Date: November, 6, 2006

Dear Dr. Arias, BIPM,

Attached is the report on the frequency measurement by NMIJ-F1, a cesium atomic fountain frequency standard of NMIJ, during MJD 53994-54009 and MJD 54024-54034. The uncertainty evaluation was the same as that in the last publication.

Shinya Yanagimachi Takeshi Ikegami

National Metrology Institute of Japan (NMIJ)
Time and Frequency Division
Time Standards Section
AIST Tsukuba Central 3, Tsukuba-Shi, Ibaraki-Ken 305-8563, Japan

Frequency comparison between H-Maser(405014) and Cs Fountain(NMIJ-F1) during MJD 53994-54009 and MJD 54024-54034

The frequency of our Hydrogen maser HM(Clock # 405014) have been measured using NMIJ-F1 during MJD 53994-54009 (15 days) and MJD 54024-54034 (10days). The results are shown in tables 1 and 2.

Table 1. Results of the comparison in 1x10⁻¹⁵ unit.

Period	53994-54009
Measurement ratio	82.6 %
Y(NMIJ-F1)-Y(Maser 405014)	-35.2
u_A	0.9
$u_{\scriptscriptstyle B}$	3.9
$u_{link / lab}$	0.5

Table 2. Results of the comparison in $1x10^{-15}$ unit.

Period	54024-54034
Measurement ratio	99.1 %
Y(NMIJ-F1)-Y(Maser 405014)	-42.5
u_A	1.1
$u_{\scriptscriptstyle B}$	3.9
$u_{link / lab}$	0.5

1. Type A uncertainty u_A

The frequency stability $\sigma_y(\tau)$ is $1\times 10^{-12}~\tau^{-1/2}$. This equation has been used for the estimation of type A uncertainty on the basis of white FM noise. The measurement uncertainty is 1.0×10^{-15} (MJD 53994-54009) and 1.1×10^{-15} (MJD 53994-54009), respectively.

2. Uncertainty of the link in the laboratory $u_{link/lab}$

The uncertainty of the link in the laboratory, $u_{link \ / \ lab}$, is written as,

$$u_{link/lab} = \sqrt{u_{dead time}^2 + u_{link/maser}^2}$$
 (1)

where $u_{link/maser}$ is the uncertainty due to the phase noise of the synthesis chain between the fountain and HM, $u_{dead\ time}$ is the uncertainty due to the operational dead time of the fountain. $(u_{link/maser},\ u_{dead\ time})$ are evaluated to be $(3.3\times10^{-16}\ ,\ 3.3\times10^{-16}\)$ for the period of MJD 53994-54009 and $(5.0\times10^{-16}\ ,\ 0.7\times10^{-16})$ for the period of MJD 54024-54034, respectively.

3. Type B uncertainty u_B

The value of type B uncertainty is the same as the last publication, as is shown in tables 3 and 4.

Table 3: Frequency biases and uncertainties in NMIJ-F1 during the period MJD 53994-54009 in 1×10^{-15} unit.

Source of uncertainty	Bias	Uncertainty
2 nd order Zeeman	185.0	0.5
Blackbody radiation	-18.0	1.4
Gravitation	1.6	0.1
Cold collisions	0.0	3.3
Distributed cavity phase	0.0	1.2
Microwave power dependence	0.0	0.7
Total	168.6	3.9

Table 4: Frequency biases and uncertainties in NMIJ-F1 during the period MJD 54024-54034 in 1×10^{-15} unit.

Source of uncertainty	Bias	Uncertainty
2 nd order Zeeman	184.0	0.5
Blackbody radiation	-18.0	1.4
Gravitation	1.6	0.1
Cold collisions	0.0	3.3
Distributed cavity phase	0.0	1.2
Microwave power dependence	0.0	0.7
Total	167.6	3.9