>100<br>0        |
| GUM<br>GUM<br>GUM<br>IEN<br>IEN      | 14 1144<br>30 652<br>30 664<br>12 303<br>14 469    | 10<br>9<br>8<br>100<br>100      | 9<br>40<br>9<br>100<br>100     | 9<br>100<br>23<br>100<br>100   | 8<br>0<br>0<br>***<br>100     | 4<br>1<br>8<br>***             | 3<br>1<br>7<br>***            |

TABLE 15A. (CONT.)

| LAB.                                 | CLOCK                                               | 49409                          | 49469                          | 49529                          | 49589                         | 49649                        | 49709                          |
|--------------------------------------|-----------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|------------------------------|--------------------------------|
| IEN<br>IEN<br>IEN<br>IFAG<br>IFAG    | 14 893<br>31 659<br>35 219<br>14 1105<br>16 131     | 13<br>100<br>100<br>2<br>100   | 28<br>100<br>100<br>2<br>100   | 100<br>100<br>100<br>3<br>100  | 100<br>100<br>100<br>2<br>76  | 100<br>100<br>2<br>100       | 100<br>100<br>2<br>100         |
| IFAG<br>IFAG<br>IGMA<br>IGMA<br>IGMA | 16 138<br>16 173<br>14 2407<br>16 112<br>17 127     | 1<br>1<br>0<br>0               | 1<br>1<br>0<br>0               | 1<br>1<br>0<br>0               | 1<br>1<br>0<br>0              | 1<br>1<br>0<br>0             | 1<br>1<br>0<br>0<br>0          |
| INPL<br>INPL<br>INPL<br>INPL<br>KRIS | 14 2308<br>14 2426<br>31 145<br>31 619<br>12 1406   | 7<br>23<br>2<br>19<br>6        | ***<br>***<br>***              | 0<br>0<br>0<br>0               | 0<br>***<br>0<br>0<br>26      | ***<br>0<br>0<br>100<br>0    | ***<br>0<br>5<br>0             |
| KRIS<br>KRIS<br>KRIS<br>KRIS<br>KRIS | 12 1902<br>12 1903<br>21 280<br>36 321<br>40 5623   | 4<br>4<br>15<br>***            | 9<br>5<br>16<br>0              | 0<br>8<br>16<br>0              | 7<br>32<br>14<br>100<br>100   | 5<br>25<br>***<br>100<br>100 | 4<br>8<br>***<br>100<br>95     |
| LDS<br>LDS<br>MSL<br>MSL<br>MSL      | 12 202<br>35 289<br>12 381<br>12 933<br>12 1770     | ***<br>0<br>0<br>0<br>0        | ***<br>100<br>0<br>0           | 0<br>100<br>1<br>8<br>2        | ***<br>100<br>***<br>7<br>4   | ***<br>100<br>***<br>7<br>5  | ***<br>100<br>***<br>11<br>6   |
| MSL<br>NAOM<br>NAOM<br>NAOM<br>NAOT  | 36 274<br>14 885<br>14 1315<br>34 2146<br>31 284    | 0<br>0<br>42<br>56<br>24       | 0<br>5<br>56<br>39<br>0        | 100<br>10<br>83<br>34<br>7     | 100<br>12<br>100<br>45<br>8   | 93<br>15<br>100<br>99<br>9   | 97<br>18<br>100<br>100<br>25   |
| NAOT<br>NAOT<br>NIM<br>NIM           | 34 1075<br>34 2494<br>12 1615<br>12 1633<br>12 1640 | 30<br>2<br>13<br>23<br>22      | 100<br>2<br>***<br>17<br>17    | 100<br>2<br>***<br>15<br>16    | 100<br>5<br>***<br>14<br>15   | 100<br>22<br>***<br>***      | 100<br>53<br>***<br>***        |
| NIST<br>NIST<br>NIST<br>NIST<br>NIST | 13 61<br>14 324<br>14 601<br>14 1316<br>16 217      | 48<br>6<br>100<br>91<br>32     | 37<br>7<br>100<br>58<br>31     | 69<br>10<br>***<br>49<br>33    | 100<br>***<br>***<br>47<br>34 | 96<br>***<br>***<br>95<br>0  | 100<br>***<br>***<br>100<br>43 |
| NIST<br>NIST<br>NIST<br>NIST<br>NIST | 18 1007<br>31 569<br>34 493<br>35 132<br>35 182     | 100<br>81<br>100<br>***<br>100 | 100<br>69<br>100<br>***<br>100 | 100<br>78<br>100<br>***<br>100 | 0<br>69<br>100<br>0<br>100    | 0<br>0<br>100<br>0<br>100    | 1<br>25<br>100<br>100<br>100   |

TABLE 15A. (CONT.)

| LAB.                              | CLOCK                                            | 49409                          | 49469                        | 49529                         | 49589                        | 49649                         | 49709                          |
|-----------------------------------|--------------------------------------------------|--------------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|
| NIST<br>NIST<br>NPL<br>NPL<br>NPL | 35 408<br>40 201<br>12 316<br>14 418<br>14 1334  | ***<br>100<br>8<br>0<br>100    | ***<br>100<br>8<br>25<br>46  | 0<br>100<br>8<br>25<br>55     | 0<br>100<br>8<br>25<br>96    | 100<br>100<br>0<br>26<br>0    | 100<br>100<br>***<br>43<br>7   |
| NPL<br>NPL<br>NPL<br>NPL          | 14 1813<br>14 2064<br>31 328<br>35 123<br>35 404 | 73<br>63<br>0<br>100           | 73<br>71<br>0<br>100         | 62<br>69<br>***<br>100<br>0   | 48<br>73<br>***<br>100<br>0  | 100<br>0<br>***<br>100<br>100 | 97<br>29<br>***<br>100<br>100  |
| NPL<br>NRC<br>NRC<br>NRC<br>NRLM  | 40 1701<br>14 267<br>35 234<br>90 63<br>14 1632  | 100<br>4<br>100<br>100<br>100  | 100<br>3<br>100<br>100       | 100<br>3<br>100<br>100        | 100<br>7<br>100<br>100<br>68 | 100<br>15<br>100<br>100<br>57 | 100<br>7<br>100<br>100<br>62   |
| NRLM<br>NRLM<br>OMH<br>ORB<br>ORB | 31 312<br>35 224<br>12 1067<br>12 205<br>21 312  | 1<br>100<br>36<br>0<br>16      | ***<br>***<br>16<br>0<br>92  | 0<br>0<br>17<br>***<br>100    | 0<br>0<br>22<br>***<br>90    | 0<br>100<br>22<br>***<br>61   | 0<br>100<br>16<br>***<br>88    |
| ORB<br>ORB<br>ORB<br>PTB          | 35 201<br>35 202<br>40 2601<br>14 394<br>14 1103 | 100<br>97<br>***<br>30<br>72   | 100<br>97<br>***<br>23<br>82 | 100<br>96<br>***<br>***<br>83 | 100<br>100<br>0<br>***<br>59 | 100<br>100<br>0<br>***<br>63  | 100<br>100<br>3<br>***         |
| PTB<br>PTB<br>PTB<br>PTB<br>PTB   | 14 2379<br>35 128<br>35 271<br>35 415<br>40 505  | 56<br>100<br>100<br>***<br>100 | 50<br>100<br>100<br>***      | 50<br>100<br>100<br>***       | 42<br>100<br>100<br>0        | 49<br>100<br>100<br>0         | 45<br>***<br>***<br>100<br>*** |
| PTB<br>PTB<br>PTB<br>RC<br>ROA    | 40 537<br>92 1<br>92 2<br>40 6483<br>12 1223     | 19<br>100<br>100<br>***        | 14<br>100<br>100<br>0        | 10<br>100<br>100<br>***       | 8<br>100<br>100<br>***       | 8<br>100<br>100<br>***        | 10<br>100<br>100<br>***        |
| ROA<br>ROA<br>ROA<br>ROA          | 14 896<br>14 1569<br>16 113<br>16 121<br>31 422  | 66<br>***<br>8<br>19<br>81     | 31<br>***<br>9<br>18<br>72   | 27<br>0<br>14<br>0<br>94      | 26<br>0<br>19<br>2<br>89     | ***<br>43<br>21<br>2<br>100   | 0<br>84<br>21<br>2<br>100      |
| SCL<br>SCL<br>SNT<br>SNT<br>SNT   | 14 2127<br>31 838<br>14 900<br>14 1376<br>16 137 | 0<br>0<br>10<br>26<br>55       | 0<br>0<br>17<br>40<br>36     | 0<br>17<br>28<br>67<br>37     | 3<br>16<br>15<br>100<br>50   | 5<br>12<br>11<br>100<br>80    | 8<br>8<br>17<br>79<br>100      |

TABLE 15A. (CONT.)

| LAB.                                 | CLOCK                                               | 49409                        | 49469                       | 49529                       | 49589                         | 49649                        | 49709                         |
|--------------------------------------|-----------------------------------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------------|------------------------------|-------------------------------|
| S0<br>S0<br>SU<br>SU<br>SU           | 12 2067<br>40 5101<br>40 3803<br>40 3804<br>40 3805 | 39<br>1<br>100<br>100<br>100 | ***<br>100<br>***<br>100    | 0<br>0<br>***<br>***<br>100 | 0<br>0<br>***<br>100          | 41<br>8<br>***<br>***<br>100 | 54<br>14<br>***<br>100        |
| SU<br>SU<br>SU<br>TL<br>TL           | 40 3806<br>40 3807<br>40 3808<br>12 1455<br>12 2276 | 100<br>0<br>0<br>0           | 100<br>0<br>0<br>0<br>0     | 100<br>100<br>100<br>0      | 100<br>100<br>100<br>***      | 100<br>100<br>100<br>***     | 100<br>100<br>100<br>***      |
| TL<br>TL<br>TL<br>TL                 | 16 283<br>31 317<br>35 160<br>35 300<br>12 335      | ***<br>9<br>100<br>***<br>35 | ***<br>5<br>100<br>0<br>47  | ***<br>4<br>100<br>0<br>100 | ***<br>2<br>100<br>100<br>100 | 0<br>2<br>100<br>100<br>65   | 0<br>3<br>***<br>100<br>34    |
| TP<br>TP<br>TP<br>TUG<br>TUG         | 36 154<br>36 163<br>36 326<br>14 1654<br>18 108     | 100<br>100<br>***<br>100     | 100<br>100<br>0<br>100<br>1 | 100<br>100<br>0<br>100<br>1 | 100<br>100<br>100<br>100      | 100<br>100<br>100<br>100     | 100<br>100<br>100<br>100      |
| TUG<br>TUG<br>UME<br>UME<br>USNO     | 35 107<br>35 247<br>35 251<br>35 252<br>14 532      | 0<br>100<br>***<br>***       | 0<br>100<br>***<br>***<br>1 | 100<br>100<br>***<br>***    | 100<br>100<br>***<br>***      | 100<br>100<br>***<br>***     | 100<br>100<br>0<br>0          |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 14 654<br>14 656<br>14 752<br>14 837<br>14 862      | 14<br>0<br>6<br>0            | ***<br>***<br>***           | 0<br>***<br>***<br>18       | 0<br>0<br>***<br>***          | 100<br>***<br>***<br>0       | 100<br>***<br>***<br>***<br>0 |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 14 1100<br>14 1255<br>14 1264<br>14 1423<br>14 1653 | 12<br>100<br>0<br>13<br>0    | ***<br>***<br>13<br>***     | ***<br>***<br>19<br>***     | *** *** *** ***               | ***<br>***<br>0<br>***       | ***<br>***<br>0<br>***        |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 14 2314<br>14 2481<br>14 2482<br>14 2484<br>14 2485 | 11<br>1<br>0<br>0<br>0       | 14<br>***<br>15<br>***      | 16<br>0<br>***<br>***       | ***<br>***<br>***<br>***      | 0<br>0<br>***<br>***         | 0<br>***<br>***<br>***        |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 31 333<br>31 336<br>31 340<br>31 341<br>31 527      | ***<br>0<br>42<br>***        | 0<br>***<br>***<br>***      | 0<br>***<br>***<br>***      | ***<br>***<br>0<br>***        | 0<br>***<br>***<br>0<br>***  | 0<br>***<br>***<br>47<br>***  |

TABLE 15A. (CONT.)

| LAB.                                 | CLOCK                                               | 49409                | 49469                       | 49529                      | 49589                      | 49649                           | 49709                           |
|--------------------------------------|-----------------------------------------------------|----------------------|-----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 31 2483<br>34 651<br>34 653<br>34 1452<br>34 1586   | ***<br>5<br>0<br>*** | ***<br>4<br>100<br>0<br>*** | 0<br>***<br>100<br>0<br>0  | 0<br>***<br>100<br>***     | ***<br>100<br>0<br>100          | ***<br>100<br>0<br>100          |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 34 1605<br>34 1710<br>34 1809<br>34 2081<br>34 2100 | 0<br>0<br>0<br>0     | ***<br>***<br>0<br>69       | ***<br>***<br>16<br>100    | 0<br>0<br>***<br>***<br>73 | ***<br>0<br>***<br>0<br>98      | ***<br>***<br>0<br>88           |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 34 2312<br>34 2313<br>34 2315<br>34 2486<br>34 2487 | 0<br>***<br>0<br>80  | ***<br>***<br>50            | ***<br>0<br>***<br>51<br>0 | ***<br>0<br>***<br>***     | ***<br>100<br>***<br>***<br>100 | ***<br>100<br>***<br>***<br>100 |
| USNO                                 | 34 2488                                             | 0                    | 56                          | 21                         | 13                         | 13                              | 10                              |
| USNO                                 | 35 101                                              | ***                  | 0                           | 0                          | 100                        | 100                             | 100                             |
| USNO                                 | 35 104                                              | 0                    | 0                           | 100                        | 100                        | 100                             | ***                             |
| USNO                                 | 35 106                                              | ***                  | ***                         | 0                          | 0                          | 100                             | 100                             |
| USNO                                 | 35 108                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 114                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 142                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 145                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 146                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 148                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 150                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 152                                              | 100                  | 100                         | 100                        | ***                        | 0                               | 0                               |
| USNO                                 | 35 153                                              | 100                  | 100                         | 100                        | 100                        | ***                             | ***                             |
| USNO                                 | 35 156                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 161                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 164                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 165                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 166                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 167                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 169                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 171                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 213                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 217                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 225                                              | 100                  | 100                         | 100                        | ***                        | 0                               | 0                               |
| USNO                                 | 35 226                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 227                                              | 100                  | 100                         | 100                        | ***                        | 0                               | 0                               |
| USNO                                 | 35 229                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 231                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 233                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |
| USNO                                 | 35 242                                              | 100                  | 100                         | 100                        | 100                        | 100                             | 100                             |

TABLE 15A. (CONT.)

| LAB.                                 | CL                               | OCK                                    | 49409                                | 49469                           | 49529                                | 49589                           | 49649                           | 49709                           |
|--------------------------------------|----------------------------------|----------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| USNO<br>USNO<br>USNO<br>USNO         | 35<br>35<br>35<br>35             | 244<br>246<br>249<br>253               | 100<br>***<br>100<br>100             | 100<br>***<br>100<br>100        | 100<br>***<br>100<br>100             | 100<br>0<br>100<br>100          | 100<br>0<br>100<br>100          | 100<br>100<br>100<br>100        |
| USNO USNO USNO USNO USNO USNO        | 35<br>35<br>35<br>35<br>35<br>35 | 254<br>255<br>256<br>260<br>266<br>268 | 100<br>100<br>0<br>100<br>***<br>100 | 100<br>100<br>100<br>100<br>*** | 100<br>100<br>100<br>100<br>0<br>100 | 100<br>92<br>100<br>0           | 100<br>100<br>100<br>100<br>100 | 100<br>100<br>100<br>100<br>100 |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 35<br>35<br>35<br>35<br>35       | 270<br>279<br>389<br>392<br>394        | 45<br>0<br>***<br>***                | 63<br>100<br>***<br>***         | 93<br>100<br>***<br>0                | 100<br>100<br>***<br>0          | 100<br>100<br>***<br>100<br>100 | 100<br>100<br>0<br>100<br>100   |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 35<br>40<br>40<br>40<br>40       | 416<br>702<br>703<br>704<br>705        | ***<br>0<br>***<br>100<br>100        | 100<br>***<br>100<br>100        | 100<br>0<br>100<br>100               | ***<br>100<br>***<br>100<br>100 | 0<br>100<br>0<br>100<br>100     | 100<br>0<br>100<br>100          |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 40<br>40<br>40<br>40<br>40       | 708<br>709<br>710<br>711<br>712        | ***<br>0<br>100<br>0                 | ***<br>71<br>100<br>***         | 0<br>76<br>100<br>***                | 0<br>72<br>100<br>***           | 100<br>79<br>100<br>0<br>55     | 100<br>100<br>100<br>0<br>54    |
| USNO<br>USNO<br>USNO<br>USNO<br>USNO | 40<br>40<br>40<br>40<br>40       | 718<br>719<br>722<br>723<br>6201       | 21<br>18<br>0<br>9                   | 18<br>25<br>0<br>10             | 19<br>31<br>21<br>12<br>***          | 25<br>29<br>15<br>13            | ***<br>***<br>11<br>12<br>0     | ***<br>***<br>8<br>12<br>***    |
| VSL<br>VSL<br>VSL<br>VSL             |                                  | 1489<br>1034<br>125<br>288<br>179      | 5<br>56<br>27<br>0<br>100            | 5<br>66<br>54<br>2<br>100       | 5<br>64<br>90<br>1                   | 5<br>65<br>100<br>1<br>100      | ***<br>51<br>100<br>1           | ***<br>75<br>100<br>1           |
| VSL                                  | 35                               | 456                                    | ***                                  | ***                             | ***                                  | ***                             | ***                             | 0                               |

The clocks are designated by their type (2 digits) and serial number in the type. The codes for the types are:

12 HEWLETT-PACKARD 5061A

13 EBAUCHES, OSCILLATOM B5000

21 OSCILLOQUARTZ 3210

23 OSCILLOQUARTZ EUDICS 3020

30 HEWLETT-PACKARD 5061B

31 HEWLETT-PACKARD 5061B OPT. 4

34 H-P 5061A/B WITH 5071A TUBE

35 HEWLETT-PACKARD 5071A High perf.

36 HEWLETT-PACKARD 5071A Low. perf.

<sup>14</sup> HEWLETT-PACKARD 5061A OPT. 4

<sup>16</sup> OSCILLOQUARTZ 3200

<sup>17</sup> OSCILLOQUARTZ 3000

<sup>18</sup> FREQ. AND TIME SYSTEMS INC. 4000

<sup>4</sup>x HYDROGEN MASERS

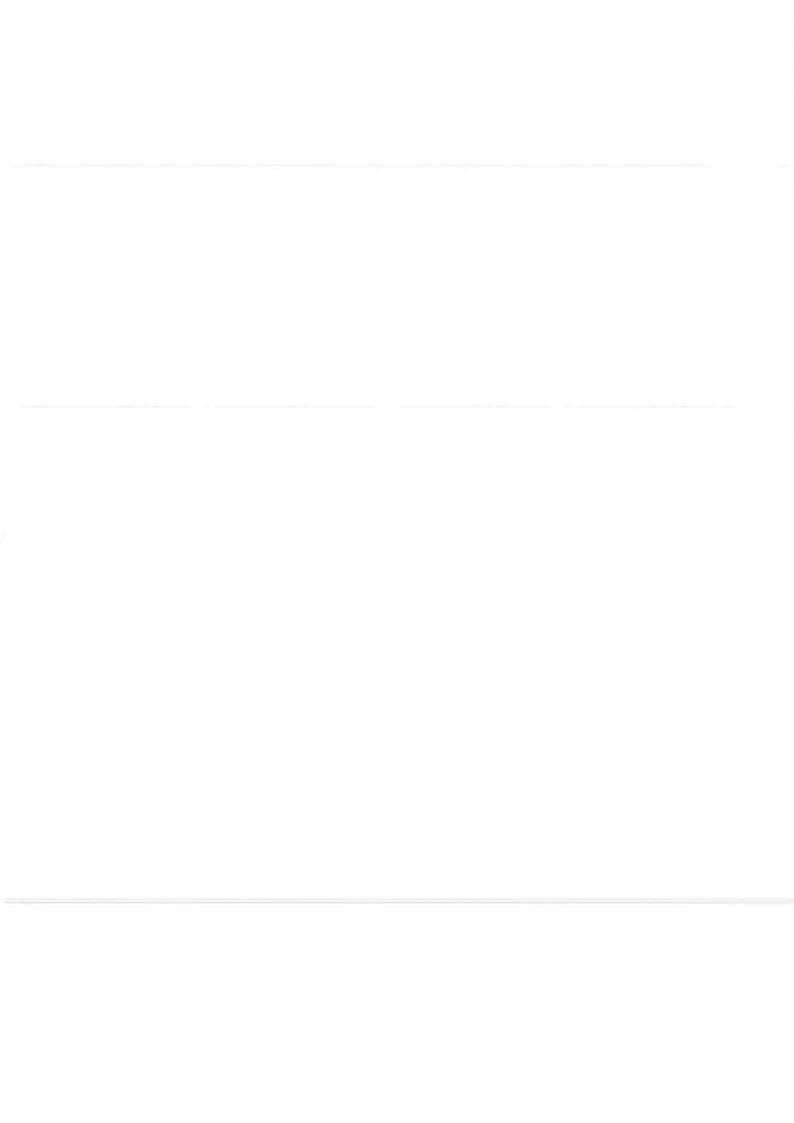

<sup>9</sup>x PRIMARY CLOCKS AND PROTOTYPES

TABLE 15B. STATISTICAL DATA ON THE WEIGHTS ATTRIBUTED TO THE CLOCKS IN 1994

| Interva | l<br>Total       |           |             | Number         | of cloc         | ks with         | a given         | weight          |               |
|---------|------------------|-----------|-------------|----------------|-----------------|-----------------|-----------------|-----------------|---------------|
| 1994    | number of clocks | wei<br>0* | ghts<br>0** | weight<br>1-19 | weight<br>20-39 | weight<br>40-59 | weight<br>60-79 | weight<br>80-99 | weight<br>100 |
| Jan-Feb | 240              | 50        | 8           | 51             | 15              | 15              | 6               | 7               | 88            |
| Mar-Apr | 221              | 38        | 6           | 44             | 11              | 16              | 12              | 5               | 89            |
| May-Jun | 230              | 44        | 5           | 44             | 15              | 10              | 8               | 8               | 96            |
| Jul-Aug | 221              | 41        | 9           | 41             | 12              | 10              | 9               | 7               | 92            |
| Sep-Oct | 229              | 38        | 13          | 40             | 10              | 8               | 7               | 9               | 104           |
| Nov-Dec | 225              | 32        | 5           | 42             | 11              | 9               | 5               | 9               | 112           |

<sup>\*</sup> A priori null weight (test interval of new clocks).

<sup>\*\*</sup> Null weight resulting from the statistics.
Clocks with missing data during a two-month interval of computation are excluded.



#### ANNEX I

# Access to the BIPM Time Section data via anonymous FTP

The BIPM Time section is making available several publications and data files via anonymous ftp. To access it, one should use the following procedure (precise syntax may depend on the machine one is running):

ftp 145.238.2.2

! to connect

user anonymous

I system requests that you enter your identity as a

password

cd [anonymous.tai]

! to access the [.tai] subdirectory

get read.me

! the read.me file is listed below

cd [.subdirectory]

! to go to one of the subdirectories

Of course, when logged on, one can go directly to the proper subdirectory

by issuing the command:

cd [anonymous.tai.subdirectory]

or just.

cd [.tai.subdirectory]

and get the files needed.

## Listing of the READ.ME file:

last update: 31 March 1995

### BUREAU INTERNATIONAL DES POIDS ET MESURES TIME SECTION

The [.tai] subdirectory offers via ANONYMOUS FTP (node 145.238.2.2) informations of interest for the time & frequency community. This service is under development. It presently contains 3 subdirectories:

[.tai.gps]

A selection of recent GPS time data

(presently upon request)

[.tai.publication]

Latest issue of Time Section publications

Circular T#xx in file cirt.xx

GPS schedule #xx in file schgps.xx

[.tai.scale]

Time scales data (most recent year or update)

(previous years upon request)

TT(BIPMxx) in file TTBIPM.xx

For year xx until 92:

UTC-UTC(labs) in file UTC.xx

TAI-TA(labs) in file TA.xx

For year xx starting with 93:

Files issued from tables of the Annual Report

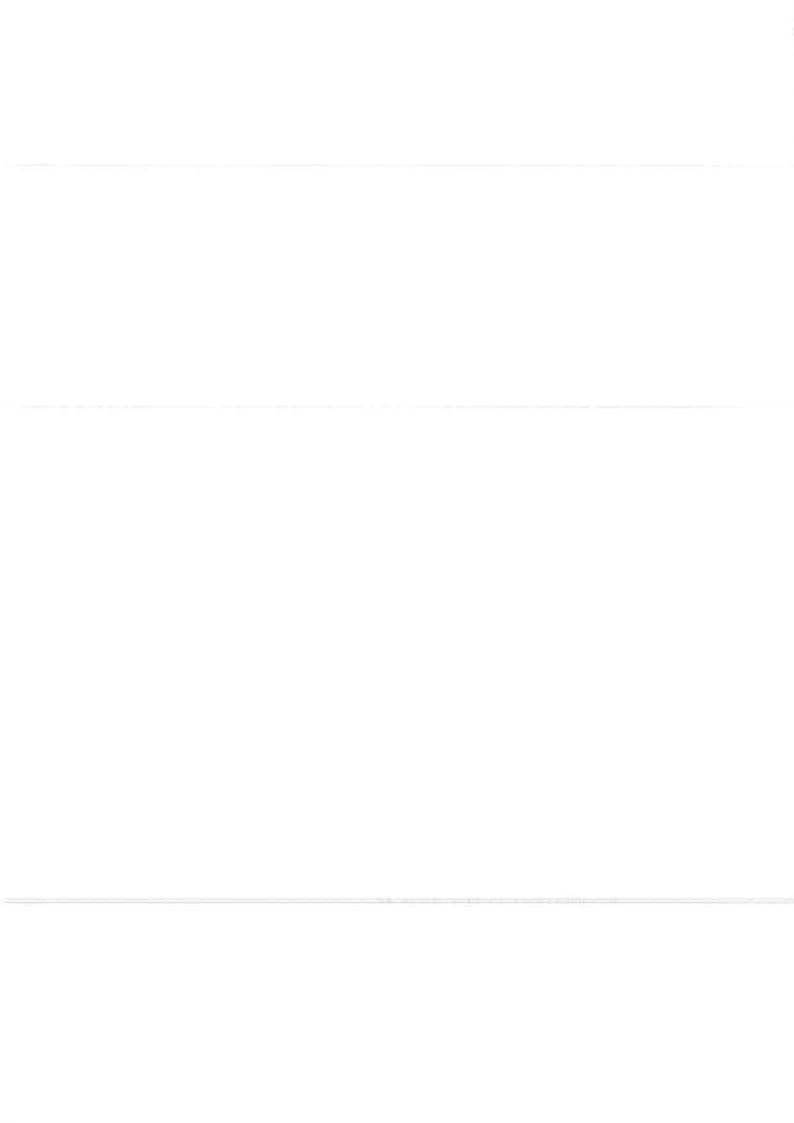
Frequency difference of EAL and TAI in file EALTAIXX.AR

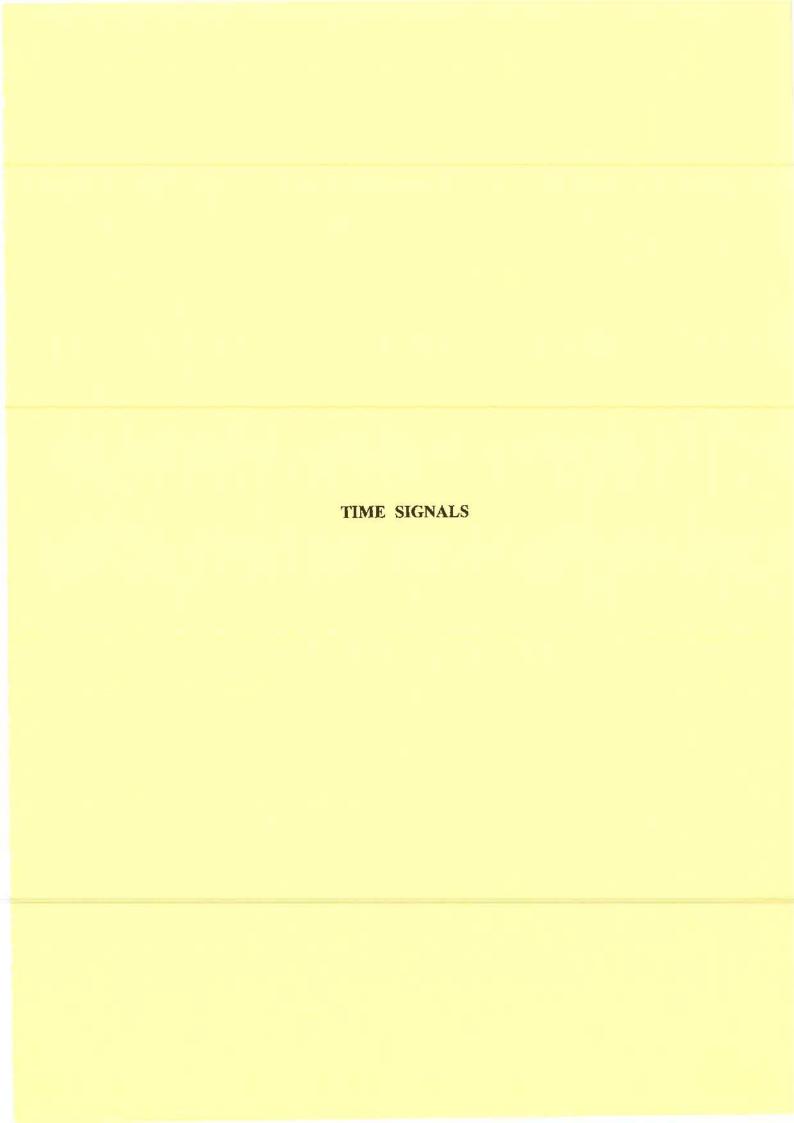
TAI frequency in file FTAIxx.AR

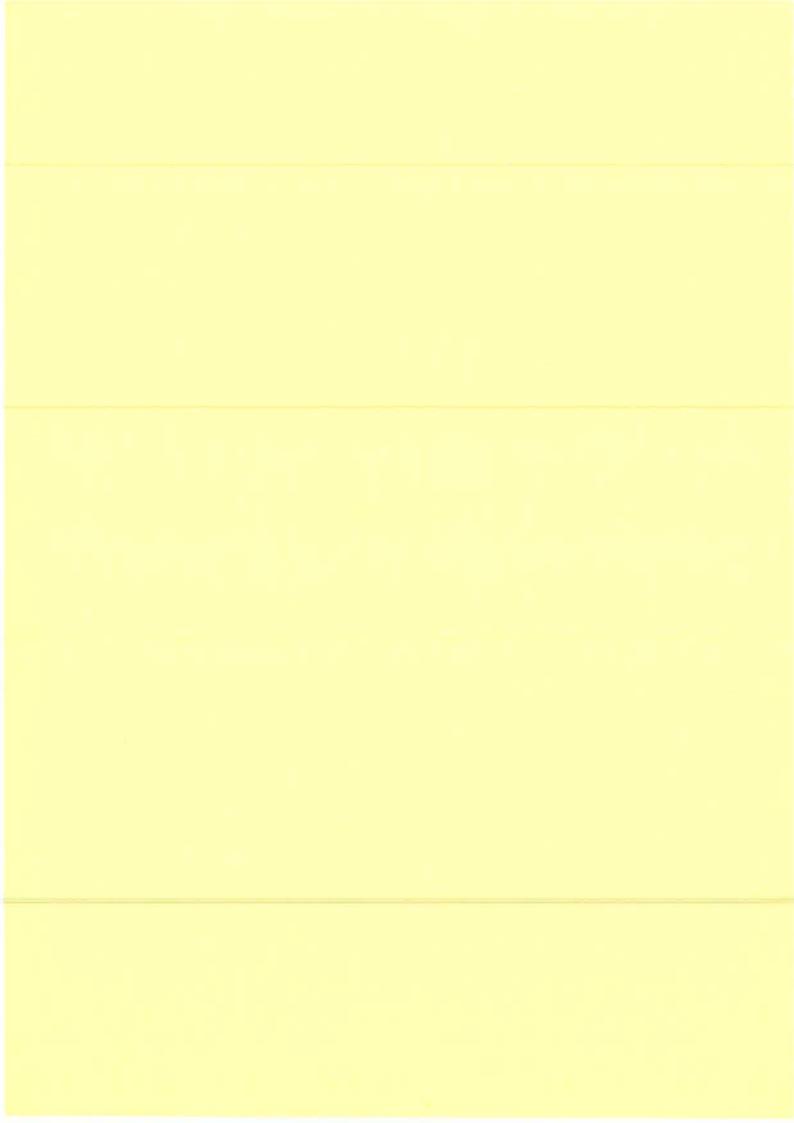
Duration of TAI scale interval in file SITAIxx.AR

TAI-TA(labs) in file TAIxx.AR

UTC-UTC(labs) in file UTCxx.AR


UTC-GPS time in file UTCGPSxx.AR

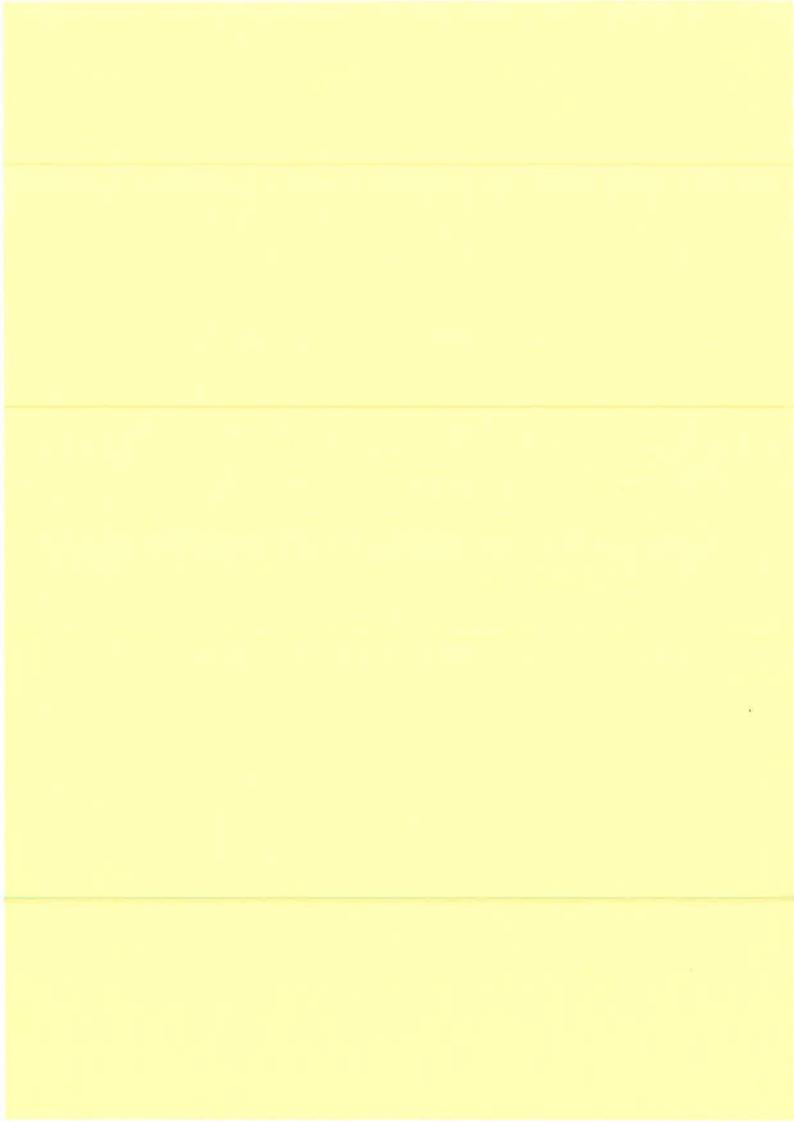

UTC-GLONASS time in file UTCGLOxx.AR


Rates of clocks in file RTAIxx.AR

Weights of clocks in file WTAIxx.AR

For any comment or query send a message to: bipm@mesiob.obspm.fr or tai@bipm.fr








The time signal emissions reported here follow the UTC system, in accordance with the Recommendation 460-4 of the Radiocommunication Bureau (RB) of the International Telecommunication Union (ITU) unless otherwise stated.

Their maximum departure from the Universal Time UT1 is thus 0.9 second.

The following tables are based on information received at the BIPM in January and February 1995.



# AUTHORITIES RESPONSIBLE FOR THE TIME SIGNAL EMISSIONS

| Signal | Authority                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                             |
| ATA    | National Physical Laboratory<br>Dr. K.S. Krishnan Road<br>New Delhi - 110012, India                                                         |
| ВРМ    | Shaanxi Astronomical Observatory<br>Chinese Academy of Sciences<br>P.O. Box 18 - Lintong<br>Shaanxi, China                                  |
| BSF    | Telecommunication Laboratories                                                                                                              |
|        | Ministry of Transportation<br>and Communications<br>P.O. Box 71 - Chung-Li<br>320 Taiwan, Rep. of China                                     |
| CHU    | National Research Council of Canada<br>Institute for National Measurement<br>Standards - Time Standards<br>Ottawa, Ontario, K1A OR6, Canada |
| DCF77  | Physikalisch-Technische<br>Bundesanstalt, Lab. Zeiteinheit<br>Bundesallee 100<br>W-38116 Braunschweig<br>Germany                            |
| EBC    | Real Instituto y Observatorio<br>de la Armada - San Fernando<br>Cadiz, Spain                                                                |
| HBG    | Service horaire HBG<br>Observatoire Cantonal<br>CH - 2000 Neuchâtel, Suisse                                                                 |
| HLA    | Time and Frequency Laboratory<br>Korea Research Institute of                                                                                |
|        | Standards and Science<br>Yusong P.O. Box 102, Taejon 305-600                                                                                |
|        | Republic of Korea                                                                                                                           |

Signal

Authority

IAM

Istituto Superiore delle Poste e

delle Telecomunicazioni

Viale Europa 190 00144 - Roma, Italia

JG2AS, JJY

Standards and Measurements Division

Communications Research Laboratory

2-1, Nukui-kitamachi 4-chome

Koganei-shi, Tokyo

184 Japan

LOL

Servicio de Hidrográfica Naval

Observatorio Naval Av. España 2099

1107 - Buenos-Aires, Argentina

MSF

National Physical Laboratory

Division of Electrical Science

Teddington, Middlesex TW11 0LW

United Kingdom

**OMA** 

Institute of Radio Engineering and

Electronics - Academy of Sciences of

Czech Republic - Chaberská 57

182 51 Praha 8 - Kobylisy, Czech Republic

PPE, PPR

Departemento Serviço da hora

Observatorio Nacional (CNPq)

Rua General Bruce, 586, Sao Cristovao

20921-030 - Rio de Janeiro, Brasil

RAB-99, RBU, RCH, RID, RJH-63, RJH-69, RJH-77, RJH-86, RJH-90, RTZ, RWM

Institute of Metrology for Time and Space (IMVP), GP "VNIIFTRI" Mendeleevo, Moscow Region 141570 Russia Signal

Authority

TDF

France Telecom Centre National d'Etudes des Télécommunications - PAB - STC Etalons de fréquence et de temps

196 avenue Henri Ravera 92220 - Bagneux, France

VNG

National Standards Commission

P.O. Box 282

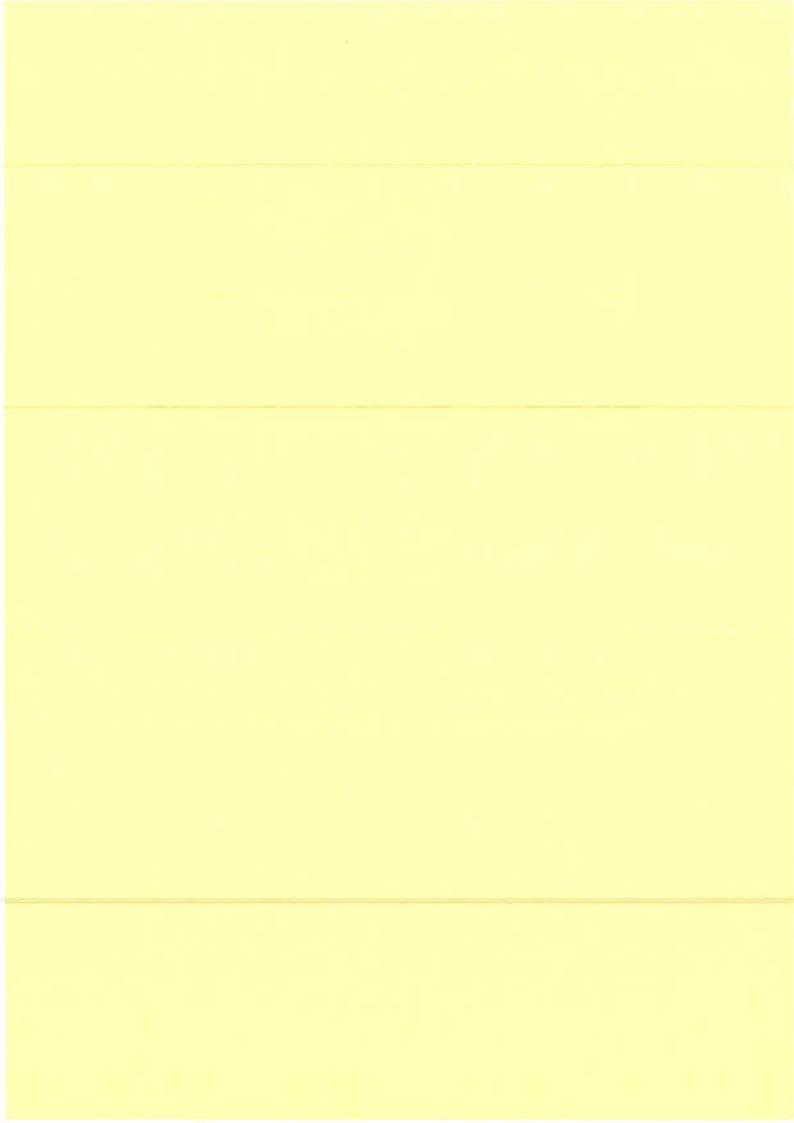
North Ryde NSW 2113

Australia

WWV, WWVB, WWVH

Time and Frequency Division, 847.00 National Institute of Standards and

Technology - 325 Broadway Boulder, Colorado 80303, U.S.A.


YVTO

Direccion de Hidrografia y Navegacion

Observatorio Cagigal Apartado Postal No 6745 Caracas, Venezuela

#### Note

The emission of time signals by LOL3, Buenos-Aires, Argentina, and by PPE, Riode-Janeiro, Brazil, are momentaneouly interrupted.



| TIME S  | IGNALS EMITTED                              | IN THE UTC                         | SYSTEM 121                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|---------------------------------------------|------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station | Location<br>Latitude<br>Longitude           | Frequency<br>(kHz)                 | Schedule (UTC)                                   | Form of the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ATA     | Greater Kailash<br>New Delhi                | 10 000                             | continuous                                       | Second pulses of 5 cycles of a 1 kHz modulation. Minute pulses of 100 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | India<br>28° 34'N<br>77° 19'E               |                                    |                                                  | duration. (The time signals are advanced by 50 ms on UTC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ВРМ     | Pucheng<br>China<br>35° 0'N<br>109° 31'E    | 2 500<br>5 000<br>10 000<br>15 000 | 7 h 30 m to 1 h continuous continuous 1 h to 9 h | Signals emitted in advance on UTC by 20 ms. Second pulses of 10 ms of 1 kHz modulation. Minute pulses of 300 ms of 1 kHz modulation. UTC time signals are emitted from minutes 0 to 10, 15 to 25, 30 to 40, 45 to 55. UT1 time signals are emitted from minutes 25 to 29, 55 to 59.                                                                                                                                                                                                                                                                                                                                       |
| BSF     | Chung-Li<br>Taiwan<br>Rep. of China         | 5 000<br>15 000                    | continuous<br>except<br>interruption             | From min. 5 to 10, 15 to 20, 25 to 30, 45 to 50, 55 to 60, second pulses of 5 ms duration without 1 kHz modulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 24° 57'N<br>121° 9'E                        |                                    | between<br>minutes 35<br>and 40                  | From min. 0 to 5, 10 to 15,, 50 to 55, second pulses of 5 ms duration with 1 kHz modulation. The 1 kHz modulation is interrupted 40 ms before and after the pulses.  Minute pulses are extended to 300 ms.  DUT1: ITU-R code by pulse lengthening.                                                                                                                                                                                                                                                                                                                                                                        |
| CHU     | Ottawa<br>Canada<br>45° 18'N<br>75° 45'W    | 3 330<br>7 335<br>14 670           | continuous                                       | Second pulses of 300 cycles of a 1 kHz modulation, with 29th and 51st to 59th pulses of each minute omitted. Minute pulses are 0.5 s long. Hour pulses are 1.0 s long, with the following 1st to 10th pulses omitted. A bilingual (Fr. Eng.) announcement of time (UTC) is made each minute following the 50th second pulse. FSK code (300 bps, Bell 103) after 10 cycles of 1 kHz on seconds 31 to 39. Year, DUT1, leap second information, TAI-UTC and Canadian summer time format on 31, and time code on 32-39. Broadcast is single sideband; upper sideband with carrier reinsert. DUT1: ITU-R code by double pulse. |
| DCF77   | Mainflingen<br>Germany<br>50° 1'N<br>9° 0'E | 77.5                               | continuous                                       | At the beginning of each second (except the 59th second) the carrier amplitude is reduced to about 25 % for a duration of 0.1 s or 0.2 s. Coded transmission of year, month, day, hour, minute and day of the week in a BCD code from second marker No 21 to No 58 (The second marker durations of 0.1 s or                                                                                                                                                                                                                                                                                                               |
|         |                                             |                                    |                                                  | 0.2 s correspond to a binary 0 or a binary 1 respectively). The coded time information is related to legal time of Germany and second markers 17 and 18 indicate if the transmitted time refers to UTC(PTB) + 2 h (summer time)                                                                                                                                                                                                                                                                                                                                                                                           |

or UTC(PTB) + 1 h. Second marker No 15 is prolonged to 0.2 s, if the reserve antenna is in use. To achieve a more accurate time transfer and better use of the frequency spectrum available, an additional pseudo random phase - shift keying of the carrier is superimposed to the AM second markers.

No transmission of DUT1.

| Station | Location<br>Latitude<br>Longitude                          | Frequency<br>(kHz)                          | Schedule (UTC)                                                                           | Form of the signal                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBC     | San Fernando<br>Spain<br>36° 28'N<br>6° 12'W               | 12 008<br>6 840                             | 10 h 00 m to 10 h 25 m<br>10 h 30 m to 10 h 55 m                                         | Second pulses of 0.1 s duration of a 1 kHz modulation. Minute pulses of 0.5 s duration of 1 250 Hz modulation.  DUT1: ITU-R code by double pulse.                                                                                                                                                                       |
| HBG     | Prangins Switzerland 46° 24'N 6° 15'E                      | 75                                          | continuous                                                                               | Interruption of the carrier at the beginning of each second, during 100 ms. The minutes are identified by a double pulse, the hours by a triple pulse. No transmission of DUT1. Time code and other coded information.                                                                                                  |
| HLA     | Taedok                                                     | 5 000                                       | continuous                                                                               | Pulses of 9 cycles of 1800 Hz modulation.                                                                                                                                                                                                                                                                               |
|         | Science Town<br>Republic of Korea<br>36° 23'N<br>127° 22'E |                                             |                                                                                          | 29th and 59th second pulses omitted. Hour identified by 0.8 second long 1500 Hz tone. Beginning of each minute identified by 0.8 second long 1800 Hz tone. Voice announcement of hours and minutes each minute following 52nd second pulse. BCD time code given on 100 Hz subcarrier. DUT1: ITU-R code by double pulse. |
| IAM     | Rome                                                       | 5 000                                       | 7 h 30 m to 8 h 30 m                                                                     | Second pulses of 5 cycles of 1 kHz                                                                                                                                                                                                                                                                                      |
| LAIR    | Italy<br>41° 47'N<br>12° 27'E                              | 3 000                                       | 10 h 30 m to 11 h 30 m except sunday and national holidays. Advance by 1 hour in summer. | modulation. Minute pulses of 20 cycles.  Voice announcements every 15 m beginning at 0 h 0 m.  DUT1: ITU-R code by double pulse.                                                                                                                                                                                        |
| JG2AS   | Sanwa<br>Ibaraki<br>Japan<br>36° 11'N<br>139° 51'E         | 40                                          | continuous, except interruptions during communications.                                  | During experimental coded transmission of<br>the total day, hour, minute and DUT1, second<br>pulses are 0.2 s, 0.5 s and 0.8 s duration. In<br>case of no coded transmission, A1A type<br>second pulses of 0.5 s duration.                                                                                              |
| JJY.    | Sanwa<br>Ibaraki<br>Japan<br>36° 11'N<br>139° 51'E         | 2 500<br>5 000<br>8 000<br>10 000<br>15 000 | continuous, except<br>interruption between<br>minutes 35 and 39.                         | Second pulses of 8 cycles of 1 600 Hz modulation. Minute pulses are preceded by a 600 Hz modulation.  DUT1: ITU-R code by lengthening.                                                                                                                                                                                  |
| LOL1    | Buenos-Aires                                               | 5 000                                       | 11 h to 12 h                                                                             | Second pulses of 5 cycles of 1 000 Hz                                                                                                                                                                                                                                                                                   |
|         | Argentina<br>34° 37'S<br>58° 21'W                          | 10 000 }                                    | 14 h to 15 h<br>17 h to 18 h<br>20 h to 21 h<br>23 h to 24 h                             | modulation. Second 59 is omitted.  Announcement of hours and minutes every 5 minutes, followed by 3 m of 1 000 Hz or 440 Hz modulation.  DUT1: ITU-R code by lengthening.                                                                                                                                               |

| IIIII DI | INTERS ENTITIED I                                | N IND CICS            | IDIDNI 120                                                                                  |                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station  | Location<br>Latitude<br>Longitude                | Frequency<br>(kHz)    | Schedule (UTC)                                                                              | Form of the signal                                                                                                                                                                                                                                                         |
| MSF      | Rugby<br>United Kingdom<br>52° 22'N              | 60                    | continuous except for<br>an interruption for<br>maintenance from                            | Interruptions of the carrier of 100 ms for the second pulses, of 500 ms for the minute pulses. The signal is given by the beginning of                                                                                                                                     |
|          | 1° 11'W                                          |                       | 10 h 0 m to 14 h 0 m                                                                        | the interruption. BCD NRZ code, 100 bits/s                                                                                                                                                                                                                                 |
|          |                                                  |                       | on the first Tuesday                                                                        | (month, day of month, hour, minute),                                                                                                                                                                                                                                       |
|          |                                                  |                       | of each month. A longer<br>period of maintenance<br>during summer is<br>announced annually. | during minute interruption. BCD NRZ code, 1 bit/s (year, month, day of month, day of week, hour, minute) from seconds 17 to 59 in each minute, following the seconds interruption.  DUT1: ITU-R code by double pulse.                                                      |
| OMA      | Liblice<br>Czech Republic<br>50° 4'N<br>14° 53'E | 50                    | continuous, interrupted<br>on the first Tuesday of<br>each month.                           | Interruption of the carrier of 100 ms at the beginning of every second, of 500 ms at the beginning of every minute. The precise time is given by the beginning of the interruption. Phase coded announcement of date, UTC and local civil time, leap second and civil time |
|          |                                                  |                       |                                                                                             | change. No DUT1 code.                                                                                                                                                                                                                                                      |
| PPR      | Rio-de-Janeiro<br>Brazil<br>22° 59'S             | 435<br>4 244<br>8 634 | 1 h 30 m, 14 h 30 m,<br>21 h 30 m                                                           | Second ticks, of A1 type, during the five minutes preceding the indicated times. The minute ticks are longer.                                                                                                                                                              |
|          | 43° 11'W                                         | 13 105<br>17 194.4    |                                                                                             |                                                                                                                                                                                                                                                                            |
| RAB-99   | Khabarovsk                                       | 25                    | Winter schedule :                                                                           | A1N type 0.1 second pulses of 0.025 s                                                                                                                                                                                                                                      |
|          | Russia                                           |                       | 2 h 13 m to 2 h 22 m                                                                        | duration. Second pulses are prolonged to                                                                                                                                                                                                                                   |
|          | 48° 30'N                                         |                       | 8 h 13 m to 8 h 22 m                                                                        | 0.1 s. 10 second pulses are prolonged to 1 s                                                                                                                                                                                                                               |
|          | 134° 50'E                                        |                       | 14 h 13 m to 14 h 22 m                                                                      | and minute pulses are prolonged to 10 s.                                                                                                                                                                                                                                   |
|          |                                                  |                       | Summer schedule:                                                                            | No transmission of DUT1 code.                                                                                                                                                                                                                                              |
|          |                                                  |                       | 1 h 13 m to 1 h 22 m                                                                        |                                                                                                                                                                                                                                                                            |
|          |                                                  |                       | 7 h 13 m to 7 h 22 m                                                                        |                                                                                                                                                                                                                                                                            |
|          |                                                  |                       | 13 h 13 m to 13 h 22 m                                                                      |                                                                                                                                                                                                                                                                            |
| RBU      | Moscow                                           | 200/3                 | continuous                                                                                  | DXXXW type signals. The numbers of the                                                                                                                                                                                                                                     |
|          | Russia                                           | 200,0                 | CONTRACTOR                                                                                  | minute, hour, day of the month, day of the                                                                                                                                                                                                                                 |
|          | 55° 48'N                                         |                       |                                                                                             | week, month, year of the century, difference                                                                                                                                                                                                                               |
|          | 38° 18'E                                         |                       |                                                                                             | between the universal time and the local                                                                                                                                                                                                                                   |
|          |                                                  |                       |                                                                                             | time, TJD and DUT1+dUT1 are transmitted each minute from the 1st to the 59th second.                                                                                                                                                                                       |
|          |                                                  |                       |                                                                                             | From 9 h to 11 h, 19 h to 23 h are NON type                                                                                                                                                                                                                                |
|          |                                                  |                       |                                                                                             | signals.                                                                                                                                                                                                                                                                   |
| RCH      | Tashkent                                         | 2 500                 | 0 h to 3 h 50 m                                                                             | A1X type second pulses are transmitted                                                                                                                                                                                                                                     |
| (*)      | Uzbekistan                                       |                       | 5 h to 23 h 50 m                                                                            | between minutes 0 and 10, 30 and 40. The                                                                                                                                                                                                                                   |
|          | 41° 19'N                                         | 5 000                 | 0 h to 3 h 50 m                                                                             | pulses at the beginning of the minute are                                                                                                                                                                                                                                  |
|          | 69° 15'E                                         | 40.000                | 14 h to 23 h 50 m                                                                           | prolonged to 0.5 s. A1N type 0.1 seconds                                                                                                                                                                                                                                   |
|          |                                                  | 10 000                | 5 h to 14 h 20 m                                                                            | pulses of 0.02 s duration are transmitted                                                                                                                                                                                                                                  |
|          |                                                  |                       |                                                                                             | between minutes 10 and 20, 40 and 50. The pulses at the beginning of the second are prolonged to 0.04 s and of the minute to                                                                                                                                               |
|          |                                                  |                       |                                                                                             | 0.5 s. DUT1+dUT1: by double pulses.                                                                                                                                                                                                                                        |

(\*) CIS radiostation emitting DUT1 information in accordance with the ITU-R code and also giving an additional information, dUT1, which specifies more precisely the difference UT1-UTC down to multiples of 0,02 s, the total value of the correction being DUT1 + dUT1. Positive values of dUT1 are transmitted by the marking of p second markers within the range between the 21th and 24th second so that dUT1 = +p.0,02 s. Negative values of dUT1 are transmitted by the marking of q second markers within the range between the 31th and the 34th second, so that dUT1 = -q.0,02 s.

| Station    | Location<br>Latitude<br>Longitude                 | Frequency<br>(kHz) | Schedule (UTC)                                                                                                              | Form of the signal                                                                                                                                                                                                                                                                                                                     |
|------------|---------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RID        | Irkutsk                                           | 5 004              | The station simulta-                                                                                                        | A1X type second pulses are transmitted                                                                                                                                                                                                                                                                                                 |
| (*)        | Russia<br>52° 26'N<br>104° 2'E                    | 10 004 }           | neously operates on<br>three frequencies.                                                                                   | between minutes 20 and 30, 50 and 60. The pulses at the beginning of the minute are prolonged to 0.5 s. A1N type 0.1 second pulses of 0.02 s duration are transmitted between minutes 0 and 10, 30 and 40. The pulses at the beginning of the second are prolonged to 0.04 s, and of the minute to 0.5 s. DUT1+dUT1: by double pulses. |
| RJH-63     | Krasnodar<br>Russia<br>44° 46'N<br>39° 34'E       | 25                 | Winter schedule: 9 h 13 m to 9 h 22 m 17 h 13 m to 17 h 22 m Summer schedule: 8 h 13 m to 8 h 22 m 20 h 13 m to 20 h 22 m   | A1N type 0.1 second pulses of 0.025 s duration. Second pulses are prolonged to 0.1 s. 10 second pulses are prolonged to 1 s and minute pulses are prolonged to 10 s. No transmission of DUT1 code.                                                                                                                                     |
| RJH-69     | Molodechno<br>Belarus<br>54° 28'N<br>26° 47'E     | 25                 | Winter schedule: 7 h 13 m to 7 h 22 m 13 h 13 m to 13 h 22 m Summer schedule: 6 h 13 m to 6 h 22 m 12 h 13 m to 12 h 22 m   | A1N type 0.1 second pulses of 0.025 s duration. Second pulses are prolonged to 0.1 s. 10 second pulses are prolonged to 1 s and minute pulses are prolonged to 10 s. No transmission of DUT1 code.                                                                                                                                     |
| RJH-77     | Arkhangelsk<br>Russia<br>64° 22'N<br>41° 35'E     | 25                 | Winter schedule: 11 h 13 m to 11 h 22 m 21 h 13 m to 21 h 22 m Summer schedule: 2 h 13 m to 2 h 22 m 10 h 13 m to 10 h 22 m | A1N type 0.1 second pulses of 0.025 s duration. Second pulses are prolonged to 0.1 s. 10 second pulses are prolonged to 1 s and minute pulses are prolonged to 10 s. No transmission of DUT1 code.                                                                                                                                     |
| RJH-86     | Bishkek<br>Kirgizstan<br>43° 03'N<br>73° 37'E     | 25                 | Winter schedule: 4 h 13 m to 4 h 22 m 10 h 13 m to 10 h 22 m Summer schedule: 3 h 13 m to 3 h 22 m 9 h 13 m to 9 h 22 m     | A1N type 0.1 second pulses of 0.025 s duration. Second pulses are prolonged to 0.1 s. 10 second pulses are prolonged to 1 s and minute pulses are prolonged to 10 s. No transmission of DUT1 code.                                                                                                                                     |
| RJH-90     | Nizhni Novgorod<br>Russia<br>56° 11'N<br>43° 57'E | 25                 | Winter schedule: 5 h 13 m to 5 h 22 m 19 h 13 m to 19 h 22 m Summer schedule: 4 h 13 m to 4 h 22 m 18 h 13 m to 18 h 22 m   | A1N type 0.1 second pulses of 0.025 s duration. Second pulses are prolonged to 0.1 s. 10 second pulses are prolonged to 1 s and minute pulses are prolonged to 10 s. No transmission of DUT1 code.                                                                                                                                     |
| RTZ<br>(*) | Irkutsk<br>Russia                                 | 50                 | between minutes 0 and 5                                                                                                     | A1X type second pulses. The pulses at the beginning of the minute are prolonged to                                                                                                                                                                                                                                                     |
|            | 52° 26'N                                          |                    | 0 h to 21 h 05 m                                                                                                            | 0.5 s.                                                                                                                                                                                                                                                                                                                                 |
|            | 104° 2'E                                          |                    | 23 h to 23 h 05 m                                                                                                           | v.v s.                                                                                                                                                                                                                                                                                                                                 |

(\*) CIS radiostation emitting DUT1 information in accordance with the ITU-R code and also giving an additional information, dUT1, which specifies more precisely the difference UT1-UTC down to multiples of 0,02 s, the total value of the correction being DUT1 + dUT1. Positive values of dUT1 are transmitted by the marking of p second markers within the range between the 21th and 24th second so that dUT1 = +p.0,02 s. Negative values of dUT1 are transmitted by the marking of q second markers within the range between the 31th and the 34th second, so that dUT1 = -q.0,02 s.

dUIT are (fetternilled by the marking of a second med life and the Hills was not, as that dult 1 - 0.0.02 s

150° 48'E

16 000

| Station | Location<br>Latitude<br>Longitude                    | Frequency<br>(kHz)                | Schedule (UTC)                                        | Form of the signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------------------|-----------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RWM     | Moscow                                               | 4 996                             | The station simulta-                                  | A1X type second pulses are transmitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (*)     | Russia<br>55° 48'N<br>38° 18'E                       | 9 996<br>14 996                   | neously operates on three frequencies.                | between minutes 10 and 20, 40 and 50. The pulses at the beginning of the minute are prolonged to 0.5 s. A1N type 0.1 seconds pulses of 0.02 s duration are transmitted between minutes 20 and 30, 50 and 60. The pulses at the beginning of the second are prolonged to 0.04 s and of the minute to 0.5 s.  DUT1+dUT1: by double pulses.                                                                                                                                                                                              |
| TDF     | Allouis<br>France<br>47° 10'N<br>2° 12'E             | 162                               | continuous except<br>every Tuesday from<br>1 h to 5 h | Phase modulation of the carrier by + and - 1 radian in 0.1 s every second except the 59th second of each minute. This modulation is doubled to indicate binary 1.  The numbers of the minute, hour, day of the month, day of the week, month and year are                                                                                                                                                                                                                                                                             |
|         |                                                      |                                   |                                                       | transmitted each minute from the 21st to the 58th second, in accordance with the French legal time scale. In addition a binary 1 at the 17th second indicates that the local time is 2 hours ahead of UTC(summer time); a binary 1 at the 18th second indicates that the local time is one hour ahead of UTC(winter time); a binary 1 at the 14th second indicates that the current day is a public holiday (Christmas, 14 July, etc); a binary 1 at the 13th second indicates that the current day is a day before a public holiday. |
| VNG     | Llandilo<br>New South Wales<br>Australia<br>33° 43'S | 2 500<br>5 000<br>8 638<br>12 984 | continuous<br>continuous<br>continuous<br>continuous  | Second pulses of 50 ms of 1 kHz modulation. Second pulses 55 to 58 of 5 ms of 1 kHz. Second pulse 59 omitted. Minute pulses of 0.5 seconds of 1 kHz modulation. During minutes                                                                                                                                                                                                                                                                                                                                                        |

Second pulses of 50 ms of 1 kHz modulation. Second pulses 55 to 58 of 5 ms of 1 kHz. Second pulse 59 omitted. Minute pulses of 0.5 seconds of 1 kHz modulation. During minutes 5, 10, 15,... second pulses 50 to 58 are 5 ms of 1 kHz. BCD time code giving day of year, hour and minute at the next minute is given between seconds 20 and 46. Voice announcement on 2 500, 5 000 and 16 000 kHz during minutes 15, 30, 45 and 60. Morse station identification on 8 638 and 12 984 kHz during minutes 15, 30, 45 and 60. DUT1: ITU-R code by double.

(\*) CIS radiostation emitting DUT1 information in accordance with the ITU-R code and also giving an additional information, dUT1, which specifies more precisely the difference UT1-UTC down to multiples of 0,02 s, the total value of the correction being DUT1 + dUT1. Positive values of dUT1 are transmitted by the marking of p second markers within the range between the 21th and 24th second so that dUT1 = +p.0,02 s. Negative values of dUT1 are transmitted by the marking of q second markers within the range between the 31th and the 34th second, so that dUT1 = -q.0,02 s.

22 h to 10 h

# TIME SIGNALS EMITTED IN THE UTC SYSTEM

| Station | Location<br>Latitude<br>Longitude               | Frequency<br>(kHz)                           | Schedule (UTC) | Form of the signal                                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------|----------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| wwv     | Fort-Collins, CO<br>USA<br>40° 41'N<br>105° 2'W | 2 500<br>5 000<br>10 000<br>15 000<br>20 000 | continuous     | Pulses of 5 cycles of 1 kHz modulation. 29th and 59th second pulses omitted. Hour is identified by 0.8 second long 1 500 Hz tone. Beginning of each minute identified by 0.8 second long 1 000 Hz tone. DUT1: ITU-R code by double pulse. BCD time code given on 100 Hz subcarrier, includes DUT1 correction.                            |
| WWVB    | Fort-Collins, CO<br>USA<br>40° 40'N<br>105° 3'W | 60                                           | continuous     | Second pulses given by reduction of the amplitude of the carrier. coded announcement of the date, time, DUT1 correction, daylight savings time in effect, leap year and leap second.                                                                                                                                                     |
| wwvh    | Kauai, HI<br>USA<br>21° 59'N<br>159° 46'W       | 2 500<br>5 000<br>10 000<br>15 000           | continuous     | Pulses of 6 cycles of 1 200 Hz modulation. 29th and 59th second pulses omitted. Hour identified by 0.8 second long 1 500 Hz tone. Beginning of each minute identified by 0.8 second long 1 200 Hz tone. DUT1: ITU-R code by double pulse. BCD time code given on 100 Hz subcarrier, includes DUT1 correction.                            |
| YVTO    | Caracas<br>Venezuela<br>10° 30'N<br>66° 56'W    | 5 000                                        | continuous     | Second pulses of 1 kHz modulation with 0.1 s duration. The minute is identified by a 800 Hz tone and a 0.5 s duration. Second 30 is omitted. Between seconds 40 and 50 of each minute, voice announcement of the identification of the station. Between seconds 52 and 57 of each minute, voice announcement of hour, minute and second. |

# ACCURACY OF THE CARRIER FREQUENCY

Relative uncertainty of the carrier frequency in 10<sup>-10</sup>

ATA **BPM BSF** CHU DCF77 **EBC HBG** HLA IAM JG2AS, JJY LOL MSF **OMA** RAB-99, RBU RCH, RID, RWM RJH-63, RTZ RJH-69, RJH-77 RJH-86, RJH-90 **TDF VNG** wwv **WWVB WWVH** 

0.1 0.1 0.1 0.05 0.005 (10d-mean) 0.1 0.005 0.1 0.5 0.1 0.1 0.02 0.5 0.05 0.5 0.05 0.05 0.05 0.02 0.1 0.1 0.1 0.1

Imprimerie Durand B. P. n°69 - 28600 Luisant - Tél. : 37 24 48 00 Dépôt légal : avril 1995 Numéro d'impression : 8754