Evaluation of PTB primary caesium fountain frequency standard CSF1 between MJD 58424 - MJD 58449

PTB's primary caesium fountain frequency standard CSF1 was operated between MJD 58424, 0:00 UTC and MJD 58449, 0:00 UTC. Frequency comparisons were made with respect to PTB hydrogen maser H9, BIPM code 1400509.

The relative frequency instability of the relative frequency differences y(CSF1-H9) was $10.2 \times 10^{-14} \cdot (\tau/s)^{-1/2}$ during the 25 days. The actual measurement time amounts to 97.1% of the 25 × 24 hours. This results in a statistical uncertainty $u_A = 0.07 \times 10^{-15}$, assuming that white frequency noise is the dominant noise source.

For the uncertainty due to the clock link $u_{Lab} = 0.03 \times 10^{-15}$ is obtained by taking into account the actual measurement time. Finally, the estimated uncertainty for the link to TAI for 25 days is $u_{TAI} = 0.15 \times 10^{-15}$.

Frequency corrections for the following effects were applied to the raw data:

- Zeeman effect (magnetic field along the atoms' trajectory)
- black body effect (thermal radiation along the atoms' trajectory)
- relativistic redshift and relativistic Doppler effect
- cold collisions effect
- distributed cavity phase effect
- microwave lensing effect

The CSF1 standard uncertainty u_B is estimated as 2.9×10⁻¹⁶ (1 σ) for the relevant period [1].

Table of results of CSF1 compared to hydrogen maser H9 (1400509)

Interval of evaluation	MJD 58424, 0:00 UTC – MJD 58449, 0:00 UTC
Fractional dead time	2.9%
Resulting frequency difference	y(CSF1 − H9) = -21.00 × 10 ⁻¹⁵
Type A uncertainty u_A (1 σ)	0.07×10^{-15}
Type B uncertainty $u_{\rm B}$ (1 σ)	0.29×10^{-15}
Link to clock u_{Lab} (1 σ)	0.03×10^{-15}
Link to TAI <i>u</i> τΑι (1 σ)	0.15 × 10 ⁻¹⁵ (25 days)

Combined uncertainty (1 σ) 0.34 × 10⁻¹⁵

Type A (statistical) uncertainty of CSF1

For the microwave synthesis an optically stabilized microwave oscillator is utilized, which is locked to a hydrogen maser in the long-term [2]. The frequency instability $10.2 \times 10^{-14} (\tau/s)^{-1/2}$ of the measured relative frequency differences y(CSF1 – Hmaser) is obtained for the combination of low and high density operation and gives the statistical measurement uncertainty u_A [1].

In total the optically stabilized microwave system was out of operation due to failure or maintenance during 3 hours (0.5%) of the 25 day TAI measurement interval.

Type B (systematic) uncertainty of CSF1

In the table below we report the type B uncertainty evaluation results valid for the evaluation at hand. Detailed descriptions of the systematic uncertainty contributions of CSF1 have been published elsewhere [1].

Frequency shifts, corrections and type B uncertainties of CSF1 (parts in 10¹⁶):

Frequency shift	Correction	Uncertainty
Quadratic Zeeman shift	- 1078.02	0.10
Blackbody radiation shift	165.73	0.80
Relativistic redshift and Doppler effect	- 85.6	0.3
Collisional shift	- 5.8	2.6
Distributed cavity phase shift	- 0.04	0.93
Microwave lensing	-0.4	0.2
AC Stark shift (light shift)		0.01
Rabi and Ramsey pulling		0.013
Microwave leakage		0.01
Electronics		0.1
Background gas collisions		0.4
Total type B uncertainty		2.9

References

[1] S. Weyers, V. Gerginov, M. Kazda, J. Rahm, B. Lipphardt, G. Dobrev and K. Gibble, Metrologia **55**, pp. 789–805 (2018), <u>https://doi.org/10.1088/1681-7575/aae008</u>

[2] B. Lipphardt, V. Gerginov, S, Weyers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control **64**, pp. 761–766 (2017), <u>https://ieeexplore.ieee.org/document/7807353</u>