Evaluation of PTB primary caesium fountain frequency standard CSF1 between MJD 58359 - MJD 58389

PTB's primary caesium fountain frequency standard CSF1 was operated between MJD 58359, 0:00 UTC and MJD 58389, 0:00 UTC. Frequency comparisons were made with respect to PTB hydrogen maser H9, BIPM code 1400509.

The relative frequency instability of the relative frequency differences y(CSF1-H9) was $9.8\times10^{-14}\cdot(\tau/s)^{-1/2}$ during the 30 days. The actual measurement time amounts to 98.2% of the 30 × 24 hours. This results in a statistical uncertainty $u_A = 0.06\times10^{-15}$, assuming that white frequency noise is the dominant noise source.

For the uncertainty due to the clock link $u_{Lab} = 0.02 \times 10^{-15}$ is obtained by taking into account the actual measurement time. Finally, the estimated uncertainty for the link to TAI for 30 days is $u_{TAI} = 0.13 \times 10^{-15}$.

Frequency corrections for the following effects were applied to the raw data:

- Zeeman effect (magnetic field along the atoms' trajectory)
- black body effect (thermal radiation along the atoms' trajectory)
- relativistic redshift and relativistic Doppler effect
- cold collisions effect
- distributed cavity phase effect
- microwave lensing effect

The CSF1 standard uncertainty u_B is estimated as 3.1×10^{-16} (1 σ) for the relevant period [1].

Table of results of CSF1 compared to hydrogen maser H9 (1400509)

Interval of evaluation MJD 58359, 0:00 UTC – MJD 58389, 0:00 UTC

Fractional dead time 1.8%

Resulting frequency difference $y(CSF1 - H9) = -24.34 \times 10^{-15}$

Type A uncertainty u_A (1 σ) 0.06×10^{-15}

Type B uncertainty $u_{\rm B}$ (1 σ) 0.31 \times 10⁻¹⁵

Link to clock u_{Lab} (1 σ) 0.02×10^{-15}

Link to TAI u_{TAI} (1 σ) 0.13 × 10⁻¹⁵ (30 days)

Combined uncertainty (1 σ) 0.34 \times 10⁻¹⁵

Type A (statistical) uncertainty of CSF1

For the microwave synthesis an optically stabilized microwave oscillator is utilized, which is locked to a hydrogen maser in the long-term [2]. The frequency instability $9.8\times10^{-14}~(\tau/s)^{-1/2}$ of the measured relative frequency differences y(CSF1 – Hmaser) is obtained for the combination of low and high density operation and gives the statistical measurement uncertainty u_A [1].

In total the optically stabilized microwave system was out of operation due to failure or maintenance during 8 minutes (0.02%) of the 30 day TAI measurement interval.

Type B (systematic) uncertainty of CSF1

In the table below we report the type B uncertainty evaluation results valid for the evaluation at hand. Detailed descriptions of the systematic uncertainty contributions of CSF1 have been published elsewhere [1].

Frequency shifts, corrections and type B uncertainties of CSF1 (parts in 10¹⁶):

Frequency shift	Correction	Uncertainty
Quadratic Zeeman shift	- 1079.47	0.10
Blackbody radiation shift	165.66	0.80
Relativistic redshift and Doppler effect	- 85.56	0.3
Collisional shift	- 10.2	2.8
Distributed cavity phase shift	- 0.04	0.93
Microwave lensing	-0.44	0.20
AC Stark shift (light shift)		0.01
Rabi and Ramsey pulling		0.013
Microwave leakage		0.01
Electronics		0.1
Background gas collisions		0.4
Total type B uncertainty		3.1

References

[1] S. Weyers, V. Gerginov, M. Kazda, J. Rahm, B. Lipphardt, G. Dobrev and K. Gibble, Metrologia https://doi.org/10.1088/1681-7575/aae008, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/, https://doi.org/10.1088/1681-7575/</

[2] B. Lipphardt, V. Gerginov, S, Weyers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control **64**, pp. 761–766 (2017), https://ieeexplore.ieee.org/document/7807353