

Frequency evaluation of Maser 1401104 by IT-Yb1 for the period MJD 59634 to 59669

During the period MJD 59634 – 59669 (24 February 2022–31 March 2022) INRIM evaluated the frequency of the hydrogen maser IT-HM4 (BIPM code 1401104) using the Yb optical lattice frequency standard IT-Yb1 and an optical frequency comb. The evaluation is based on the CCTF2017 recommended frequency for ¹⁷¹Yb as a secondary representation of the second, $f(^{171}\text{Yb}) = 518295836590863.6\,\text{Hz}$ with a relative standard uncertainty of $u_{\text{Srep}} = 5 \times 10^{-16}\,[1,2]$. The results of the evaluation are summarized in Tab. 1. Details of IT-Yb1 operation and uncertainty budget are given in Refs. [3, 4] and summarized below.

1 Frequency measurement

The clock laser of IT-Yb1 is stabilized on an ultrastable cavity and probes ¹⁷¹Yb atoms trapped in an optical lattice at the magic frequency. A digital control loop acting on an acousto-optic modulator keeps the clock laser frequency in resonance with the atoms. The cavity-stabilized laser is sent to a fibre frequency comb referenced to IT-HM4. The frequency ratio between the ¹⁷¹Yb transition and IT-HM4 is calculated from the comb measurements and the corrections used for steering the acousto-optic modulator.

Table 1: Final evaluation using IT-Yb1.

Period of estimation	y(HM1401104 /ITYb1)	$u_{\rm A}$	$u_{\rm B}$	$u_{\mathrm{A/lab}}$	$u_{\rm B/lab}$	u_{Srep}	Uptime
timation	$/10^{-16}$	$/10^{-16}$	$/10^{-16}$	$/10^{-16}$	$/10^{-16}$	$/10^{-16}$	
59634-59669	-570.6	0.0	0.2	0.8	0.2	5	45.8%

Table 2: Uncertainty budget for IT-Yb1 for the reported period.

Effect	Rel. Shift/ 10^{-17}	Rel. Unc./ 10^{-17}
Density shift	-0.5	0.4
Lattice shift	1.1	1.2
Zeeman shift	-3.12	0.03
Blackbody radiation shift (room)	-235.3	1.1
Blackbody radiation shift (oven)	-1.3	0.6
Static Stark shift	-1.5	0.9
Probe light shift	0.04	0.03
Background gas shift	-0.5	0.2
Servo error	0.0	0.3
Other shifts	0.0	0.1
Grav. redshift (static)	2599.5	0.3
Grav. redshift (tides)	0.0	0.2
Total	2358.4	2.1

Table 3: Uncertainty budget for the link between IT-Yb1 and IT-HM4 for the reported period.

Effect	Uncertainty/ 10^{-16}
Comb statistic	0.0
Extrapolation (dead time)	0.8
Extrapolation (drift)	0.1
Total $u_{\rm A/lab}$	0.8
Optical/microwave comp. (type B)	0.2
Total $u_{\rm B/lab}$	0.2

2 IT-Yb1 evaluation

The uncertainty $u_{\rm A}$ is the statistical contribution from the instability of IT-Yb1. The uncertainty $u_{\rm B}$ is the systematic uncertainty of IT-Yb1 [4]. The systematic frequency shift and uncertainty budget of IT-Yb1 for the reported period are given in Tab. 2. IT-Yb1 now operates with a vertical optical lattice and the lattice light shift calculations have been updated following Ref. [5]. The table includes the gravitational redshift relative to the conventional potential $W_0 = 62\,636\,856.0\,\mathrm{m}^2\mathrm{s}^{-2}$ [4].

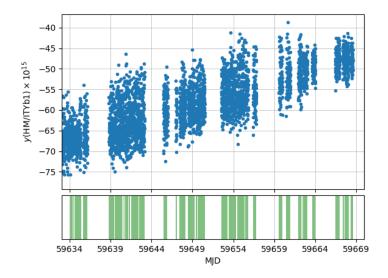


Figure 1: Fractional frequency deviation y(HM1401104/ITYb1) measured in the period MJD 59634 - 59669. Green shaded regions in the bottom plot represent the uptime of IT-Yb1.

3 Link evaluation

The uncertainty $u_{l/lab}$ is due to the link between IT-Yb1 and IT-HM4, including the optical to microwave comparison at the comb. Table 3 summarizes the contributions to this uncertainty.

The comparison uncertainty between optical and microwave signals at the comb has been evaluated from comparison with a second optical frequency comb.

IT-Yb1 and the comb were operated for $1\,385\,294\,\mathrm{s}$ (uptime 46% of the evaluation period). The data collected and the distribution of the uptimes of IT-Yb1 are shown in Fig. 1. Extrapolation using the maser as a flywheel is needed given the intermittent operation of IT-Yb1. Its evaluation is separated in an uncertainty from dead times and a correction for the maser drift. The maser drift of $5.63(6) \times 10^{-16}\,\mathrm{/d}$ has been calculated from IT-Yb1 data collected in the period. The contribution from dead times has been evaluated following the approach in Ref. [6]. For this measurement we considered the IT-HM4 noise to be a power-law model described by the Allan deviation: white phase noise $3\times10^{-13}(\tau/\mathrm{s})^{-1}$; white frequency noise $4\times10^{-14}(\tau/\mathrm{s})^{-1/2}$; flicker frequency noise 3×10^{-16} ; random walk frequency noise $2\times10^{-19}(\tau/\mathrm{s})^{1/2}$.

Contributors

Marco Pizzocaro, Stefano Condio, Irene Goti, Cecilia Clivati, Matias Risaro, Filippo Levi, Davide Calonico

References

- [1] Consultative Committee for Time and Frequency (CCTF), "Report of the 21st meeting (8-9 June 2017) to the International Committee for Weights and Measures," 2017. Online: https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf
- [2] Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the definition of the second. Online: https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html
- [3] M. Pizzocaro, P. Thoumany, B. Rauf, F. Bregolin, G. Milani, C. Clivati, G. A. Costanzo, F. Levi, and D. Calonico, "Absolute frequency measurement of the ¹S₀ ³P₀ transition of ¹⁷¹Yb," *Metrologia*, vol. 54, no. 1, pp. 102–112, 2017. Online: http://stacks.iop.org/0026-1394/54/i=1/a=102
- [4] M. Pizzocaro, F. Bregolin, P. Barbieri, B. Rauf, F. Levi, and D. Calonico, "Absolute frequency measurement of the $^{1}S_{0}$ $^{3}P_{0}$ transition of 171 Yb with a link to international atomic time," Metrologia, vol. 57, no. 3, p. 035007, may 2020. Online: https://doi.org/10.1088%2F1681-7575%2Fab50e8
- [5] K. Beloy, W. F. McGrew, X. Zhang, D. Nicolodi, R. J. Fasano, Y. S. Hassan, R. C. Brown, and A. D. Ludlow, "Modeling motional energy spectra and lattice light shifts in optical lattice clocks," *Phys. Rev. A*, vol. 101, p. 053416, May 2020. Online: https://link.aps.org/doi/10.1103/PhysRevA.101.053416
- [6] C. Grebing, A. Al-Masoudi, S. Dörscher, S. Häfner, V. Gerginov, S. Weyers, B. Lipphardt, F. Riehle, U. Sterr, and C. Lisdat, "Realization of a timescale with an accurate optical lattice clock," *Optica*, vol. 3, no. 6, pp. 563–569, Jun 2016. Online: http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-6-563