

Frequency evaluation of UTC(NMIJ) by NMIJ-Yb1 for the period MJD 59809 to MJD 59819

The secondary frequency standard NMIJ-Yb1 has been compared to UTC(NMIJ), during a measurement campaign between MJD 59809 and MJD 59819 (18th August 2022 – 28th August 2022). The Yb optical lattice clock operation covers 89.6 % of the total measurement period.

1. Results

Table 1. (a) Results of the comparison in 1×10^{-16}

Period (MJD)	y(UTC(NMIJ) – NMIJ-Yb1)	Total u _A	Total u _B	U _{A/Lab}	U B/Lab	<i>u</i> _{SecRep}	Uptime (%)
59809 -	-14.6	0.11	1.10	1.0	1.0	1.9	89.6
59819	-14.0	0.11	1.10	1.0	1.0	1.9	69.0

(b) Budget of uncertainties in 1×10^{-16}

u _{A:} Type A uncertainty				
uA: Type A uncertainty				
Yb statistics	0.11			
Total	0.11			
u _B : Type B uncertainty				
Yb systematics	1.10			
Gravitational	0.06			
Total	1.10			
u _{A/Lab} : Type A uncertainty				
Dead time in UTC(NMIJ) – Yb	1.0			
Total	1.0			
u _{B/Lab} : Type B uncertainty				
Microwave-optical frequency link	1.0			
Total	1.0			

The calibration is made using the most recently recommended value for the $6s^2$ $^1S_0 - 6s6p$ 3P_0 unperturbed optical transition in the 171 Yb neutral atom: 518 295 836 590 863.63 Hz [1]. u_{SecRep} is the recommended uncertainty of the secondary representation [1]

1

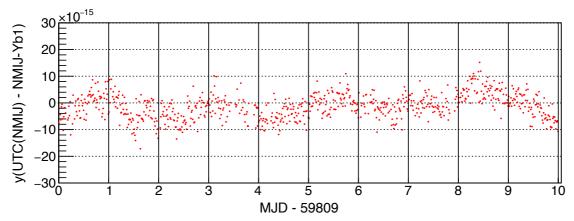


Figure 1. Data points of y(UTC(NMIJ) - NMIJ-Yb1) averaged over 10^3 s.

2. Systematic effects and uncertainties

Table 2. Budget of systematic effects and uncertainties for NMIJ-Yb1 [2,3] in 1×10^{-17}

Effect	Shift	Uncertainty	
Lattice light	6.1	4.9	
Blackbody radiation 5 10	¹⁵ -251.4 ²⁰	25 9.6 ³⁰ Time (day)	
Density	-1.7	0.9	
Second order Zeeman	-5.1	0.3	
Probe light	0.4	0.3	
Servo error	-1.7	1.8	
AOM switching	-	1	
Line pulling	-	1	
Total	-253.4	11.0	
Gravitational redshift	230.8	0.6	
Total (with gravitational redshift)	-22.6	11.0	

For the reports submitted in November and December 2020, the total systematic uncertainty of NMIJ-Yb1 was improved to 2×10^{-16} compared with an uncertainty of 4×10^{-16} described in previous reports and Ref. [3]. A major improvement was made in the uncertainty of the lattice light shift ($\sim 3 \times 10^{-16} \rightarrow \sim 5 \times 10^{-17}$). Here we reduced the uncertainty of the magic frequency by a factor of ~ 3 , and operated NMIJ-Yb1 with a lower trap potential depth of $\sim 200E$ r, where Er denotes the recoil energy from a lattice photon.

For the reports submitted in August 2021 and after that, the total systematic uncertainty of NMIJ-Yb1 was improved to 1×10^{-16} . The uncertainty of the blackbody radiation shift was

reduced from $\sim 2 \times 10^{-16}$ to $\sim 1 \times 10^{-16}$ by (a) reducing the temperature inhomogeneity of a vacuum chamber for trapping atoms, (b) inserting an aperture to reduce the solid angle of a window heated at ~ 200 °C, and (c) reevaluating the contributions from hot vacuum components (e.g., the heated window and atomic oven) with a Monte Carlo ray-tracing analysis.

The gravitational redshift was calculated with respect to the conventionally adopted reference potential $W_0 = 62~636~856.0~\text{m}^2/\text{s}^2$. For the reports submitted in July 2022 and after that, the uncertainty of the gravitational redshift was improved from 6×10^{-17} to 6×10^{-18} using the geopotential value of NMIJ-Yb1 measured by Geospatial Information Authority of Japan [4].

3. Frequency comparison

Table 3. Frequency correction and uncertainty for y(UTC(NMIJ) - NMIJ-Yb1) due to the dead time in UTC(NMIJ) - Yb in 1×10^{-17}

Effect	Correction	Uncertainty	
Maser noise model	-	9.8	
Steering	0.0	0.0	
Total	0.0	9.8	

The frequency of NMIJ-Yb1 was compared with UTC(NMIJ) using an optical frequency comb. A beat frequency between a laser locked to an ultra-stable cavity and the comb was counted. The frequency of the ultra-stable laser was shifted by an acousto-optic modulator (AOM) and stabilized to the clock transition in ¹⁷¹Yb atoms trapped in an optical lattice. The frequency of the AOM was then combined with the beat frequency to compute y(UTC(NMIJ) - NMIJ-Yb1).

The uncertainty $u_{\rm B/Lab}$ arose from a microwave-optical frequency link. For the reports submitted in November 2020 and after that, this uncertainty was improved to 1.0×10^{-16} compared with an uncertainty of 2.2×10^{-16} described in previous reports and Ref. [3]. The previous uncertainty was mainly caused by frequency multiplication of a 10 MHz signal from UTC(NMIJ). Here we reduced this uncertainty to low 10^{-17} by carefully stabilizing the temperature of a frequency multiplier. The present $u_{\rm B/Lab}$ uncertainty was limited by phase variations of the 10 MHz signal that occurred during its transmission through a coaxial cable.

The uncertainty $u_{A/Lab}$ arose from the dead time in the comparison between NMIJ-Yb1 and UTC(NMIJ). This uncertainty was estimated using a method described in Ref. [5]. For this estimation, we derived a maser noise model from the measured stability of UTC(NMIJ) against NMIJ-Yb1. The model includes a white phase modulation of $1 \times 10^{-12} / (\tau / s)$, a white frequency modulation (FM) of $9 \times 10^{-14} / (\tau / s)^{1/2}$, a flicker FM of 2×10^{-15} , a random walk FM of 4×10^{-24}

 $(\tau/s)^{1/2}$. $u_{A/Lab}$ also includes the uncertainty of a frequency correction resulting from the dead time when the frequency steering of UTC(NMIJ) is carried out.

References

- [1] "Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the definition of the second," BIPM publication, approved by CCTF March 2021,
- https://www.bipm.org/documents/20126/69375133/171Yb_518THz_2021.pdf/283dca33-4dac-f309-671e-577af2a62fc1
- [2] T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, "Uncertainty Evaluation of an ¹⁷¹Yb Optical Lattice Clock at NMIJ," IEEE Trans. Ultrason., Ferroelectr., Freq. Control **65**, 2449-2458 (2018).
- [3] T. Kobayashi, D. Akamatsu, K. Hosaka, Y. Hisai, M. Wada, H. Inaba, T. Suzuyama, F.-L. Hong, and M. Yasuda, "Demonstration of the nearly continuous operation of an ¹⁷¹Yb optical lattice clock for half a year," Metrologia **57**, 065021 (2020).
- [4] M. Nakashima, S. Fukaya, T. Toyofuku, K. Ochi, and K. Matsuo, "Determination of geopotential values at the optical lattice clocks based on geodetic approaches," Japan Geoscience Union Meeting, SGD02-14 (2022).
- [5] D.-H. Yu, M. Weiss, and T. E. Parker, "Uncertainty of a frequency comparison with distributed dead time and measurement interval offset," Metrologia 44, 91-96 (2007).

4