

BUREAU INTERNATIONAL DES POIDS ET MESURES

Circular T 78 (1994 July 27)

1 - Coordinated Universal Time UTC. Computed values of UTC-UTC(k) (1).

(From 1993 July 1, 0h UTC, to 1994 July 1, 0h UTC, TAI-UTC = $28\ s$) (From 1994 July 1, 0h UTC, until further notice, TAI-UTC = $29\ s$)

Date 1994 Oh UTC MJD	May 27 49499	Jun 6 49509	Jun 16 49519	Jun 26 49529
Laboratory k		TC(k) (Unit		
AOS (Borowiec) APL (Laurel)	-1.095 1.203	-0.810 1.315	-0.703 1.327	-0.892 1.266
AUS (Canberra)	0.296	0.305	0.245	0.246
BEV (Wien) CAO (Cagliari)	-0.289	-0.501	-0.733	-0.950
CH (Bern) CRL (Tokyo)	1.381 1.926	1.297 1.894	1.151 1.860	1.010 1.832
CSAO (Lintong) CSIR (Pretoria)	-0.369	-0.175	-0.178	-0.180
FTZ (Darmstadt)	-2.926 0.295	-2.958 0.298	-2.903 0.306	-2.862 0.299
GUM (Warszawa) IEN (Torino)	0.085 0.335	-0.032	-0.072	-0.095
IFAG (Wettzell)	0.335	0.361 0.248	0.434 0.487	0.501 0.825
IGMA (Buenos Aires)	-3.02	-2.98	-2.96	-2.96
INPL (Jerusalem) JATC (Lintong)	-1.587 0.991	-1.560 1.163	-1.463 1.011	-1.305 0.879
KRIS (Taejon)	-0.192	-0.171	-0.179	-0.162
LDS (Leeds)	-0.403	-0.410	-0.436	-0.450
MSL (Lower Hutt) NAOM (Mizusawa)	-0.501 -1.599	-0.552 -1.613	-0.701 -1.631	-0.692 -1.642
NAOT (Tokyo)	-1.827	-2.084	-2.371	-2.629
NIM (Beijing) NIST (Boulder)	7.96 -0.109	8.11 -0.109	8.18 -0.116	8.33 -0.104
NMC (Sofiya)	-	-	-	-
NPL (Teddington)	0.086	0.079	0.069	0.063
NPLI (New-Delhi) NRC (Ottawa)	-2.940 5.873	-2.817 5.966	6.062	-2.628 6.153
NRLM (Tsukuba) (2)	-11.410	-13.953	-13.795	-13.628
OMH (Budapest)	6.585	6.553	6.511	6.513
ONBA (Buenos Aires)	5.50	5.23	5.03	4.59
ONRJ (Rio de Janeiro)	-	-	-17.719	-18.158
OP (Paris) ORB (Bruxelles)	0.007 -1.862	0.012 -1.841	0.008 -1.857	0.004 -1.948
PTB (Braunschweig)	2.735	2.722	2.714	2.708
RC (Habana)	-	V_==	7.8	-
ROA (San Fernando)	2.553	2.510	2.496	2.514
SCL (Hong Kong) SNT (Stockholm)	1.006 0.083	0.976 0.084	0.889 0.062	0.694 0.076
SO (Shanghai)	2.13	2.16	2.16	2.13
SU (Moskva)	-3.884	-3.971	-4.058	-4.141
TL (Chung-Li)	-2.703	-2.626	-2.557	-2.472
TP (Praha) TUG (Graz)	-1.069 -3.994	-1.053 -3.895	-1.047 -3.825	-1.023
USNO (Washington DC)(USNO MC)	0.063	0.060	0.054	-3.737 0.055
VSL (Delft)	0.216	0.174	0.202	0.243

PAVILLON DE BRETEUIL F - 92312 SÈVRES CEDEX

TÉL. (CENTRAL): + 33 1 45 07 70 70 TELEX: BIPM 631351 F TÉLÉCOPIE: + 33 1 45 34 20 21

2 - International Atomic Time TAI and local atomic time scales TA(k).

The following table gives the computed values of TAI-TA(k) (1).

Date	1994 Oh UTC MJD		May 27 49499		Jun 16 49519	
Labor	ratory k		TA	I-TA(k) (Ur	nit = 1 micro	second)
APL	(Laurel)		2.666	2.778	2.790	2.729
AUS	(Canberra)		-51.835	-51.975	-52.187	-52.391
CH	(Bern)		-74.299	-74.123	-74.009	-73.890
CRL	(Tokyo)		39.208	39.640	40.063	40.483
CSA0	(Lintong)		14.322	14.386	14.254	14.122
F	(Paris)		130.111	130.495	130.874	131.242
INPL	(Jerusalem)		-206.632	-208.663	-210.650	-212.601
JATC	(Lintong)		12.324	12.665	12.857	12.995
KRIS	(Taejon)		-2.142	-1.931	-1.779	-1.592
NIM	(Beijing)		-8.44	-8.26	-8.17	-8.00
NISA	(Boulder)	(3)	-45113.624	-45114.029	-45114.446	-45114.844
NRC	(Ottawa)		21.942	22.035	22.131	22.222
PTB	(Braunschweig)		-360.665	-360.678	-360.686	-360.692
RC	(Habana)			-		
S0	(Shanghai)		-45.46	-45.47	-45.46	-45.49
SU	(Moskva)	(4)	27246.116	27246.029	27245.942	27245.859
USNO	(Washington DC)	(5)	-34699.894	-34700.567	-34701.245	-34701.914

- 3 Notes on sections 1 and 2.
 - (1) Values UTC-UTC(k) and TAI-TA(k) are published within 1 ns except for laboratories which are not linked through GPS common views.
 - (2) NRLM. Change of master clock on MJD = 49503
 - (3) NIST. TA(NISA) designates the scale AT1 of NIST.
 - (4) SU . Listed values are TAI-TA(SU) 2.80 seconds.
 - (5) USNO. TA(USNO) designates the scale A1(MEAN) of USNO.

4 - [UTC - GPS time] and [TAI - GPS time].

```
<code>[UTC - GPS time] = -9 s + CO (until 1994 July 1, Oh UTC)</code> [UTC - GPS time] = -10 s + CO (from 1994 July 1, Oh UTC) [TAI - GPS time] = 19 s + CO.
```

Daily values of CO are given in the following table. They are obtained as follows: the GPS data taken at the Paris Observatory, for highest elevation, are first corrected for precise satellite ephemerides and for measured ionospheric delays, and then smoothed to obtain daily values of EUTC(OP) - GPS time] at Oh UTC; daily values of CO are derived from them using linear interpolation of EUTC - UTC(OP)].

For a given day, where N measurements are used for estimation of CO : - the dispersion of individual measurements is characterized by a standard deviation σ ,

- the daily CO value is characterized by the standard deviation of the mean σ/\sqrt{N} .

Dat 199 Oh U	4	MJD	CO (ns)	σ (ns)	σ/√N (ns)
May May May	27 28 29 30 31 1 2 3 4 5	49499 49500 49501 49502 49503 49504 49505 49506 49507 49508	74 79 87 94 93 91 91 95 97	26 23 57 42 33 34 41 36 48 54	8 6 17 13 10 11 12 10 13 16
Jun Jun Jun Jun	6 7 8 9 10 11 12 13 14	49509 49510 49511 49512 49513 49514 49515 49516 49517 49518	101 101 101 106 110 109 99 86 78 74	56 32 37 34 34 36 53 36 36 36	16 9 10 9 10 10 14 10 9
Jun	16 17 18 19 20 21 22 23 24 25	49519 49520 49521 49522 49523 49524 49525 49526 49527 49528	73 74 74 69 68 67 67 65	32 37 44 29 31 33 36 36 38 58	8 10 12 8 10 9 10 10 10
Jun :	26	49529	60	22	6

5 - [UTC - GLONASS time].

[UTC - GLONASS time] = C1 (modulo 1 s).

From his current observations of both the GPS and GLONASS satellite systems Prof. P. Daly, University of Leeds, establishes and reports [GPS time - GLONASS time] at ten-day intervals, together with the standard deviation σ of his daily GLONASS data. C1 is then derived using [UTC - GPS time] of section 4.

Date 1994 Oh UTC	MJD	C1 (µs)	σ (μs)
May 27	49499	-17.46	0.04
Jun 6	49509	-17.36	0.07
Jun 16	49519	-17.24	0.04
Jun 26	49529	-17.14	0.03

6 - Difference between the normalized frequencies of EAL and TAI.

	Interval	of validi	ty	f(EAL)-f(TAI)
1993 Apr.	22 - 1994	Jun. 26	49099-49529	7.40x10 ⁻¹³

7 - Duration of the TAI scale interval.

The following table gives the departure D of the duration of the TAI scale interval from the SI second on the rotating geoid as realized by a given primary standard occasionally evaluated or continuously operating as a clock. In the later case the chosen two-month period of observation is also indicated. The last communicated estimate of the inaccuracy of the standard provides the uncertainty σ of the D value.

D and σ are expressed in units of 10^{-14} second.

Standard	Obs. period	D	σ
PTB-CS1	49469-49529	-0.4	3.0
PTB-CS2	49469-49529	+1.2	1.5

The estimate of the duration of the TAI scale interval, computed by the BIPM, from all the available measurements of the TAI frequency, obtained by comparison with primary frequency standards continuously observed or occasionally evaluated (CRL, LPTF, NIST, NRC, PTB, SU), is:

$$1 + 1 \times 10^{-14} \pm 2 \times 10^{-14}$$

in SI second on the rotating geoid, for the two-month interval 49469-49529 .