

Frequency evaluation of Maser 1401103 by IT-Yb1 for the period MJD 58389 to 58419

During the period MJD 58389 – 58419 (28 September 2018–28 October 2018) INRIM evaluated the frequency of the hydrogen maser IT-HM3 (BIPM code 1401103) using the Yb optical lattice frequency standard IT-Yb1 and an optical frequency comb. The evaluation is based on the recommended frequency for 171 Yb as a secondary representation of the second, $f(^{171}$ Yb) = 518 295 836 590 863.6 Hz with a relative standard uncertainty of $u_{\rm Srep} = 5 \times 10^{-16}$ [1, 2]. The results of the evaluation are summarized in Tab. 1. Details of IT-Yb1 operation and uncertainty budget are given in Refs. [3, 4] and summarized below.

1 Frequency measurement

The clock laser of IT-Yb1 is stabilized on an ultrastable cavity and probes ¹⁷¹Yb atoms trapped in an optical lattice at the magic frequency. A digital control loop acting on an acousto-optic modulator keeps the clock laser frequency in resonance with the atoms. The cavity-stabilized laser is sent to a fibre frequency comb referenced to IT-HM3. The frequency ratio between the ¹⁷¹Yb transition and IT-HM3 is calculated from the comb measurement and from the corrections used for steering the acousto-optic modulator.

Table 1: Final evaluation using IT-Yb1

Period of estimation	$y({\rm HM}1401103)/10^{-16}$	$u_{\rm A}/10^{-16}$	$u_{\rm B}/10^{-16}$	$u_{\rm l/lab}/10^{-16}$	$u_{\rm Srep}/10^{-16}$
58389-58419	-8871.8	< 0.1	0.3	3.2	5

Table 2: Uncertainty budget for IT-Yb1 for the reported period.

Effect	Rel. Shift/ 10^{-17}	Rel. Unc./ 10^{-17}
Density shift	-8.5	0.6
Lattice shift	9.2	2.1
Zeeman shift	-0.729	0.014
Blackbody radiation shift	-236.8	1.7
Static Stark shift	-2.0	1.1
Background gas shift	-0.5	0.2
Probe light shift	0.07	0.04
Others	0.0	0.6
Gravitational redshift	2599.5	0.3
Total	2360.3	3.1

Table 3: Uncertainty budget for the link between IT-Yb1 and IT-HM3 for the reported period.

Effect	$u_{\rm l/lab}/10^{-16}$
Optical/microwave comp. (type B)	0.8
Comb statistic	0.4
Extrapolation (dead time)	3.1
Extrapolation (drift)	0.2
Total	3.2

2 IT-Yb1 evaluation

The uncertainty $u_{\rm A}$ is the statistical contribution from the instability of IT-Yb1. It has been evaluated by interleaved measurements [4].

The uncertainty $u_{\rm B}$ is the systematic uncertainty of IT-Yb1. The systematic frequency shift and uncertainty budget of IT-Yb1 for the reported period are given in Tab. 2. The table includes the gravitational redshift relative to the conventional potential $W_0 = 62\,636\,856.0\,\mathrm{m}^2\mathrm{s}^{-2}$ [4].

3 Link evaluation

The uncertainty $u_{l/lab}$ is due to the link between IT-Yb1 and IT-HM3, including the optical to microwave comparison at the comb. Table 3 summarizes the contributions to this uncertainty.

The comparison between optical and microwave signals at the comb has a Type B uncertainty evaluated from comparison with a second comb. The statistical contribution from the comb is conservatively estimated from the

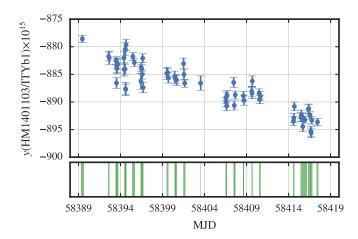


Figure 1: Fractional frequency deviation y(HM1401103/ITYb1) measured in the period MJD 58389 - 58419. Green shaded regions in the bottom plot represent the uptime of IT-Yb1.

instability of the observed noise and it includes the instability of the microwave frequency chain from the maser to the comb. The uncertainty from this instability is used to assign a weight to each frequency measurement.

IT-Yb1 and the comb were operated for a total of 302 700 s, with an uptime 12% of the evaluation period. The data collected and the distribution of the uptimes of IT-Yb1 are shown in Fig. 1. Extrapolation using the maser as a flywheel is needed given the intermittent operation of IT-Yb1. Its evaluation is separated in an uncertainty from dead times and a correction for the maser drift [4]. The drift of the maser has been calculated from a linear fit of IT-Yb1 data over the reported period and used to extrapolate the frequency to the center point. The contribution from dead times has been evaluated from simulations of the maser noise [4–6]. For this measurement the instability of IT-HM3 has been conservatively modelled as the quadrature sum of: white phase noise $1.5 \times 10^{-13} (\tau/s)^{-1}$; white frequency noise $3.5 \times 10^{-14} (\tau/s)^{-1/2}$; flicker frequency noise 6×10^{-16} ; random walk frequency noise $<1 \times 10^{-18} (\tau/s)^{1/2}$.

References

- [1] Consultative Committee for Time and Frequency (CCTF), "Report of the 21st meeting (8-9 June 2017) to the International Committee for Weights and Measures," 2017. Online: https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf
- [2] Recommended values of standard frequencies for applications including

- the practical realization of the metre and secondary representations of the definition of the second. Online: https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html
- [3] M. Pizzocaro, P. Thoumany, B. Rauf, F. Bregolin, G. Milani, C. Clivati, G. A. Costanzo, F. Levi, and D. Calonico, "Absolute frequency measurement of the $^{1}S_{0}$ $^{3}P_{0}$ transition of 171 Yb," *Metrologia*, vol. 54, no. 1, p. 102, 2017. Online: http://stacks.iop.org/0026-1394/54/i=1/a=102
- [4] M. Pizzocaro, F. Bregolin, P. Barbieri, B. Rauf, F. Levi, and D. Calonico, "Absolute frequency measurement of the $^{1}S_{0}$ $^{3}P_{0}$ transition of ^{171}Yb with a link to International Atomic Time," *Accepted on Metrologia*, Oct 2019. Online: https://doi.org/10.1088/1681-7575/ab50e8
- [5] H. Hachisu and T. Ido, "Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link," *Japanese Journal of Applied Physics*, vol. 54, no. 11, p. 112401, 2015. Online: http://stacks.iop.org/1347-4065/54/i=11/a=112401
- [6] D.-H. Yu, M. Weiss, and T. E. Parker, "Uncertainty of a frequency comparison with distributed dead time and measurement interval offset," *Metrologia*, vol. 44, no. 1, p. 91, 2007. Online: http://stacks.iop.org/0026-1394/44/i=1/a=014