Date: April, 4, 2008

Dear Dr. Arias, BIPM,

Attached is the report on the frequency measurement by NMIJ-F1, a cesium atomic fountain frequency standard of NMIJ, during **MJD 54529-54549.** The uncertainty evaluation was the same as that in the last publication.

Shinya Yanagimachi Akifumi Takamizawa Takeshi Ikegami

National Metrology Institute of Japan (NMIJ) Time and Frequency Division Time Standards Section AIST Tsukuba Central 3, Tsukuba-Shi, Ibaraki-Ken 305-8563, Japan

Frequency comparison between H-Maser(405014) and Cs Fountain(NMIJ-F1) during MJD 54529-54549

The frequency of our Hydrogen maser HM(Clock # 405014) have been measured using NMIJ-F1 during MJD 54529-54549 (20 days). The results are shown in tables 1.

Period	54529-54549
Measurement ratio	96.3%
Y(NMIJ-F1)-Y(Maser 405014)	-13.1
<i>u</i> _A	0.8
<i>u</i> _B	3.9
$u_{link / lab}$	0.3

Table 1. Results of the comparison in 1×10^{-15} unit.

1. Type A uncertainty u_A

The frequency stability $\sigma_y(\tau)$ is $1 \times 10^{-12} \tau^{-1/2}$. This equation has been used for the estimation of type A uncertainty on the basis of white FM noise. The measurement uncertainty is 0.8×10^{-15} .

2. Uncertainty of the link in the laboratory $u_{link/lab}$

The uncertainty of the link in the laboratory, $u_{link/lab}$, is written as,

$$u_{link / lab} = \sqrt{u_{dead \ time}^2 + u_{link / maser}^2} \tag{1}$$

where $u_{link / maser}$ is the uncertainty due to the phase noise of the synthesis chain between the fountain and HM, $u_{dead time}$ is the uncertainty due to the operational dead time of the fountain. $(u_{link / maser}, u_{dead time})$ are evaluated to be $(2.5 \times 10^{-16}, 1 \times 10^{-16})$ for the period of MJD 54529-54549. 3. Type B uncertainty u_B

The value of type B uncertainty is the same as the last publication, as is shown in table 2.

MJD 34329 54549 III 1×10 uIIIt.		
Source of uncertainty	Bias	Uncertainty
2 nd order Zeeman	180.3	0.5
Blackbody radiation	-18.0	1.4
Gravitation	1.6	0.1
Cold collisions	0.0	3.3
Distributed cavity phase	0.0	1.2
Microwave power dependence	0.0	0.7
Total	163.9	3.9

Table 2: Frequency biases and uncertainties in NMIJ-F1 during the period MJD 54529-54549 in 1×10^{-15} unit.