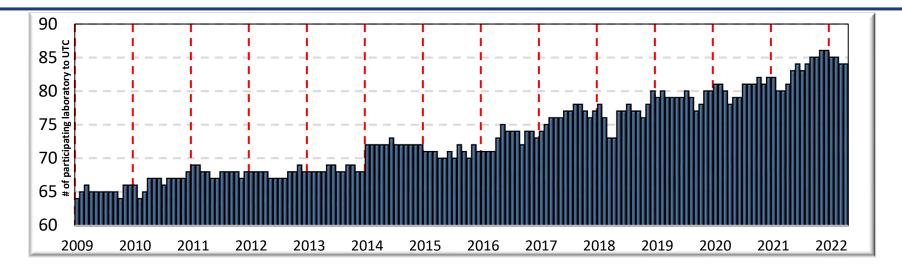
The generation of UTC and UTCr

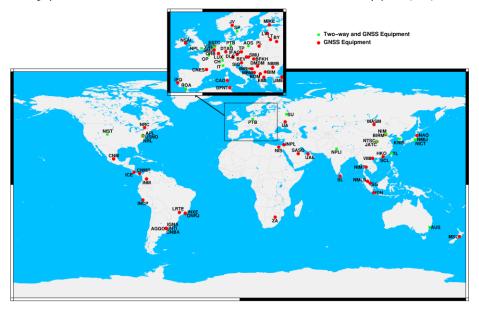
METPA

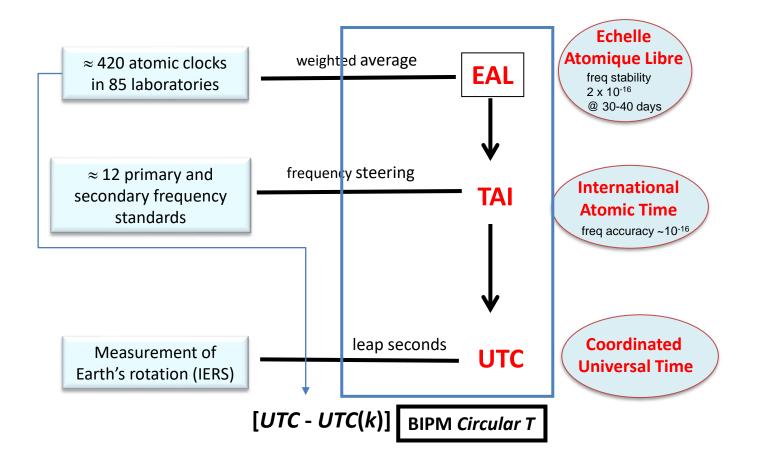
G. Panfilo


BIPM, Sèvres, France gpanfilo@bipm.org

Presentation Plan

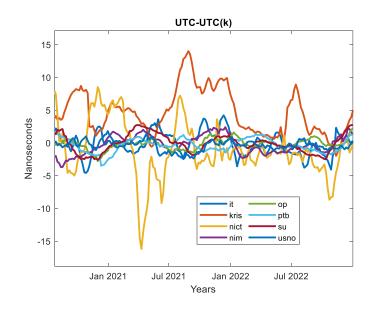
- Computation of UTC:
 - Stability
 - Atomic clock, time transfer
 - Algorithms (small example), new development
 - Accuracy
 - Primary and Secondary Frequency Standard, new development
- UTCr, the rapid UTC
 - Stability
 - Atomic locks, time transfer
 - Accuracy
 - steered to UTC
- Publication of UTC and other related products


Number of laboratory distribution/geographical distribution


Geographical distribution of the laboratories that contribute to TAI and time transfer equipment (2021)

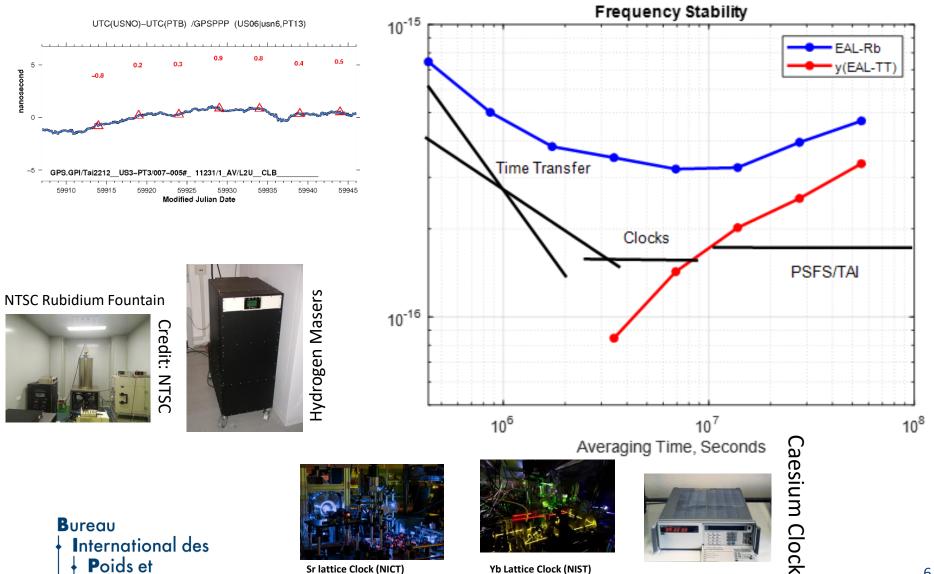
Even during the COVID-19 period the number of participating laboratories is continually increased.

Bureau
International des
Poids et
Mesures

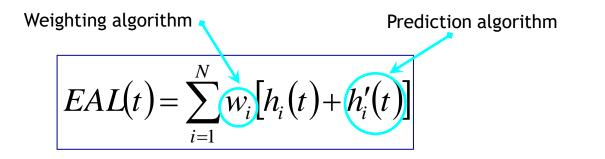

Computation of UTC (monthly) at the BIPM Similarly (weekly) for rapid UTC

UTC, UTC(k) and [UTC-UTC(k)]

UTC	Stability based on the atomic clocks (420)
	Steering procedure based on PFSF availability


- UTC(k) Stability based on the **laboratory equipment** Steering procedure to be close to UTC
- [UTC-UTC(k)] UTC, UTC(k) and time links used to compare clocks

Estimation of UTC Instability


Mesures

EAL calculation

First step: EAL - 1

- •*N* is the number of atomic clocks
- • w_i the relative weight of the clock H_{i} .
- • $h_i(t)$ is the reading of clock H_i at time t
- • $h_i'(t)$ is the prediction of the reading of clock H_i

The weights of the clocks obey the relation:

$$\sum_{i=1}^{N} w_i = 1$$

The system solved by the algorithm:

$$\begin{cases} \sum_{i=1}^{N} w_i x_i(t) = \sum_{i=1}^{N} w_i h'_i(t) \\ x_i(t) - x_j(t) = x_{i,j}(t) \end{cases}$$

where

 $x_i(t) = EAL(t) - h_i(t)$

The solution is:

Weigth

$$x_{j}(t) = EAL - h_{j} = \sum_{i=1}^{N} w_{i} [h'_{i}(t) - x_{i,j}(t)]$$
Prediction

EAL – simple example

• The laboratories contribute to UTC with:

Time transfer data

UTC(KRIS) – REFGPS

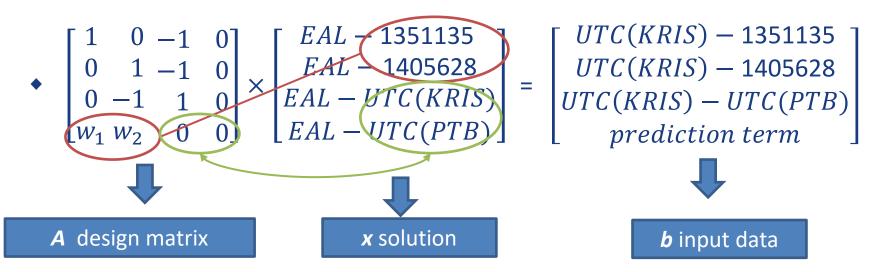
CAB DI	Y = 1	93.1 ns	(010 01)	,	/ 110 (010) ns (GPS C
	UTC (KR						
			ith Contt	sHeade	r based o	n: X:\TaN\2	2212\Obs\KR
							58484.000
CKSUM					,,		
PRN CI	MJD	STTIME	TRKL ELV	AZTH	REFSV	SRSV	REFGPS
		hhmmss	s .ldo	.ldg	.lns	.lps/s	.lns
			0 444				-46.97
		011442					-46.94
		011942					-46.99
99	59907	012442	0 444				-46.73
99	59907	012942	0 444				-46.80
99	59907	013442	0 444				-46.47
99	59907	013942	0 444				-46.50
99	59907	014442	0 444				-46.52
99	59907	014942	0 444				-46.33
99	59907	015442	0 444				-46.48
99	59907	015942	0 444				-46.49
99	59907	020442	0 444				-46.29
99	59907	020942	0 444				-46.36
99	59907	021442	0 444				-46.09
		021942					-46.29
99	59907	022442	0 444				-46.31

Clock data

UTC(KRIS)-clocks

5991	4 10056	20056	80347.6	1351135	47935.3	1351783	14250.2	1405624	22747.3	1405625	71431.3	
5991	4 10056	1405626	12985.4	1405628	72973.4	0	0.0	0	0.0	0	0.0	
9999	9											
5991	9 10056	20056	80538.0	1351135	47992.1	1351783	14390.6	1405624	23134.6	1405625	72518.6	
5991	9 10056	1405626	13062.6	1405628	73298.7	0	0.0	0	0.0	0	0.0	
9999	9											
5992	4 10056	20056	80729.5	1351135	48043.6	1351783	14526.1	1405624	23524.9	1405625	73612.8	
5992	4 10056	1405626	13140.2	1405628	73626.0	0	0.0	0	0.0	0	0.0	
9999	9											
5992	9 10056	20056	80922.3	1351135	48098.9	1351783	14666.2	1405624	23917.5	1405625	74713.2	
5992	9 10056	1405626	13217.4	1405628	73955.5	0	0.0	0	0.0	0	0.0	
9999	9											
5993	4 10056	20056	81116.2	1351135	48149.0	1351783	14802.2	1405624	24312.4	1405625	75819.9	
5993	4 10056	1405626	13294.8	1405628	74286.9	0	0.0	0	0.0	0	0.0	
9999	9											
5993	9 10056	20056	81311.3	1351135	48210.1	1351783	14936.9	1405624	24710.3	1405625	76933.3	
5993	9 10056	1405626	13372.6	1405628	74620.4	0	0.0	0	0.0	0	0.0	
9999	9											
5994	4 10056	20056	81507.4	1351135	48270.4	1351783	15074.8	1405624	25109.7	1405625	78052.3	
5994	4 10056	1405626	13449.4	1405628	74955.5	0	0.0	0	0.0	0	0.0	
9999	9											

- By combining these data (and using the PTB as pivot we have UTC(KRIS)-UTC(PTB)), we obtain:
 - EAL-1351135
 - EAL-1405628 etc.
 - but also, EAL-UTC(KRIS)


Bureau

International des

- Poids et
- A Mesures

EAL – simple example

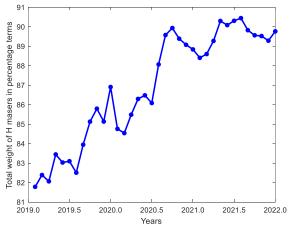
• We solve a system **Ax=b** to obtain **x** where:

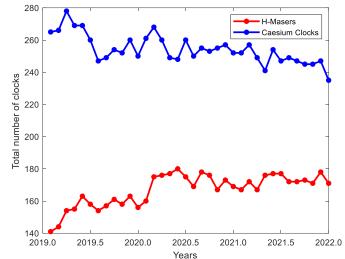
Many complex algorithms are used at this stage:

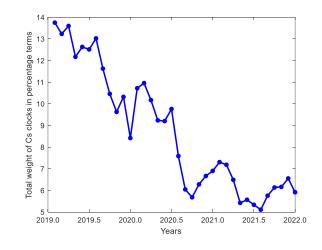
- Weighting algorithm
- Prediction algorithm
- Outliers, time and frequency steps detection etc.

420 atomic clocks contributing to UTC of which:

- ~180 H-Masers (from 140 to 180 in 2 years)
- ~230 Cs-clocks (from 270 to 230)

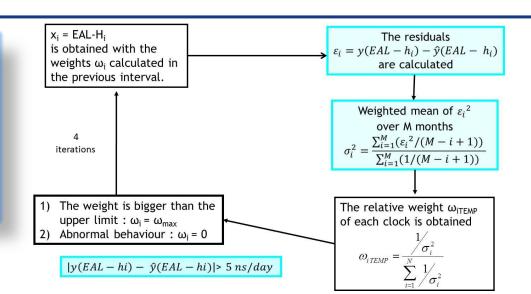

The weight of the clocks:

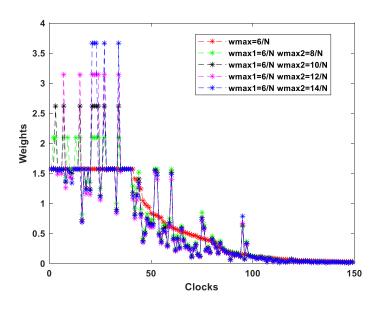

- ~ 90 % is assigned to H-masers
- ~7 % to Cs-clocks



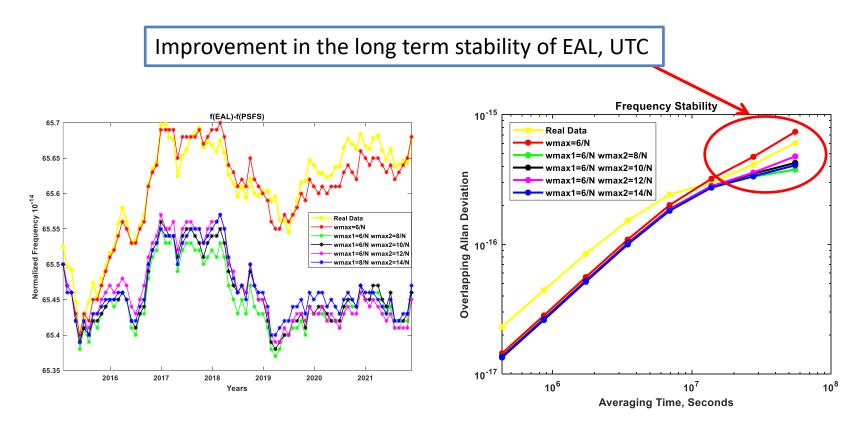
oids et

esures

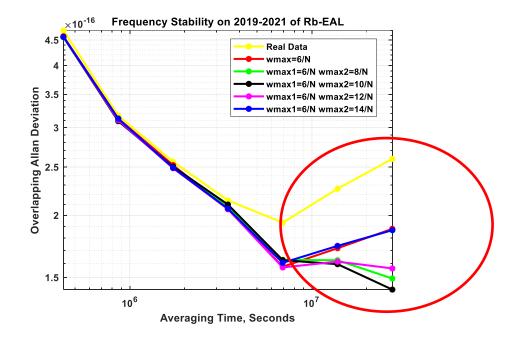



Weighting algorithm – new development

The algorithm is an iterative procedure where the weight is calculated as the inverse of a statistical estimator and subject to a maximum weight (6/N, N is the total number of clocks).



Generalization maximum weight constraints by using the Karush–Kuhn–Tucker conditions.


The idea is to allow the weight algorithm to select the correct number of most stable/predictable clocks and assign them the maximum weight.

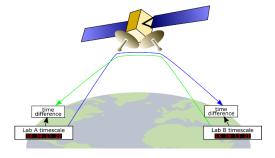
TT(BIPM) is a time scale calculated at BIPM and representing the best reference in frequency used as reference to estimate the long-term stability of EAL.

The Rb fountains (USNO) contribute to EAL (UTC) each month and represent a good reference to estimate the frequency stability of EAL.

The use K-K-T conditions shows consistent results with the previous analysis i.e., improved results.

www.bipm.org

Clocks in different laboratories are compared by suitable time and frequency transfer techniques


Global Navigation Satellite Systems (GNSS)

GNSS are based on time broadcasting from satellites to ground receivers (one-way time transfer). Distant labs equipped with GNSS receivers periodically compare their clocks to the broadcasted time and send the result to the BIPM. Typical algorithms are All in View, Common View, and Precise Point Positioning

time

Two-Way Satellite Time & Freq. Transfer (TWSTFT)

dedicated ground terminals simultaneously receive and transmit time transfer signals (two-way time transfer) on geostationary telecom satellites. Two-way method cancels out (at first order) the propagation time of the signal.

Progress in GNSS measures

GPS+ GLONASS + Beidou + Galileo **IPPP : Precise Point Positioning with integer** ambiguity resolution

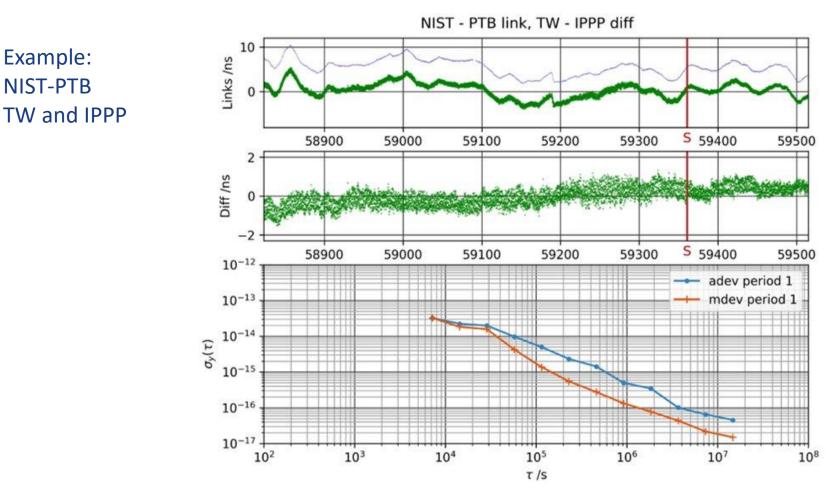
Progress in TWSTFT Software Designed Radio and TWSTFT Carrier Phase

In development : Optical Fiber links

Bureau

A growing number of UTC laboratories are gaining access to fiber links dedicated to time International des and frequency. Although few of them are currently interconnected by operational, highduty cycle links, this number is expected to grow quickly during the next decade.

Time Links used for UTC calculation

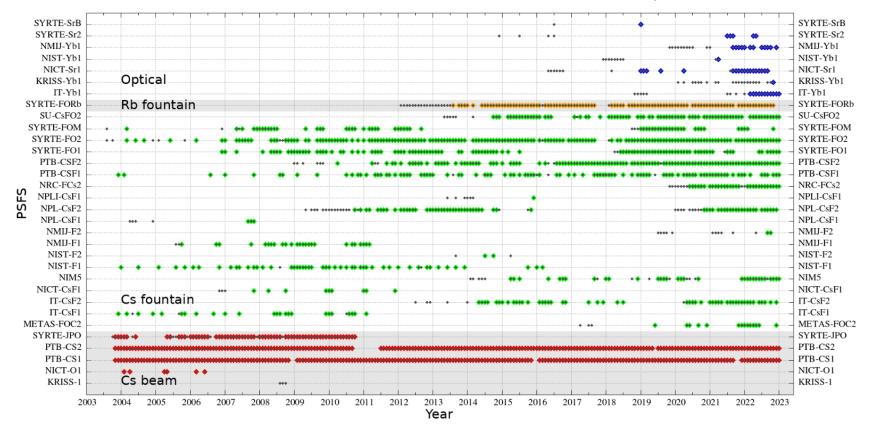

5 - Time links used for the computation of TAI, calibrations information and corresponding uncertainties.

Link	Туре	Equipment	Cal_ID1/Cal_ID2 us	Stb/ns uCa	l/ns uAg,	/ns Al/ns YYMM
ESA /PTB	GPSPPP	ES07 /PT13	1014-2022/1001-2020	0.3	2.6	0.9
НКО /РТВ	GPSPPP	HK01 /PT13	1011-2018/1001-2020	0.4	3.2	2.0
ICE /PTB	GPS MC	CE1_ /PT13	NA_A1 /1001-2020	3.5	7.3	1.6 -16.5 2111
IDN /PTB	GPSPPP	KI01 /PT13	1017-2018/1001-2020	0.3	3.1	1.8
IFAG/PTB	GPSPPP	IF20 /PT13	1014-2020/1001-2020	0.3	2.7	1.1
IGNA/PTB	GPSPPP	IG02 /PT13	NC_A1 /1001-2020	0.3	20.0	-7.0 2106
IMBH/PTB	GPSPPP	BH02 /PT13	1013-2022/1001-2020	0.3	2.6	0.9
INCP/PTB	GPS MC	CP/PT13	NC /1001-2020	5.0	20.0	
INM /PTB	GPS MC	IC /PT13	NC /1001-2020	1.5	20.0	
INPL/PTB	GPSPPP	IL06 /PT13	2003-2016/1001-2020	0.3	7.4	2.5
INTI/PTB	GPSPPP	INTI /PT13	1014-2021/1001-2020	0.3	3.0	0.9
INXE/PTB	GPSPPP	NXRA /PT13	1012-2020/1001-2020	0.3	2.8	1.3
IPQ /PTB	GPSPPP	IP05 /PT13	1017-2021/1001-2020	0.3	2.6	0.9
JATC/PTB	GPSPPP	JA01 /PT13	1201-2018/1001-2020	0.3	3.1	1.9
JV /PTB	GPSPPP	JV02 /PT13	1101-2017/1001-2020	0.3	4.5	2.1
KRIS/PTB	GPSPPP	(KRG1) /PT13	<u>1017-2017/1001-2020</u>	0.3	3.4	2.3
KZ /PTB	GPS P3	KZØ4 /PT13	1202-2021/1001-2020	0.7	4.1	0.9
LRTE/PTB	GPS P3	LRRC /PT13	NC /1001-2020	0.7	20.0	
CH /PTB	TWSTFT	CH01 /PTB05	0543-2021	0.5	1.5	0.9
IT /PTB	TWGPPP	IT01 /PTB05	0584-2022	0.3	1.7	1.0
NIST/PTB	TWGPPP	NIST01/PTB05	0533-2021	0.3	2.5	1.9

Bureau
International des
Poids et
Mesures

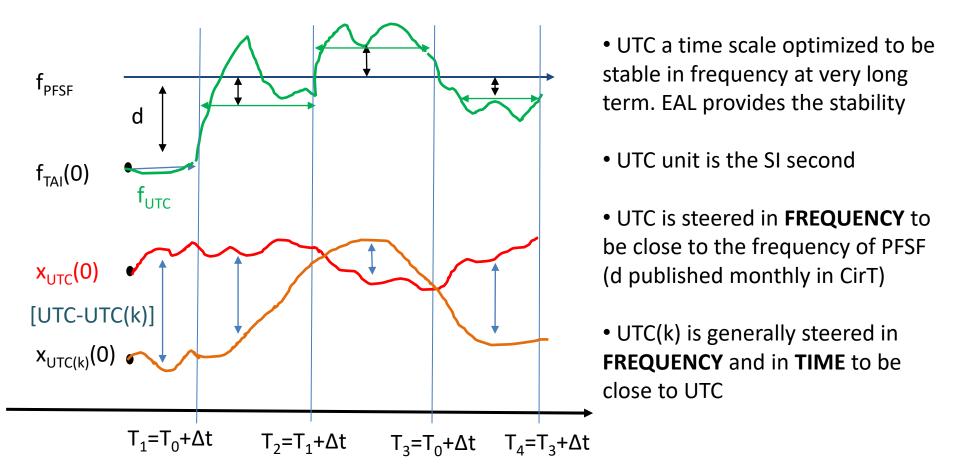
The calibration is a key issue to ensure the quality of UTC.

Future development: Regular computation of continuous IPPP links

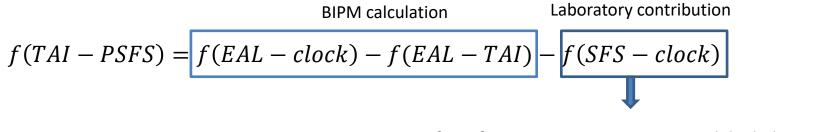

Bureau
International des
Poids et
Mesures

Significant diurnal in TW dataSmall but clear long-term drift-like instability.

TAI calculation



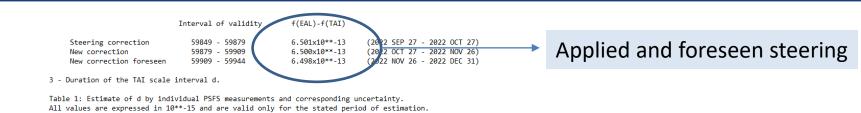
Primary and Secondary standards contributing to UTC


Graphical representation of all evaluations of Primary and Secondary Frequency Standards reported since Circular T 190. Enhanced color dots indicate evaluations carried out within the month of TAI computation.

UTC, UTC(k) and [UTC-UTC(k)]

Accuracy of UTC – Calculation of d

- Several laboratories in the world contribute to the accuracy of UTC providing the evaluations of PSFS to the BIPM.
- In Sec. 3 of Circular T:
 - The PSFS are evaluated singularly with respect to TAI
 - The algorithm used to calculate the Terrestrial Time (TT) is used to evaluate the frequency deviation of TAI (d = -y(TAI)) with respect to the ensemble of PSFS.



Labo SFS SfsCode FreqRef MJD1 MJD2 [Ref-SFS] uВ uA/Lab uB/Lab Uptime Ref(uB) uB(Ref) Ref Freq цΑ 10E-15 10E-15 10E-15 10E-15 10E-15 10E-15 % XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXX KRIS KRISS-Yb1 1885601 1405628 59849 59854 -693.46 0.01 0.41 0.07 12.1 T405 0.03 2021

Bureau International des Poids et ADDITIONAL INFORMATION : Reported by : KRISS Date of report : 09 11 2022 Name of the reporter : Myoung-Sun Heo

22

Section 3 of Circular T

Standa	ard Period of Estimation	d	uA	uB u	A/Lab	uB/Lab	ul/Tai	u	uSrep R	ef(uS)	Ref(uB)	uB(Ref)	Uptime %	LastRep	Nrep3y	Steer	Note
PTB-CS	51 59849 59879	4.79	8.00	8.00	0.00	0.00	0.07	11.31	PFS/NA		T148	8.00	100.0	T417	34	Y	(1)
PTB-CS	52 59849 59879	3.17	5.00	12.00	0.00	0.00	0.07	13.00	PFS/NA		T148	12.00	100.0	T417	36	Y	(1)
IT-Yb1	L 59849 59879	0.16	0.00	0.03	0.21	0.02	0.20	0.29	0.19	[1]	T383	0.03	12.1	T417	18	Y	(2)
KRISS	-Yb1 59849 59854	0.50	0.01	0.04	0.41	0.07	0.98	1.07	0.19	[1]	T405	0.03	12.1	T417	21	Y	(3)
NIM5	59849 59879	-0.02	0.33	0.90	0.10	0.01	0.20	0.98	PFS/NA		T340	1.40	98.6	T417	20	Y	(4)
NPL-Cs	F2 59849 59879	0.16	0.08	0.21	0.10	0.03	0.20	0.32	PFS/NA		T284	0.23	92.3	T417	31	Y	(5)
NRC-FC	cs2 59849 59879	0.95	0.15	0.55	0.17	0.00	0.20	0.63	PFS/NA		T389	0.23	62.7	T417	37	Y	(6)
SYRTE	-F01 59849 59879	0.72	0.20	0.38	0.07	0.00	0.20	0.48	PFS/NA		T301	0.37	85.8	T417	24	Y	(7)
SYRTE	-F02 59849 59879	0.39	0.20	0.33	0.07	0.00	0.20	0.44	PFS/NA		T301	0.23	82.4	T417	35	Y	(7)
SYRTE	-FOM 59849 59879	0.76	0.25	0.53	0.06	0.00	0.20	0.62	PFS/NA		T372	0.70	83.0	T409	15	Y	(7)
SYRTE	-FORb 59849 59879	0.69	0.20	0.33	0.06	0.00	0.20	0.44	0.34	[1]	T328	0.34	84.1	T417	35	Y	(7)
PTB-CS	SF1 59849 59879	0.35	0.07	0.31	0.01	0.00	0.07	0.32	PFS/NA		T371	0.27	97.7	T416	27	Y	(8)
PTB-CS	SF2 59849 59879	0.18	0.10	0.17	0.01	0.00	0.07	0.21	PFS/NA		T370	0.17	98.0	T417	40	Y	(8)
SU-Cs	02 59849 59879	0.51	0.23	0.22	0.11	0.00	0.20	0.39	PFS/NA		T315	0.50	89.0	T417	33	Y	(9)

- 11	ιU	Ľ	e	>	

Continuously operating as a clock participating to TAI
 Report dated 31 OCT. 2022 by INRIM

- (3) Report dated 09 NOV. 2022 by KRISS (new height evaluation)
- (4) Report dated 02 NOV. 2022 by NIM
- (5) Report dated 31 OCT. 2022 by NPL
- (6) Report dated 28 OCT. 2022 by NRC
- (7) Report dated 03 NOV. 2022 by LNE-SYRTE(8) Report dated 01 NOV. 2022 by PTB
- (9) Report dated 31 OCT. 2022 by SU

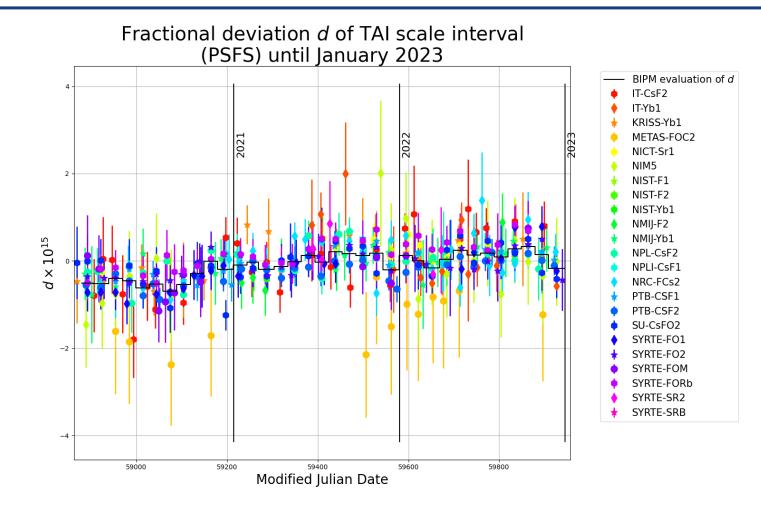
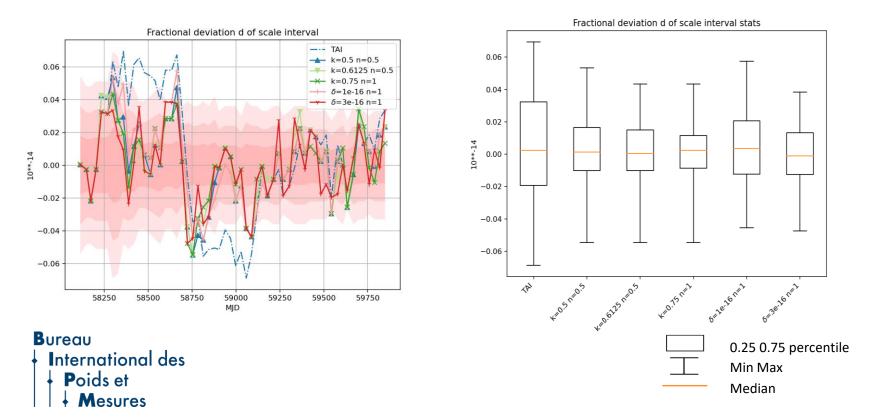

[1] CCTF Recommendation PSFS-2 (2021),22nd meeting (session II online), available at https://www.bipm.org/en/committees/cc/cctf/22- 2-2021

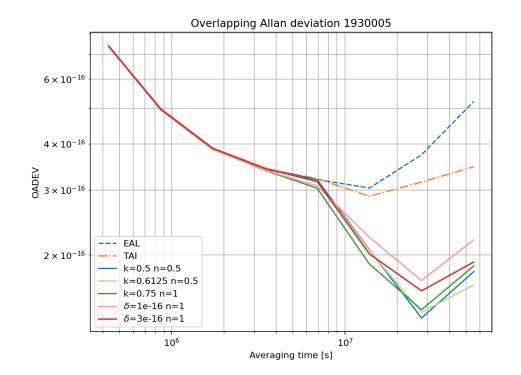
Table 2: Estimate of d by the BIPM based on all PSFS measurements identified to be used for TAI steering over the period MJD 59489-59879, and corresponding uncertainties.

Period of estimation d u 0.33x10**-15 0.11x10**-15 (2022 SEP 27 - 2022 OCT 27) -y(TAI) and uncertainty

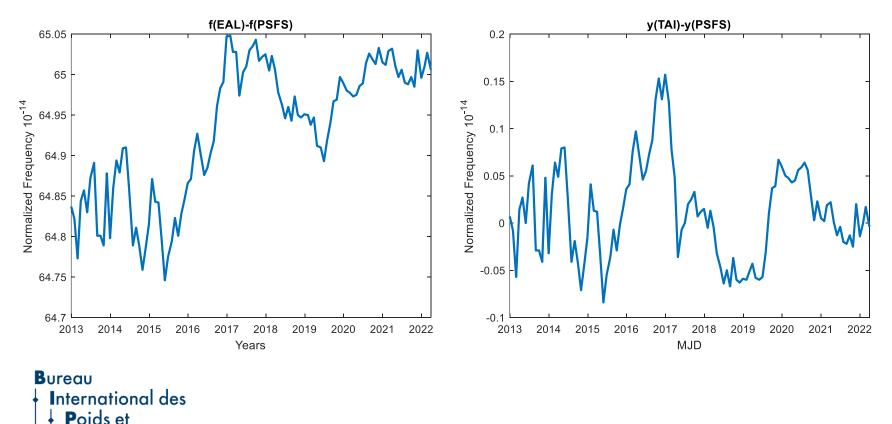
If $|d| \ge 1 \times 10^{-15}$ a correction of about 0.2 x 10^{-15} is applied two months later.


d values

https://webtai.bipm.org/database/d_plot.html


New development – new steering strategies

- The scope of this study is to evaluate different steering strategies to achieve:
 - Improvement of long-term stability/accuracy of UTC/TAI
 - a value d as small as possible over the different months
- In doing so it is important to avoid a degradation of the middle term stability (EAL contribution) due to steering procedures.


Preliminary results of new strategies

- Applying a regular steering improves the long-term stability of UTC.
- From the stats (previous slide) better results are obtained with proportional steering technique
- In the most recent period, particularly quiet for TAI, there is almost no need of steering.

esures

The Primary and secondary frequency standards (PFSF) are also used to evaluate the behaviour of EAL and TAI. After each calculation month the we evaluate the plot the f(EAL-PSFS) and f(TAI-PSFS) to check and verify them.

27

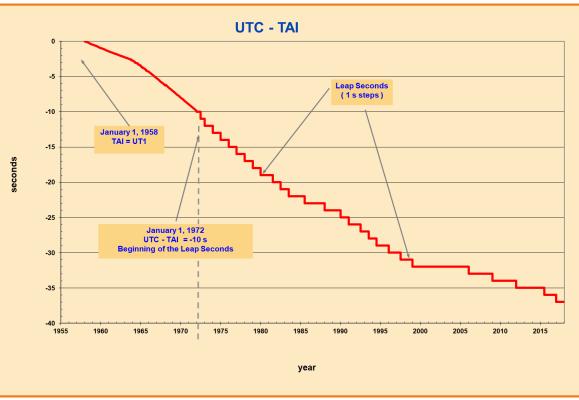
UTC calculation

Since 1975, UTC is obtained from the International Atomic Time (TAI) plus leap seconds.

When the difference between the Earth rotational angle UT1 time scale and UTC reaches 0.9 second, an integer second is inserted to UTC to keep it within 1 s of UT1.

UTC = TAI + n seconds

|UTC - UT1| < 1 second


Can be negative (never happened until now)

www.bipm.org

UTC = TAI + leap seconds

Circular T – [UTC-UTC(k)]

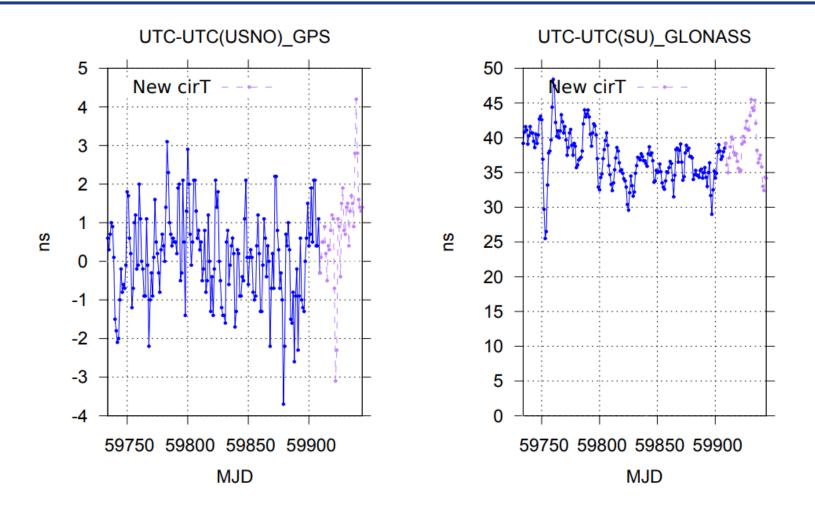
Bureau International des oids et Aesures

Bureau CIRCULAR T 420 International des Poids et + Mesures

2023 JANUARY 13, 15h UTC

BUREAU INTERNATIONAL DES POIDS ET MESURES THE INTERGOVERNMENTAL ORGANIZATION ESTABLISHED BY THE METRE CONVENTION PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 tai@biom.org

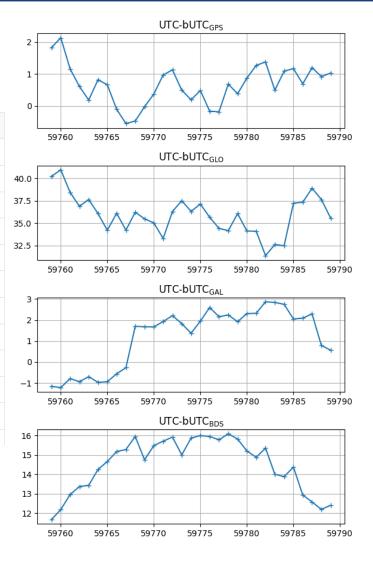
The contents of the sections of BIPM Circular T are fully described in the document "Explanatory supplement to BIPM Circular T " available at https://webtai.bipm.org/ftp/pub/tai/other-products/notes/explanatory_supplement_v0.6.pdf


1 - Difference between UTC and its local realizations UTC(k) and corresponding uncertainties. From 2017 January 1, 0h UTC, TAI-UTC = 37 s.

Date 202	2 0h UTC		NOV 26	DEC 1	DEC 6	DEC 11	DEC 16	DEC 21	DEC 26	DEC 31	Un	ertaint	ty/ns	Notes
		MJD	59909	59914	59919	59924	59929	59934	59939	59944	uA	u _B	u	
Laborato	ey k					[UTC-UT	C(k)]/ns							
AGGO	(La Plata)	123	1011.8	1030.6	1033.1	1031.2	1036.6	1058.3	1079.7	1087.1	0.7	2.8	2.9	
AOS	(Borowiec)	123	-4.5	-3.5	-2.7	-1.2	0.0	0.8	2.3	3.1	0.3	3.3	3.3	
APL	(Laurel)	123	-0.7	-0.7	-0.5	-0.6	3.2	-1.0	-1.6	-0.3	0.3	19.3	19.3	
AUS	(Sydney)	123	-554.5	-552.1	-545.3	-550.3	-566.6	-562.0	-546.7	-553.2	0.3	11.2	11.2	
BEV	(Wien)	123	48.6	35.5	32.7	22.8	21.4	24.8	22.1	13.1	0.3	2.8	2.8	
BFKH	(Budapest)	123	6218.9	6250.7	6283.3	6312.6	6353.0	6381.0	6410.1	6438.3	1.5	20.0	20.1	
BIM	(Sofiya)	123	17002.2	17024.4	17010.2	17037.4	17048.1	17069.1	17104.7	17123.7	0.3	7.3	7.3	
BIRM	(Beijing)	123	6.9	5.6	4.6	4.1	4.0	3.7	4.2	6.6	0.3	3.2	3.2	
BOM	(Skopje)	123	-	-	-	-	-	-	-	-				
BY	(Minsk)	123	-0.1	0.1	0.9	-0.2	-0.7	-0.5	-0.3	-0.2	1.5	3.0	3.3	
CAO	(Cagliari)	123	-639.2	-759.6	-874.9	-994.0	-1110.7	-1230.7	-1350.5	-1472.1	1.5	20.0	20.1	
CH	(Bern-Wabern)	123	-2.0	-3.0	-2.9	-2.8	-2.9	-1.6	-0.9	-0.2		1.8	1.9	
CNES	(Toulouse)	123	-18.1	-19.0	-7.7	-3.3	-3.5	-3.5	-4.3	-3.4	0.3	2.8	2.8	
CNM	(Queretaro)	123	-0.2	2.8	2.9	1.3	-0.5	-0.7	-3.2	-2.1	1.5	4.1	4.4	
CNMP	(Panama)	123	-3.5	1.6	-4.9	-14.3	2.8	2.0	6.6	2.3	0.3	5.3	5.3	
DFM	(Horsholm)	123	-5.7	-5.1	-7.4	-10.1	-13.3	-5.4	-6.4	-7.9	0.3	2.8	2.8	
DFNT	(Tunis)	123	6423.4	6526.7	6635.2	6732.9	6837.4	6951.1	7047.0	7143.7	0.7	20.0	20.0	
DLR	(Oberpfaffenhofen)	123	15.8	12.3	9.3	6.1	2.1	-0.5	-2.6	-3.8	0.7	2.8	2.9	
DMDM	(Belgrade)	123	-	-	-	-14.2	-9.3	-4.2	-0.9		0.3	3.7	3.7	
DTAG	(Frankfurt/M)	123	53.5	53.6	39.5	29.0	26.7	18.9	13.8	15.5	0.3	3.2	3.2	
EIM	(Thessaloniki)	123	-	-	-	-	-	-	-	-				
ESA	(Noordwijk)	123	-0.1	1.0	2.1	3.1	3.3	3.3	2.4	1.5	0.3	2.7	2.8	
HKO	(Hong Kong)	123	724.7	743.2	760.3	785.0	803.0	815.8	839.8	861.4	0.4	3.3	3.4	
ICE	(San Jose)	123	31.2	56.6	29.0	35.7	39.6	15.2	-6.1	-19.4		7.4	8.2	
IDN	(Serpong-Tangerang)	123	669.8	664.4	683.5	731.3	774.4	793.1	803.7	833.5		3.3	3.3	
IFAG	(Wettzell)	123	-856.3	-	-	-855.0	-853.6	-851.8	-848.9	-842.2		2.9	2.9	
IGNA	(Buenos Aires)	123	-102.7	-177.7	-248.4	-319.1	-389.8	-463.6	-546.3	-620.3	0.3	20.0	20.0	
IMBH	(Sarajevo)	123	0.7	0.3	-0.8	-0.5	-2.2	-3.0	0.5	4.6	0.3	2.8	2.8	
INCP	(Lima)	123	-68.3	-	-	-	-	-	-	-	5.0	20.0	20.6	
INM	(Bogota D.C.)	123	178.0	175.0	174.1	160.6	169.3	158.6	135.0	115.8	1.5	20.0	20.1	
INPL	(Jerusalem)	123	-8.2	-8.5	-12.3	-5.5	-12.4	-19.0	-16.0	-11.3		7.5	7.5	
INTI	(Buenos Aires)	123	232.4	244.3	237.1	237.3	236.7	247.1	239.2	234.5	0.3	3.2	3.2	
INXE	(Rio de Janeiro)	123	-24.5	-20.4	-5.5	13.2	20.3	34.3	47.0	49.3	0.3	3.0	3.0	
IPQ	(Caparica)	123	705.5	707.2	705.2	700.2	694.1	695.7	704.7	705.3		2.8	2.8	
IT	(Torino)	123	0.6	0.5	0.7	1.2	0.8	0.2	-0.2	0.2	0.3	1.9	2.0	
JATC	(Lintong)	123	-0.2	-0.5	0.2	0.3	0.6	1.0	1.1	1.2	0.3	3.3	3.3	
JV	(Kjeller)	123	5.7	5.7	6.4	7.5	7.6	6.9	5.9	5.6	0.3	4.6	4.6	
KRIS	(Daejeon)	123	0.0	1.1	1.8	2.1	2.8	3.5	3.9	4.9	0.3	3.5	3.5	

The laboratories have direct access to UTC through your local realization of UTC, so called 'UTC(k)', via the **BIPM** *CircularT* monthly publication: differences [UTC-UTC(k)] are published, with time spacing of 5 days.

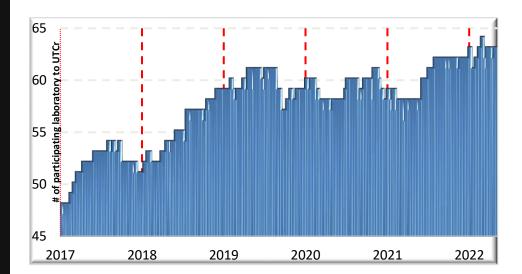
ISSN 1143-1393


Circular T - Relations of UTC and TAI with predictions of UTC(k) disseminated by GNSS

Future development GNNS Broadcast solution

Publication of GPS, GLONASS, Galileo and Beidou

Date	MJD	UTC-bUTC _{GPS} /ns	UTC-bUTC _{GLO} /ns	UTC-bUTC _{GAL} /ns	UTC-bUTC _{BDS} /ns
2022-06-29	59759	1.83	40.22	-1.16	11.66
2022-06-30	59760	2.14	40.96	-1.22	12.18
2022-07-01	59761	1.16	38.44	-0.79	12.95
2022-07-02	59762	0.61	36.89	-0.94	13.37
2022-07-03	59763	0.18	37.64	-0.70	13.43
2022-07-04	59764	0.82	36.07	-0.97	14.25
2022-07-05	59765	0.66	34.21	-0.94	14.66
2022-07-06	59766	-0.11	36.11	-0.56	15.17
2022-07-07	59767	-0.56	34.23	-0.27	15.28
2022-07-08	59768	-0.48	36.23	1.70	15.95
2022-07-09	59769	-0.03	35.49	1.68	14.75
2022-07-10	59770	0.37	35.03	1 67	15 48

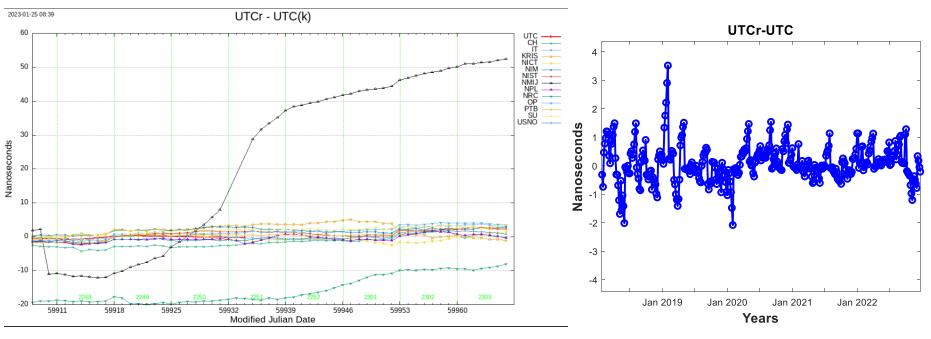

UTCr – the rapid realization of UTC

Since 2013 a rapid evaluation of UTC is available, UTCr.

The data are on daily batches and published each week, the Wednesday.

The number of participating laboratories is slightly increased in the last years.

UTCr_ 2023	_2303 JANUARY 25, 08h UTC							
P/		REAU INTERNA OVERNMENTAL F-92312 SEVI	ORGANIZA	TION ESTA	BLISHED B	Y THE MET	RE CONVEN ai@bipm.o	
		Computed	d values o	of [UTCr-	UTC(k)]			
Date	2023 Øh UTC	JAN 16	JAN 17	JAN 18	JAN 19	JAN 20	JAN 21	JAN 22
	MJD	59960	59961	59962	59963	59964	59965	59966
Labor	ratory k			ני	UTCr-UTC(k)]/ns		
A05	(Borowiec)	5.0	5.0	5.3	5.2	5.2		
AUS	(Sydney)	-534.5	-537.5	-532.5	-528.1	-528.2	-528.6	-532.2
BEV	(Wien)	-3.7	-3.4	1.1	3.4	1.0	-2.2	1.0
BIRM	(Beijing)	5.2	5.0	4.6	5.0	5.2	5.4	5.7
H	(Bern-Wabern)	0.2	-0.4	0.4	0.8	0.4	-0.0	-0.1
.NM	(Queretaro)	-2.8	-4.7	-5.2	-0.3	-0.1	-3.1	-1.9
:NMP	(Panama)	-5.9	-2.6	-3.8		11.5		-3.9
DLR	(Oberpfaffenhofen)	-3.1	-2.6	-2.3	-2.0	-1.9		-1.3
MDM		15.5	14.4	10.6	10.6	10.1	6.0	6.7
DTAG	(Frankfurt/M)	2.3	2.9	1.8	1.3	-0.1	-1.1	0.7
SA	(Noordwijk)	2.5	2.7	2.9	3.0	2.9	2.8	3.1
IKO	(Hong Kong)	921.1	924.7	927.5	932.9	938.0	945.0	946.9
ICE	(San Jose)	-62.0	-64.7	-72.8	-72.9	-75.1	-62.6	-67.5
	(Wettzell)	-842.4	-841.6	-840.7	-840.3	-840.5	-837.5	-835.2
IGNA	(Buenos Aires)	-851.0	-865.7	-881.4	-895.5	-908.6	-917.1	-938.1
	(Sarajevo)	0.6	3.2	4.3	4.8	5.0	4.2	4.4
	(Buenos Aires)	222.5	214.8	219.8	216.5	219.6	217.5	211.1
	(Rio de Janeiro)	55.9	53.1	46.4	41.6	36.3	32.8	32.5
IPQ	(Caparica)	717.3	718.1	717.3	716.9	719.6	717.1	718.2
IT	(Torino)	3.3	3.6	3.6	3.8	3.4	3.1	3.0
JV	(Kjeller)	7.8	7.8	7.6	7.7	7.4	7.5	7.0
KRIS	(Daejeon)	0.4	0.2	-0.4	-0.3	-0.8	-0.7	-1.2



UTCr versus UTC

For the week 2303 for example we had 63 participating laboratories with 260 atomic clocks.

Concerning the time links we apply the following politics:

- if in UTC the combination of TW and GPS PPP is used in UTCr the TW
- If in UTC we use GPS PPP → in UTCr GPS P3

Bureau
International des
Poids et
Mesures

Stability of UTCr

- UTCr was not conceived to have a very good long-term stability (major difference from UTC) but to give access to UTC with a short latency to the participating laboratories.
- The goal for UTCr is to be as close as possible to UTC $(\pm 2 ns)$
- The algorithm used for the stability is like UTC algorithm
 - quadratic prediction
 - weight algorithm attributing to the clocks a weight based on the predictability/stability

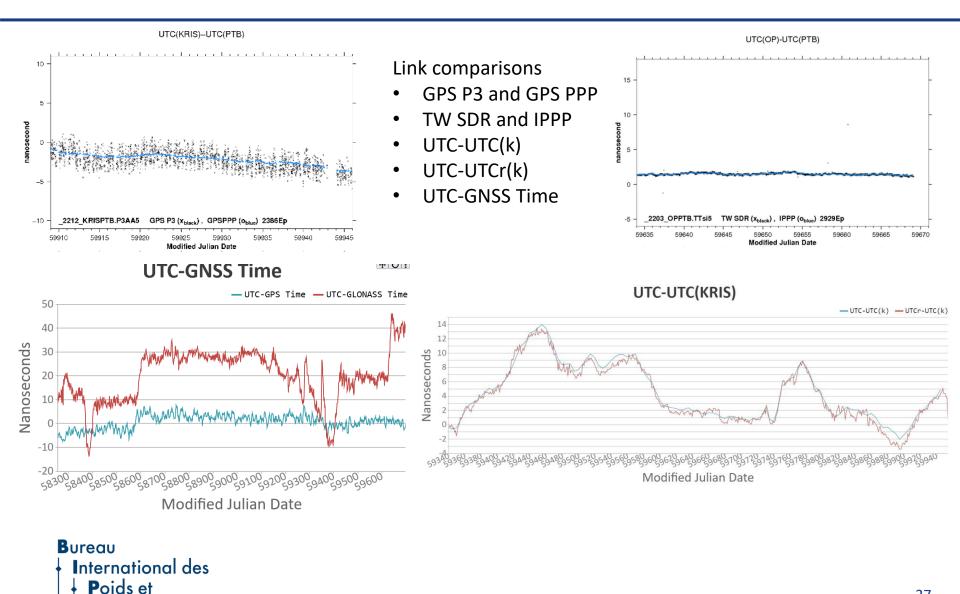
- The accuracy for UTCr means that UTCr must be as close as Accuracy of UTCr
- No frequency steering is applied
- Steering in time is applied each month after the publication of Circular T.

UTC data available on the BIPM web site

http://webtai.bipm.org/database/ and https://www.bipm.org/en/time-ftp

- Several plots and data of time transfer links UTC(j)-UTC(k)
- Comparison between techniques
- Integer Precise Point Positioning (for some links), Galileo links
- **UTC-GNSS** Times •

Weights, frequency, frequency drifts of the clocks


Bureau International des Poids et Mesures

36

PUBLICATIONS & EVENT

0

Publication examples – graphical representation

Mesures

Publication exemples - Data availability - Digitalisation

An important amount of data are published and are used by the time laboratories for internal generation of their time scale.

	MJD	[UTC-UTC(NRC)]/ns	uA/ns	uB/ns	u/ns		
	50814	9						
	50819	54						
	50824	117						
	50829	13						
	50834	14						
	50839	17						
	50844	17						
	50849	20						
	50854	22						
	50859	24						
		29						
	50869	26						
	50874							
	50879	18						
	50884	16						
x:	\TaN\2204	I\R2204	Edited	by F132	at 12:4	5:48/05/	12/22	
		BUREAU IN	TERNATI	ONAL DES	POIDS E	r mesure	s	
			INTERNA	TIONAL A	TOMIC TI	4E		
		MO FOR INTERVALS		ATES OF '			N DATE	s
	(UN	IIT IS ns/day ,	0.00 D	ENOTES TH	HAT THE (CLOCK WA	S NOT	USED)

LAB.

AGGO

AGGO

AGGO

APL

APL

APL

AUS

AUS

AUS

BEV

CLOCK

35 768

40 8620

35 1881

35 1264

35 1791

35 3842

40 3107

40 3108

40 3109

36 2269

36 3814

36 340

35 3009

40 3452

36 654

59634 59669

0.19

0.69 -0.38

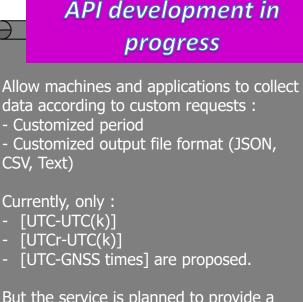
1.97 0.85 2.65

-6.55 -3.03

0.96 0.59

8.39 6.02

59699


-2.45

59.89

20,96

- UTC-UTC(k) ٠
- Rates and drifts of the clocks

X:\TAN\226	94\D2204	Edit	ed by F158b	at 12:50:28/	12/05/22		
	BU	REAU INTERNA	TIONAL DES P	DIDS ET MESU	RES		
		INTERN	ATIONAL ATOM	IC TIME			
		DRIFTS OF TH ICE FOR INTER UNI		E MONTHS END:			
	(**	******* DENO	TES THAT CLO	CK WAS MISSI	NG)		
LAB.	CLOCK	59544	59579	59609	59634	59669	59699
APL 3	35 1264	-0.1752	-0.1384	0.3015	-0.2833	-0.8140	0.0110
APL 3	35 1791	-0.1833	-0.0788	-0.1065	0.1010	-0.0323	0.5154
APL 3	35 3842	0.2303	0.3345	0.2278			0.3841
APL 4	0 3107	0.3453	0.2380	0,4937	0.6770	0,4807	0,4646
APL 4	0 3108	2.0108	2.0690	2.1986	2.0262	1.4907	1.1896
APL 4	0 3109	-0.0388	-0.0906	0.0716	0.1333	0.0875	0.072
AUS 3	36 2269	0.5353	0.3471	0.5836	0.2306	-0.5457	0.0312
AUS 3	36 3814	0.0325	-0.0319	0.1647	0.4176	0.0289	0.4621
AUS 3	86 0340	-0.4554	-0.3940	-0.1027	-0.0455	0.8141	-0.5886
AUS 3	36 0654	-0.1879	-0.3203	0.0678	-0.2462	-0.8862	-0.3119
BEV 3	35 3009	-0.2629	0.1331	1.4172	1.2959	-0.1979	-0.4485
BEV 4	0 3452	2.8572	3.0895	2.7549	2.3953	2.3305	2.2538
BEV 3	35 1793	-0.0633	-0.0165	0.2426	0.3578	0.6813	0.1187
BFKH 3	35 3543	********	********	********	-2.2842	0.3950	0.1969
BIM 1	8 8058	-0.3712	0.3048	-0.4911	-0.3777	-0.3341	-0.2314
BIRM 3	35 3447	********	*******	********	*******	*******	3.7773
BIRM 3	35 3689	********	********	********	********	********	6.9116
BY 4	40 4227	********	********	********	********	33.2125	4.2657
BY 4	4222	********	********	********	********	0.1268	-1.2629
BY 4	1 5105	********	********	********	********	0.0796	0,1079

But the service is planned to provide a larger variety of data in the future.

The API is still in testing version...

Bureau International des Poids et

59544 59579 59609

3.22 1.77 2.41 1.75 2.24

0.00 -0.37 -0.34

0.70 0.74 0.93

6.70 7.20 6.43 7.37

1.53 1.00

-0.43 0.22

0.00 -11.47 -11.46 -11.28

-1.94 -1.94 -1.12 -2.59 -2.84

1.33 1.05 1.24 2.08

57.49 57.68 58.48 58.94 59.43

20.56 20.54 20.72 20.81 20.92

0.56

684.68 687.02 689.42 690.97 692.31 693.45

-24.20 -24.40 -23.71 -24.55 -25.24 -25.12

-1.39 -1.17 1.81 1.30 1.24 0.49

-23.66 -20.12 -17.65 -15.29 -13.12 -10.59

0.00

1.27 1.94 1.99 2.06 2.04 3.01

https://webtai.bipm.org/api/v0.2-beta/

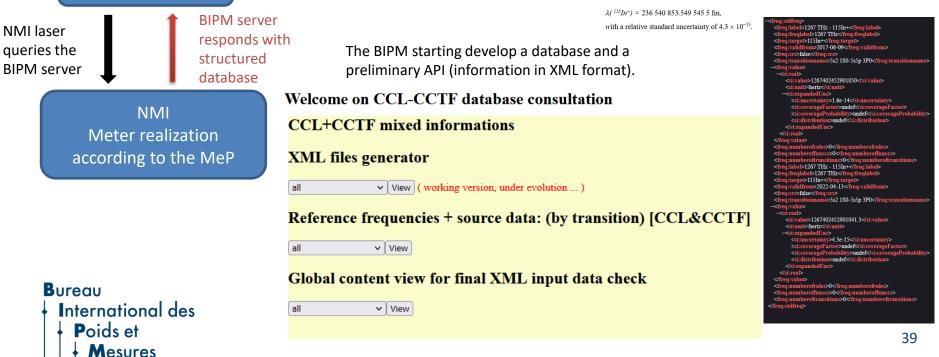
New service coming soon - Digitalisation

- The MeP for the meter and the second (recommended values of standard frequencies) are published as PDF files.
- The NMIs will be able to report the traceability to SI in digital certificates.

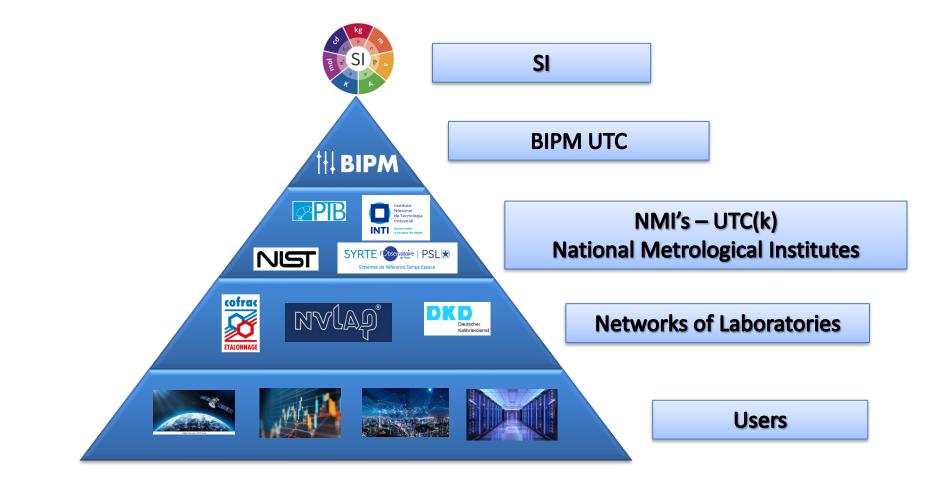
BIPM

Bureau International des Poids et Mesures Approved by the CCTF in March 2021, active on April 13, 2022

RECOMMENDED VALUES OF STANDARD FREQUENCIES FOR APPLICATIONS INCLUDING THE PRACTICAL REALIZATION OF THE METRE AND SECONDARY REPRESENTATIONS OF THE DEFINITION OF THE SECOND


INDIUM 115 ION ($f \approx 1.267$ THz)

¹¹⁵In⁺, 5s² ¹S₀ – 5s5p ³P₀ unperturbed optical transition


1. Recommended value [1] of the frequency in the CIPM List of Frequencies

 $f(^{115}In^+) = 1\ 267\ 402\ 452\ 901\ 041.3\ Hz$

equivalent to

How UTC is universally used - traceability

Conclusions

Overview of the UTC and UTCr calculation.

Special attention to the actions made to ensure their long-term stability and the accuracy.

Status of clocks, PFSF, time links in UTC and in UTCr.

The current developments made in order to improve the performance of UTC in term of algorithms, time transfer and publication form.

Thank you for your attention!